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Figure 1: Left: ray casting with shadows (RCS). Middle: Whitted-style ray tracing (WRT). Right: distribution ray tracing (DRT) with 64
samples per pixel. This paper investigates interactive WRT on current hardware and the prospects for interactive DRT on future hardware.

Abstract

Much progress has been made toward interactive ray tracing, but
most research has focused specifically on ray casting. A common
approach is to use “packets” of rays to amortize cost across sets of
rays. Little is known about how well packet-based techniques will
work for reflection and refraction rays, which do not share common
origins, and often have less directional coherence than viewing and
shadow rays. Since the primary advantage of ray tracing over ras-
terization is the computation of global effects, such as accurate re-
flection and refraction, this lack of knowledge should be corrected.
Our ultimate goal is to achieve interactive distribution ray tracing
with randomized rays for glossy reflections, soft shadows, motion
blur and depth of field. But it is not clear that the randomization
would not further erode the effectiveness of techniques used to ac-
celerate ray casting. This paper addresses the question of whether
packet-based ray algorithms can be effectively used for more than
visibility computation. It is shown that with the appropriate choice
of data structure and packet assembly algorithm, useful algorithms
for ray casting do indeed extend to both Whitted-style and distribu-
tion ray tracing programs.

1 Introduction

While some researchers predict that ray tracing will replace raster-
ization as the underlying algorithm for desktop graphics, others be-
lieve this will not happen in our lifetime [SIGGRAPH 2002]. Ray
tracing has a number of advantages over rasterization, including au-
tomatic visibility culling, time complexity sub-linear in the number
of objects, and ability to take advantage of multi-core architectures.
Perhaps the most important advantage of ray tracing over rasteriza-
tion is that it offers higher-quality images when “secondary” rays
(e.g., for reflection and refraction) are used. The main drawback of
ray tracing is that it is currently slower than hardware-based raster-
ization for most scenes. In this work, we investigate the practicality
of interactive ray tracing with secondary rays, such as reflection
and refraction. We also explore the future practicality of interactive
distribution ray tracing.

One problem with discussing interactive ray tracing is thatray trac-
ing is an overloaded term. In this paper, we use the termray cast-
ing to refer to the use of ray tracing for visibility computations
only (RCS, Figure 1, left). By adding direct lighting, reflection,
and refraction to ray casting, we can implement Whitted’s [1980]
well-known algorithm; hence we refer to such a method asWhitted-
style ray tracing (WRT, Figure 1, middle). The next step beyond

WRT is distribution ray tracing (DRT, Figure 1, right), developed
by Cook [1984]. A DRT renderer uses multiple primary rays per
pixel to render non-singular effects such as depth of field, glossy
reflection, motion blur, and soft shadows.

Recently, interactive ray tracing has been a popular topic for re-
search. There are several current systems that can perform interac-
tive ray casting; some of these implement simple shading by com-
puting direct lighting from point sources. However, very few of
these programs implement full WRT. One reason for this limitation
is that most interactive ray casters trace packets of rays with shared
ray origins, and reflection and refraction rays cannot be placed in
such packets. The little evidence that exists about the performance
of secondary ray packets is not encouraging [Reshetov 2006], so
WRT may not be able to take advantage of the techniques that have
proven so effective for ray casting.

Despite the uncertain outlook for interactive WRT performance, we
believe that rendering with WRT rather than simple ray casting is
an important goal. Although ray casting is faster than WRT, it is
inferior to current GPU graphics in both performance and image
quality. To get out of this “worst of both worlds” situation, in-
teractive ray tracing will need to add the features of full WRT. In
this paper, we discuss a new method for interactive WRT using a
combination of generalized ray packets and a bounding volume hi-
erarchy to improve efficiency, and show that our system can run
at interactive rates on current high-end computers. We also exam-
ine the overall impact of reflection and refraction rays on rendering
performance, and extend these measurements to the types of sec-
ondary rays associated with full DRT. Based on our findings, we
believe that a WRT-based renderer can provide interactive perfor-
mance now, and an interactive DRT-based renderer will be possible
within a decade on general purpose hardware, and much sooner if
ray tracing hardware is built.

2 Background

Ray Casting Interactive ray casting has been extensively studied.
Different ray casting software designs have targeted shared mem-
ory computers [Muuss 1987; Parker et al. 1999; Bigler et al. 2006],
clusters [Wald 2004; DeMarle et al. 2003], traditional GPUs [Pur-
cell et al. 2002; Foley and Sugerman 2005], and Cell proces-
sors [Benthin et al. 2006]. Another approach has been to aban-
don rasterization-based GPUs and implement ray casting directly in
hardware. FPGA and ASIC designs for such ray casting hardware
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have been presented [Schmittler et al. 2002; Fender and Rose 2003;
Woop et al. 2005; Woop et al. 2006]. One common technique for
accelerating ray casting is grouping rays into packets to take advan-
tage of coherence. Ray packets allow further efficiency through the
use of SIMD instructions as well as packet-based culling using in-
terval arithmetic or frustum tests [Wald et al. 2001; Reshetov et al.
2005; Boulos et al. 2006b; Wald et al. 2006a; Wald et al. 2006b;
Lauterbach et al. 2006].

Dynamic Scenes Some work has also addressed ray casting for
dynamic scenes, which is required if ray tracing is ever to be prac-
tical for games. Most of this work is intimately tied to the type
of spatial acceleration structure used. For grids, both incremen-
tal [Reinhard et al. 2000] and complete [Ize et al. 2006] rebuild-
ing strategies have been proposed. Motion decomposition may be
used to build goodkd trees for dynamic models if the full space of
poses is known in advance [Günther et al. 2006]. Bounding vol-
ume hierarchies have been improved using incremental rebuilding
schemes borrowed from collision detection [Larsson and Akenine-
Möller 2003; Wald et al. 2006a; Lauterbach et al. 2006].

Shadow Rays Simple shading is often added to ray casting by
computing direct lighting from point light sources. This is a sim-
ple extension of ray casting, since determining direct lighting from
a point source is analogous to computing visibility from a pinhole
camera. Shadow rays can therefore be traced from the light source
using exactly the same techniques as primary rays from the cam-
era [Wald et al. 2006a]. A similar argument applies to computing
soft shadows at a single point, for example, by sending 16 shadow
rays per primary ray [Parker et al. 1999].

Whitted-style Ray Tracing As with ray casters, most interac-
tive Whitted-style ray tracers use ray packets to improve perfor-
mance of visibility rays. When reflection and refraction rays are
added to a packet-based ray tracer, it is not clear how packets of sec-
ondary rays should be constructed, nor whether such packets will
even provide performance benefits. While some interactive ray trac-
ers support reflection [Parker et al. 1999; Wald 2004; Lauterbach
et al. 2006; Reshetov 2006] and a few have added refraction [Parker
et al. 1999; Wald et al. 2002; Bigler et al. 2006], there is little de-
tail in the literature about the impact of adding such secondary rays
on rendering performance. Most of these systems also abandon the
use of packets for such secondary rays, presumably because sec-
ondary rays lack a shared origin. There are three exceptions to this
in the literature. The special purpose hardware from the Univer-
sity of Saarland [Schmittler et al. 2002; Woop et al. 2005; Woop
et al. 2006] uses packets of four rays for both primary and sec-
ondary rays, but statistics are not provided for the the performance
of secondary rays. Bigler et al. [2006] use packets for all secondary
rays, but they provide no results on the performance of such pack-
ets. Reshetov [2006] uses packets for reflection rays, and concludes
that when usingkd trees, packets may not help performance.

Distribution Ray Tracing While DRT is currently a batch algo-
rithm, reducing the number of samples per pixel has been a focus
since its invention [Cook et al. 1984]. Low sampling rates can be
achieved using interleaved sampling, which tries to replace low-
frequency artifacts with dithering-like structured error in screen
space [Keller and Heidrich 2001; Kollig and Keller 2002]. Al-
though interactive DRT is a worthy goal, it is inherently slower than
WRT for two reasons. First, to render non-singular effects, DRT
requires more samples per pixel than WRT. Second, the rays gen-
erated in a DRT renderer are less coherent (i.e., they have a greater

range in both ray origin and direction) than WRT rays, again due
to non-singular effects such as depth of field and glossy reflection.
This reduced ray coherence could imply DRT rays are intrinsically
more expensive than coherent WRT rays.

Summary Most research indicates that packets are very useful
for interactive ray casting, but the little quantitative evidence that
has been gathered for reflection and refraction rays makes it unclear
that secondary ray packets are helpful. It is not known how much
overhead is required when ray casting is replaced with WRT, nor
whether packets can be useful for reflection and refraction rays.
Finally, even if packets can be useful for WRT, it is not known
whether the same will be true for the less coherent rays in DRT.
These unknowns are the main topic of this paper.

3 Interactive Whitted-style Ray Tracing

In this section we describe our new algorithms for interactive
packet-based WRT. First, we explain how ray packets in WRT are
different from packets in ray casting. Next, we outline an algorithm
for efficient packet-based traversal of a bounding volume hierarchy.
Finally, we compare several different methods for assembling pack-
ets of secondary rays, including a method which yields interactive
performance in our tests.

3.1 General Packets

To implement WRT with a packet-based system, the code must be
updated to handle general packets of rays. By “general packets,”
we mean packets in which the ray origins and directions are not
constrained in any way (Figure 2). In ray casting, the pinhole cam-
era model allows us to assume that all rays within a packet share
a common origin; in a general packet, each ray may have a unique
origin. In WRT, general packets may be created by reflection and
refraction. For example, when a packet of primary rays hits an ob-
ject, each reflected ray will have a different origin, due to the fact
that the incident rays hit the object at different locations.

3.2 Bounding Volume Hierarchy

We use a bounding volume hierarchy [Rubin and Whitted 1980] for
the spatial acceleration structure in our renderer. We have chosen
a bounding volume hierarchy (BVH) instead of akd tree or grid
for two main reasons. First, the BVH performs well for the types
of deformable models used in many interactive programs such as
games [Wald et al. 2006a]. Second, it is relatively easy to write
packet-based BVH traversal code that is efficient for general pack-
ets. While new research may change our decision in the future, we
think the BVH is currently the best choice for our needs.

Just as with the grid orkd tree, a culling test can indicate when an
entire ray packet misses a bounding box during BVH traversal. We
adopt the interval arithmetic-based culling approach presented by
Wald et al. [2006a]. That method does not handle general packets,
but it is straightforward to modify it to do so, as follows. The classic
ray-box test computes three intersection intervals in ray parameter
space; the ray hits the box if and only if the set intersection of the
three intervals is non-empty. For general packets, each packet stores
six intervals that encompass all ray origin and direction values over
each Cartesian coordinate. We can then perform the classic ray-box
test, using intervals in place of single coordinates. This yields three
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Figure 2: The top row shows WRT viewing rays in green and pack-
ets for reflection (left) and shadows (right). The bottom row shows
similar configurations in DRT. In both WRT and DRT, reflection
rays form “general” packets that lack a common origin. If depth of
field were added, the DRT viewing rays would also lack a common
origin, since each ray would be emitted from a different location on
the camera lens. Finally, note that the random perturbations in DRT
can create packets with less coherence than in WRT, with respect to
ray origins and directions.

conservative intersection intervals that encompass the intersection
intervals between the box and all individual rays in the packet. For
some packets, the intersection of these three conservative intervals
will still be empty, and the traversal of the entire packet can be ter-
minated. Further details of this method are available in a technical
report by Boulos et al. [2006b].

3.3 Assembling packets for secondary rays

In a packet of primary rays, some or all of the viewing rays will hit
surfaces that may or may not share object ID, material properties,
geometric proximity, or surface orientation. Any of these properties
may be used in deciding how to create packets of secondary rays.
For example, in a checkerboard with alternating brushed metal and
glass squares, it is not clear whether a single packet of secondary
rays should contain rays reflected from both metal and glass. Fig-
ure 3 illustrates the complexity of assembling secondary rays into
packets. For the 16 primary rays shown, 6 shadow rays are gen-
erated, 12 specular reflection rays are generated, and 6 specular
refraction rays are generated. Among the many options for gener-
ating secondary ray packets, we think the following methods are
potentially useful approaches:

No packets: Each of the secondary rays are sent separately.

Runs: Secondary rays are traced in the same packet if they have
some property in common (e.g., intersected material type),
and their corresponding primary rays are numerically adjacent
to each other.

Groups: All secondary rays with some common property (e.g., in-
tersected material type) are grouped in a packet.

Ray Types: Three packets are generated: one containing all
shadow rays, one containing all reflection rays, and the third
containing all refraction rays.

Blind: One packet is generated, containing all secondary rays.

The two most complete interactive WRT systems described in the
literature do not use packets for secondary rays [Parker et al. 1999;
Wald 2004]. Bigler et al. [2006] use the runs method, but they

Figure 3: Sixteen packeted rays hit various objects and materials.
Rays 1, 2, 3, and 4 hit diffuse surfaces and only generate shadow
rays. Rays 5 and 6 hit the floor and generate both specular reflec-
tion and shadow rays. Rays 7, 8, 11, and 12 hit the metal teapot
and generate only specular reflection rays. All other rays hit glass
objects and generate both specular reflection and refraction rays.

do not provide examples with reflection or refraction. The Univer-
sity of Saarland hardware prototypes use the ray types method with
packets of four rays each [Schmittler et al. 2002; Woop et al. 2005;
Woop et al. 2006]. None of these systems have reported detailed
performance statistics for either reflection or refraction rays in iso-
lation. Reshetov [2006] groups all reflection rays into a packet and
gives detailed statistics for these rays, but his results are not encour-
aging.

For the example in Figure 3, the following secondary packets are
sent for the runs, groups and ray types method. We assume that
intersected material type is the common property used to group rays
in the runs and groups methods.

Runs: Two packets of shadow rays are generated, containing rays
(1,2,3,4) and (5,6), respectively. Five packets of reflec-
tion rays are traced:(5,6), (7,8), (9,10), (11,12), and
(13,14,15,16). Finally, two refraction packets are generated:
(9,10) and(13,14,15,16).

Groups: The packets are similar to the Runs method, except
rays in the same packet need not be adjacent. Once again,
two shadow ray packets are traced:(1,2,3,4) and (5,6).
However, only three reflection packets are generated:(5,6),
(7,8,11,12), and(9,10,13,14,15,16), along with a single re-
fraction packet:(9,10,13,14,15,16).

Ray Types: Three packets are traced, one containing all
shadow rays (1,2, . . . ,6), one containing all reflection
rays: (5,6, . . . ,16), and one containing all refraction rays:
(9,10,13,14,15,16).

The runs method requires little state, and packets can be scheduled
as soon as the run is interrupted. The ray types method also requires
minimal state, since no more than three new packets are generated.
We believe that both of these methods are useful; we have tested
both and found that generating packets with the ray types method
yields the best performance.

The grouping method is problematic for several reasons. The most
obvious reason is that in the general case, the number of groups is
bounded only by the number of outgoing rays. For example, if we
group outgoing rays into packets such that rays within a small angle
θ of each other are assembled into a single packet, it is possible to
chooseθ small enough so that all outgoing rays end up in different
groups. Thus general grouping requires an impractical amount of
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Figure 4: Distribution Ray Tracing

state on the stack, since each ray packet is statically allocated with
space for 64 rays.

However, it is possible to bound the total number of groups (and
hence outgoing packets) allowed. For example, directional binning
could generate eight packets corresponding to the 8 possible di-
rection octants. In fact, the ray type method described above is a
particular form of grouping that generates at most three outgoing
packets: one for shadow rays, one for reflection and one for re-
fraction. We prefer the ray type grouping method, as it has low
overhead and is less sensitive to ray ordering than the runs method.
We also tested the octant-based directional grouping method, but it
suffers from large space requirements; up to 16 groups are required,
8 for shadow rays and 8 for rays requiring recursive shading.

The blind method is obviously a poor choice, since grouping sec-
ondary rays of all types will yield packets with poor coherence.
This case is made worse by transparent objects, since reflection and
refraction rays are placed in the same packet, although the two types
of rays will tend to go in very different directions. Furthermore, it is
often more efficient to trace shadow rays separately from recursive
shading rays; shadow rays only require occlusion tests, which may
be more efficient than the full intersection tests needed for other
ray types. Unfortunately, the blind method does not allow even this
simple separation.

Due to the disadvantages of general grouping and blind assembly,
we conclude that only ray types and runs are viable options. A
thorough comparison can be found in the results section.

4 Distribution Ray Tracing

Distribution ray tracing differs from single-sample WRT in several
important ways. The major difference between WRT and DRT is
the ability of DRT to handle non-specular effects such as depth of
field, motion blur, soft shadows, and glossy reflections (see Fig-
ure 4). In DRT, multiple primary rays are traced through each pixel,
and each primary ray originates from a different position on the
camera lens, at a different time. Rays that intersect a surface send
shadow rays to different positions on area light sources. Rays that
hit glossy surfaces send reflection rays that are perturbed from the
ideal reflection direction.

The main concern for interactive DRT is that ray packets will not
exhibit enough coherence to make ray packets worthwhile. In the
Results section of this paper, we quantitatively examine the cost of
ray packets in DRT. In the remainder of this section, we describe
the main differences between our WRT and DRT implementations.
More details may be found in [Boulos et al. 2006a].

4.1 Ray Branching

In single-sample WRT implementations, rays that hit a dielectric
surface must branch into a reflection and refraction ray, since both
of those components must be computed. One benefit of the mul-
tisampling in DRT is that ray branching is not as vital as it is in
single-sample renderers. For example, if a packet of 64 rays hits
a surface that it 25% reflective and 75% refractive, instead of trac-
ing N reflection andN refraction rays, we would trace onlyN rays
total, 25% of which are reflection rays, and 75% of which are re-
fraction rays. This cuts down on the branching factor in the ray tree
and uses multisampling to average the combined effects of reflec-
tion and refraction. Since ray types are chosen probabilistically, we
avoid scintillation artifacts by choosing samples consistently over
time (see below).

4.2 Motion-blurred Primitive Intersection

The only aspect of primitive intersection not already handled by
our WRT renderer is motion blur. Each frame in a Whitted-style
ray tracer occurs at one exact point in time, and all triangles have a
fixed, well-defined position, even in an animated scene. In distribu-
tion ray tracing, however, each frame corresponds to a continuous
interval of time, so moving primitives actually have an entire range
of possible locations. As each ray has a fixed time stamp, different
rays may potentially see the same triangle at different positions.

Therefore, we cannot use the fast projective triangle test proposed
by Wald et al. [2001], since this depends on precomputing data for
static triangles. Instead, we revert to a barycentric triangle test sim-
ilar to one optimized for general packets of rays by Kensler and
Shirley [2006].

4.2.1 Impact of Motion Blur on the BVH

To implement motion blur, we must also enlarge the BVH’s bound-
ing volumes to encompass all of a triangle’s potential positions in
the rendered frame. Thus, the bounding volumes in a DRT BVH
are looser than those in WRT. The performance impact of looser
bounding volumes varies with several parameters. If triangles move
faster, their bounding volumes grow, and rendering cost increases.
Similarly, finely tessellated scenes cause a largerrelative increase
in the bounding volumes’ surface area, even if theabsolute amount
of movement is the same. On the other hand, higher frame rates
lead to less motion per frame, suggesting that at 50-100Hz (as in
games) the overhead due to motion blur would be lower than with
our current slower frame rates. Similarly, if future ray tracers will
use higher-order surfaces (e.g., subdivision surfaces) insteadof tri-
angles, the relative motion blur overhead would decrease, as these
primitives are larger than individual triangles.

Note that motion blur due to a movingcamera also has an adverse
effect due to reduced coherence in primary packets (similar to depth
of field), but this does not affect the tightness of the BVH.

4.2.2 Amortizing Normal Vector Calculations

In DRT, each primary ray in a pixel is assigned a unique time value.
Because each triangle may be rotating over time, the triangle’s nor-
mal may not be identical for each ray in a packet. Here we give the
details of our method that allows us to cheaply compute the per-ray
normal with constant setup per packet and quadratic interpolation
per ray.
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Figure 5: We use interleaved sampling in our renderer. A static
set of samples is generated on a multi-pixel tile, and this pattern is
repeated across the image.

If we denote the vertices of a static triangle as~pi, then the vertices
of a moving triangle (linearly interpolated between frames) can be
written as~pi(t) = (1− t)~pis + t~pie , where~pis and~pie denote vertex
positions at the start and end of the frame, respectively. Here we
assume that the parametert varies from 0 at the start of the frame to
1 at the end. The edges of the triangle can be written similarly as:
~ei(t) = (1− t)~eis + t~eie .

Computing the normal of a static triangle is straightforward:~N =
~e0×~e1. In the case of a moving triangle, the expression is the same
and produces the following quadratic form:

~N(t) = ~e0(t)×~e1(t)

= [(1− t)~e0s + t~e0e ]× [(1− t)~e1s + t~e1e ]

= (1− t)2~Ns + t(1− t) [~e0s ×~e1e +~e0e ×~e1s ]+ t2~Ne

In this form, we can determine the normal for all rays in the packet
by first computing four cross products and then quadratically inter-
polating these values for each ray. For large ray packets (we use 64
rays per packet) this reduces the number of cross products required
by factor of 16. It would also be possible to compute these vectors
once per frame, but we have not explored this option.

We have implemented this method, and for many architectures, per-
formance actually degrades relative to naive computation of the nor-
mal vector on-the-fly for every ray. For example, on an x86 proces-
sor, our renderer ran 10% slower using the amortized method. We
believe this is due to the increased register pressure required to keep
the precomputed vectors resident. Our method may be useful on ar-
chitectures such as the Cell that have a larger register file, thus we
have included it here.

4.3 Generating Random Samples

To make DRT interactive, it is imperative to use few samples per
pixel. For the amount of computational power that will be available
in the foreseeable future, this implies that the number of samples
will be smaller than that needed for convergence, and visible er-
ror will be present. An intelligent sampling method such as Keller
and Heidrich’s [2001] interleaved sampling (see Figure 5) can be
used to decrease the perceptible error for a given sampling rate. Al-
though this makes the sampling code somewhat more complicated
than a simple jittering-based DRT implementation, it does not neg-
atively impact performance. Another benefit of using a static sam-
ple set such as the one presented in Keller and Heidrich is that it
removes the temporal scintillation artifacts that arise when using
different random samples in every frame.

We use a sampling scheme based on the Sudoku game. Details
may be found in [Boulos et al. 2006a]. Although different sam-
pling methods lead to varying amounts of visible noise (for a given

RCS fps WRT fps DRT fps
conference 8.0 2.8 0.02
rtrt 16.5 9.3 0.13
poolhall 12.0 6.1 0.07

Table 1: Performance in frames per second (fps) on a shared mem-
ory machine with four dual core 2GHz Opteron 870s for ray casting
with shadows (RCS), Whitted ray tracing (WRT), and distribution
ray tracing (DRT). RCS and WRT have one sample per pixel, and
DRT has 64 samples per pixel. Image sizes are 1024 by 1024 pixels.

number of samples per pixel), rendering performance is not highly
dependent on the sample set used. The one exception is that the
mapping from random samples to scene space must be done in-
telligently. For example, when sampling a Phong lobe for glossy
reflection, certain mappings transform the origin in sample space
to a reflected ray that is perfectly tangent to the object’s surface.
These tangent rays generate many false positives when performing
the BVH traversal, and adversely affect performance.

5 Results

Our system is implemented in C++ with SIMD extensions, and is
modified from the system used for ray casting with shadows (RCS)
by Wald et al. [2006a]. The most important extensions to that code
was adding support for general packets, reflection, refraction, and
interleaved sampling. To establish a baseline, we first use ray cast-
ing with shadows. As noted by Reshetov et al. [2005], just adding
support for normalized viewing rays, local shading, and display sig-
nificantly slows down ray casting. We have noted the same phe-
nomenon in our code, and it is similar to the factor of two noted
by Reshetov et al. Our baseline includes normalized viewing rays,
local shading with shadows, and display. For all tests we start with
viewing ray packets of 64 rays, and useray types to build secondary
packets. We ran all of our tests with different packet sizes (2×2,
4×4, 8×8 and 16×16) and found as in [Wald et al. 2006a] that
the 8×8 packets perform best.

We ran our system on three scenes (see Figure 6) using camera
paths for each scene (the path for the conference scene was orig-
inally used by Reshetov[Reshetov 2006]). The default maximum
depth allowed is 50, but ray tree attenuation usually keeps the trees
much shallower. The first columns of Tables 1 and 2 show our sys-
tem performance for a one megapixel image on an eight core system
for RCS. When we add reflection and refraction (WRT), as shown
in the second column of Table 1, there is a slowdown of 2-3 times
in framerate from RCS. The majority of this slowdown is because
more rays are sent, however, reflection and refraction rays are more
expensive than primary and shadow rays (see Figure 7). This differ-
ence in cost is also represented in the difference in total rays traced
per second (see Table 2). It is important to note that WRT is only
about 30% slower per ray than RCS.

With DRT at 64 samples per pixel, we are factors of hundreds or
thousands from interactive performance. However, the rays per
second achieved is about one half that for WRT on the conference
scene, and only about 30% worse for the other two models. This
is partly an artifact of the conference scene material parameters: all
surfaces are reflective with a fairly reasonable exponent (mimicking
the test from Reshetov[Reshetov 2006]). One interesting question
is how much it slows down a WRT just to add the sampling infras-
tructure for DRT even if it is not used (i.e., the reflection rays are
perturbed by zero degrees and remain ideal in behavior). Our tests
have shown a consistent slowdown of around 12%, so this is not the
main source of the slowdown of DRT.

5



School of Computing, University of Utah, Technical Report No UUCS-06-13

Figure 6: Our three test scenes. Left: pool hall (305,314 triangles).Middle: conference (282,664 triangles). Right: rtrt (83,844 triangles).

RCS rps WRT rps DRT rps
conference 16.2M 12.3M 4.5M
rtrt 33.1M 28.4M 20.2M
poolhall 24.8M 17.2M 10.8M

Table 2: The number of rays traced per second (rps) for the same
configurations as in Table 1.

5.1 From WRT to DRT

In our tests, most DRT features display fairly small percentage dif-
ferences across different values and the different scenes. For exam-
ple, in changing the diameter of the lens aperture from 0 (effectively
a pinhole camera) to twice a reasonable size we only see percent-
age differences at each step (see Figure 7). Light source size only
affects the shadow rays as these rays do not cast recursive rays.The
exposure time has behaves similar to other variables for small val-
ues, but is surprisingly non-linear. When the exposure time is low,
primitives in the scene expand the bounding boxes less and to the
packet of rays “look like less primitives”. As this exposure time
gets higher, this effectively creates many more primitives for the
rays to intersect.

Our experiments reveal that in terms of overall performance, both
the ray type and shader id runs assembly algorithms produce sub-
stantial performance increases over the no packets assembly algo-
rithm (around 2-3x speedup for our scenes). Compared to each
other, the ray type assembly is usually 10-20% faster for a given
scene over the full animation path. While this seems like a small
improvement, it is important to understand where this improvement
comes from.

The difference in performance between ray type and runs assembly
can be seen from looking at the behavior of packets of rays as the
bounce depth increases (see Figure 8). Both methods perform fairly
similarly at first and the difference in overall performance is only
around 10%. At higher bounce depths, however, the runs assembly
demonstrates usually demonstrates between 15-25% more primi-
tive and box tests. This doesn’t show up as a big penalty overall,
but this is an artifact of ray tree pruning (there are many fewer of
these higher cost rays). As the performance gap between CPUs and
memory increases, reducing box tests will reduce memory accesses
and should widen the gap between ray type assembly and runs as-
sembly [Reshetov 2006]. Similarly, if the number of rays traced
at deeper bounces becomes more important (as for path tracing or
caustics from long specular chains) the ray type assembly method
will pull further ahead.

6 Conclusions and Discussion

We have demonstrated what we believe is the first interactive WRT
system to support animated and dynamic scenes such as those used
in games. We have shown that ray packets and reflection/refraction
rays are not necessarily incompatible. We have also shown that
DRT is not severely more expensiveper ray than WRT, and that
most of the cost difference is due to necessary multisampling. The
following are a number of important questions we have not defini-
tively answered, along with our best current answers. We believe
all of these topics deserve further study.

What applications benefit from raytracing? The sub-linear
time complexity of ray-triangle intersections is a primary advan-
tage of raytracing, which allows us to interactively render densely
tessellated surfaces with complex lighting and materials. The pro-
cess of character posing often involves manipulating a bone rig
and previewing the influence on a low-resolution mesh in a lim-
ited lighting environment. The reason for this is due in large part
to polygon rasterization limits and the demands of complex light-
ing. Interactive DRT offers the potential for animation setups in a
lighting environment that is closer to the final frame quality. DRT
also holds promise for interactive games with substantially more
detailed models and more general lighting. This approach avoids
special case approximations such as environment maps and low
quality shadow maps by directly and efficiently simulating reflec-
tion and visibility. The character model seen in Figure 1 can be
posed in our system at interactive rates (at lower sample rates, 1-16
samples per pixel), allowing an animator to work in a more repre-
sentative lighting environment.

Is DRT enough? Several extensions to WRT and DRT allow
computation of global illumination effects; among these are path
tracing [Kajiya 1986], bidirectional path tracing [Lafortune and
Willems 1993], and photon mapping [Jensen 1996]. These are cer-
tainly useful for some applications, and if enough computational
power becomes available, they are worth pursuing. However, we
think DRT will be sufficient for many applications including most
games, and simpler additions such as ambient occlusion will be al-
most as valuable as global illumination.

How many samples per pixel are needed? WRT benefits
from multiple samples per pixel for antialiasing, and DRT requires
multiple samples per pixel for acceptable image quality. The num-
ber of samples needed will depend on scene and display character-
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istics; in our experience, 16 to 64 samples per pixel are sufficient
for high quality results.

Should rasterization be used for visibility? This is the trend
in the computer-generated film industry because of the high number
of procedural objects (e.g., displacement-mapped subdivision sur-
faces) that are used [Christensen et al. 2006]. However, we believe
interactive applications will benefit more from enhanced lighting
effects than from complex procedural geometry that requires on-
the-fly computation. Since visibility computations are an inherent
part of ray tracing, we believe that future interactive applications
may simply use ray tracing alone, rather than computing visibility
with rasterization.

Shouldn’t GPUs be used for ray tracing? So far, GPU ray
tracers are not as fast as CPU ray tracers. If reflection and refraction
from curved surfaces are not needed then the accumulation buffer
technique [Haeberli and Akeley 1990] could be used to great ef-
fect. However, we think that such reflections and refractions are
desirable.

What hardware will WRT and DRT run on? WRT performs
reasonably well on commodity CPUs, and with teraflop processors,
WRT should run very fluidly on most scenes. DRT, on the other
hand, may require special purpose hardware, especially if high-
resolution images are needed.

Are ray packets a good idea? Ray packets trade software com-
plexity for speed, and for secondary rays, the trade-off is not as
clear as it is for ray casting. Although it is not often discussed in
the graphics literature, most researchers are well aware that there
is a high hidden cost for software complexity. More research into
automatic ray scheduling in the spirit of Pharr et al. [1997] could
combine the best qualities of packet-based and single-ray code.

What is the new bottleneck? Shading time is now competing
with total tracing time as the bottle neck (a profile of our code re-
veals that they are nearly equal), as long as some reasonable packet
grouping is used. This implies that one of the most important tasks
for future work is to be able to group shading operations and per-
form common sub-expressions in a parallel manner. Alternatively,
robust methods that amortize shading costs (similar to irradiance
caching) may provide the same sort of improvement for shading
cost that we have seen in tracing costs.
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