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Abstract

This paper presents a novel method for denoising MR images that relies on an optimal
estimation, combining a likelihood model with an adaptive image prior. The method mod-
els images as random fields and exploits the properties of independent Rician noise to
learn the higher-order statistics of image neighborhoods from corrupted input data. It uses
these statistics as priors within a Bayesian denoising framework. This paper presents an
information-theoretic method for characterizing neighborhood structure using nonparamet-
ric density estimation. The formulation generalizes easily to simultaneous denoising of
multimodal MRI, exploiting the relationships between modalities to further enhance per-
formance. The method, relying on the information content of input data for noise estimation
and setting important parameters, does not require significant parameter tuning. Qualita-
tive and quantitative results on real, simulated, and multimodal data, including comparisons
with other approaches, demonstrate the effectiveness of the method.
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Abstract. This paper presents a novel method for denoising MR im-
ages that relies on an optimal estimation, combining a likelihood model
with an adaptive image prior. The method models images as random
fields and exploits the properties of independent Rician noise to learn
the higher-order statistics of image neighborhoods from corrupted input
data. It uses these statistics as priors within a Bayesian denoising frame-
work. This paper presents an information-theoretic method for charac-
terizing neighborhood structure using nonparametric density estimation.
The formulation generalizes easily to simultaneous denoising of multi-
modal MRI, exploiting the relationships between modalities to further
enhance performance. The method, relying on the information content of
input data for noise estimation and setting important parameters, does
not require significant parameter tuning. Qualitative and quantitative
results on real, simulated, and multimodal data, including comparisons
with other approaches, demonstrate the effectiveness of the method.

1 Introduction

Over the last several decades, magnetic resonance (MR) imaging technology has
benefited from a variety of technological developments resulting in increased reso-
lution, signal to noise ratio (SNR), and acquisition speed. However, fundamental
trade-offs between resolution, speed, and SNR combined with scientific, clinical,
and financial pressures to obtain more data more quickly, result in images that
still exhibit significant levels of noise. In particular, the need for shorter acquisi-
tion times, such as in dynamic imaging, often undermines the ability to obtain
images having both high resolution and high SNR. Furthermore, the efficacy
of higher-level, post processing of MR images, including tissue classification and
organ segmentation, that assume specific models of tissue intensity (e.g. homoge-
neous), are sometimes impaired by even moderate noise levels. Hence, denoising
MR images remains an important problem. From a multitude of statistical and
variational denoising formulations proposed, no particular one appears as a clear
winner in all relevant aspects, including the reduction of randomness and inten-
sity bias, structure and edge preservation, generality, reliability, automation, and
computational cost. The paper proposes a method for denoising MR magnitude
data modeling images as random fields, but unlike statistical methods in liter-
ature, it does not rely on a specific, ad-hoc image prior. Instead, it estimates



the higher-order signal statistics from the neighborhood statistics of the noisy
input data by deconvolving the latter with the noise statistics. It then uses these
statistics as priors within an optimal Bayesian denoising framework.

2 Related Work

A multitude of variational/nonlinear PDE-based methods have been developed
for a wide variety of images and applications [15, 14], with some of these hav-
ing applications to magnetic resonance imaging (MRI) [8, 11, 7]. However, such
methods impose certain kinds of models on local image structure, and these mod-
els are often too simple to capture the complexity of anatomical MR images. Also
they do not take into account the bias introduced by Rician noise. Furthermore,
they usually involve manual tuning of critical free parameters that control the
conditions under which the models prefer one sort of structure over another; this
has been an impediment to the widespread adoption of these techniques.

The wavelet literature addresses image denoising extensively [16]. Healy et
al. [9] were among the first to apply soft-thresholding based wavelet techniques
for denoising MR images. Hilton et al. [10] applied a threshold-based scheme
for functional MRI data. Nowak [13], operating on the square magnitude MR
image, includes a Rician noise model in the threshold-based wavelet denoising
scheme and thereby corrects for the bias introduced by the noise.

Several statistically based image processing algorithms rely on information
theory such as the mean-shift algorithm [3]. It is a mode seeking process that
operates only on image intensities (scalar/vector valued) and does not account
for the neighborhood structure. As such it has been used for image segmenta-
tion, but not for reconstruction. Some MR nonuniformity correction methods are
based on the quantification of information content in MR images [19, 12]. They
follow from the observation that nonuniformities increase the entropy of the 1D
gray scale probability density functions (PDFs). However, entropy measures on
first-order image statistics are insufficient for denoising; thus this paper extends
the information theoretic strategy to higher-order PDFs.

Another class of statistical methods are based on Markov random fields [24,
22]. The proposed method also exploits the Markov property of the images, but
rather than imposing an ad-hoc image model, it estimates the relevant condi-
tional PDFs from the input data. We show that incorporating spatial informa-
tion, via neighborhood statistics, is effective for MRI denoising and that the
process can be bootstrapped from the image data, making a very general algo-
rithm with less tuning of critical free parameters.

Previous work in estimation theory has addressed the use of optimal image
estimation using neighborhood probabilities [21]. That work focuses on discrete
functions and relies on inverting the channel transition matrix (noise model) to
give a closed form estimate for source statistics. The proposed method addresses
continuous-valued signals, which is essential for medical imaging applications,
and thus entails deconvolving nonparametric approximations to PDFs via en-
tropy reduction. It also addresses the effect of noise in the neighborhoods that



are used to condition the estimate, hence making it more effective for reducing
additive/multiplicative noise, which is important in medical image processing.

The method in this paper builds on our previous work in [1]. That work lays
down the foundations for unsupervised learning of higher-order image statistics
and proposes entropy reduction as a denoising heuristic for independent additive
zero-mean Gaussian noise for single gray scale images. This paper uses entropy
reduction coupled with the Rician noise model as a means to recover higher-order
image statistics from noisy input data. It exploits such statistics for optimal
Bayesian denoising of MR images, with a method for computing the expectation
of the posterior. It also addresses the question of how to utilize multimodal data
within this optimal framework.

3 Neighborhood Statistics for MRI Denoising

This section begins with an overview of the random-field image model and then
describes the formulation that uses a priori information of higher-order (neigh-
borhood) statistics within an optimal Bayesian estimation framework. The next
section (Section 4) describes a way of bootstrapping this process by generating
such priors from the noisy data itself.

3.1 Random Field Image Model

A random field/process [5] is a family of random variables X(Ω;T ), for some
index set T , where, for each fixed T = t, the random variable X(Ω; t) is defined
on the sample space Ω. If we let T be a set of points defined on a discrete
Cartesian grid and fix Ω = ω, we have a realization of the random field called
the digital image, X(ω, T ). In this case {t}t∈T is the set of pixels in the image.
For 2-dimensional images t is a two-vector. We use a shorthand to denote random
variables X(Ω; t) by X(t). We denote a specific realization X(ω; t) (the digital
image), as a deterministic function x(t).

If we associate with T a family of pixel neighborhoods N = {Nt}t∈T such
that Nt ⊂ T , t /∈ Nt, and u ∈ Nt if and only if t ∈ Nu, then N is called a
neighborhood system for the set T and points in Nt are called neighbors of t.
We define a random vector Y (t) = {X(t)}t∈Nt , denoting its realization by y(t),
corresponding to the set of intensities at the neighbors of pixel t. We denote
the noiseless image by X(ω, T ) and its associated set of neighborhood intensities
by Y (ω, T ). Correspondingly, for the observed noisy image, we use X̃(ω, T ) and
Ỹ (ω, T ). For the formulation in this paper, we assume the noiseless image to be
generated from a stationary ergodic process (in practice this assumption can be
relaxed, somewhat). For notational simplicity, we use the short hand for random
variables X(t) as X and their realizations x(t) as x, dropping the index t.

3.2 Bayesian Estimation with Higher-Order Statistical Priors

The proposed strategy relies on several pieces of technology that interact to
provide accurate, practical models of image statistics. For clarity the discussion
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Fig. 1. Insets of (a) the noiseless image, (b) the noisy image (SNR 12db), (c) one of the
two images forming the higher-order prior, and (d) the denoised image (SNR 23db).

begins at a high level allowing for certain available models and estimates; succes-
sive sections discuss how each of these pieces is developed from the input data.
Our goal is to estimate the true intensity x from the observed noisy intensity x̃ by
exploiting the neighborhood intensities. We begin with the simplest case where
we know the uncorrupted neighborhood intensities y. We consider Bayesian es-
timation with the prior P (X|Y = y) and the likelihood P (X̃ = x̃|X). Assuming
again, for simplicity, that we know the prior, Bayes rule gives the posterior as

P (X|X̃ = x̃, Y = y) =
1
η
P (X̃ = x̃|X)P (X|Y = y) (1)

where η = P (X̃ = x̃|Y = y) is a normalization factor. For a squared error loss
function the optimal estimate is the posterior mean x̂ = E[X|X̃ = x̃, Y = y].

In practice, two problems undermine this strategy. The first concerns obtain-
ing the conditional PDFs that give the priors for an image. We propose to model
these nonparametrically using Parzen windowing with samples of image neigh-
borhoods, as described in subsequent sections. These samples can come from
either a suitable database of high SNR images (e.g. different images of the same
modality and anatomy) or from the noisy input image itself, using a bootstrap-
ping process described in Section 4. The second problem is that, even if we know
the priors, we know only ỹ for the input data (not y). To address this issue, we
start with ỹ as an approximation for y and iterate on the posterior estimates to
a fixed point where the posterior estimate for each pixel is consistent with the
prior given by the estimates of its neighbors. Thus, as the iterations proceed, the
noise in the pixel intensities reduces and the neighborhoods give progressively
better estimates of the prior. The proposed algorithm is therefore:

1. The input image I comprises a set of intensities {x̃}t∈T and neighborhoods
{ỹ}t∈T . These values form the initial values (I0 = I) of a sequence of images
I0, I1, I2, . . ., with corresponding intensities x̂0, x̂1, x̂2, . . . and neighborhoods
ŷ0, ŷ1, ŷ2, . . ..

2. Compute the likelihood PDF P (X̃ = x̃|X), as described in Section 3.4.
3. For each pixel in the current image Im, estimate the higher-order prior

P (X|Y = ŷm), as described in Section 3.3.
4. Construct a new image Im+1 with intensities x̂m+1 as the posterior mean

x̂m+1 = E[X|X̃ = x̃, Y = ŷm].



5. If ‖ Im+1 − Im ‖> δ (small threshold), go to Step 3, otherwise Im+1 is the
output.

Figure 1 shows a demonstration of this concept on simulated MRI data from
the BrainWeb [2] project. We corrupt a T1 image with Rician noise and use two
other similar, but not identical, images as priors. We use 9 × 9 neighborhoods.
Figure 1(c) is one of the two images representing the nonparametric prior model
(Parzen windows, 500 local random samples for each t), and Figure 1(d) is the
output image. This example shows the power of the prior—the denoised image
exhibits structures that are barely visible in the noisy version. The coming sec-
tions describe the underlying technology in this estimation process, and give an
algorithm for generating data-driven prior models without an example.

3.3 Modeling the Prior: Nonparametric Density Estimation

Bayesian estimation using higher-order statistics entails the estimation of higher-
order conditional PDFs. Despite theoretical arguments suggesting that density
estimation beyond a few dimensions is impractical, the empirical evidence from
the statistics literature is more optimistic [17, 1]. The results in this paper confirm
that observation. Moreover, stationarity implies that the random vector (X,Y )
exhibits identical marginal PDFs, leading to more accurate density estimates
[17]. In addition, the neighborhoods in natural images have a lower-dimensional
topology in the high-dimensional feature space [4] that aids in density estimation.

We use the Parzen-window nonparametric density estimation technique [6]
with an n-dimensional Gaussian kernel Gn(z, Ψn), where n is the neighborhood
size. Having no a priori information on the structure of the PDFs, we choose an
isotropic Gaussian, i.e. Ψn=σP In, where In is the n × n identity matrix. Using
optimal values of the Parzen-window parameters is critical for success, and that
can be difficult in such high-dimensional spaces; we have developed a method
for automatically choosing this parameter, as described Section 4.3.

For a stationary ergodic process, the estimated prior is

P (X|Ỹ = ỹi) =

∑
tj∈Ai

Gn(ỹi − yj , Ψn)G1(xj , Ψ1)∑
tj∈Ai

Gn(ỹi − yj , Ψn)
(2)

where the set Ai is a small subset of T , chosen at random for each ti, and xj

and yj are shorthand for x(tj) and y(tj) respectively. This results in a stochastic
approximation for the conditional PDFs and the corresponding posteriors.

3.4 Approximating the Rician Likelihood

The Rician PDF of the MRI intensities does not lend itself to analytical, closed-
form representations of quantities, such as the likelihood and the posterior ex-
pectation, which we need for each iteration of this algorithm. In practice we have
found that the shape of the PDF is less important than having good estimates
of variance and bias. Therefore, we develop a method of approximating Rician
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Fig. 2. Gaussians (solid lines) approximating likelihood functions (non-solid lines) for
different observed signal magnitudes (underlying noise ≡ N(0, 100)).

noise (via the likelihood) by additive Gaussian noise with a signal-dependent
mean and variance. For the underlying independent noise N(0, σ2), and σ esti-
mated using the method described by Nowak [13], the likelihood is

P
(
X̃ = x̃|X = x

)
=

x̃

σ2
exp(− x̃2 + x2

2σ2
)I0(

x̃x

σ2
) (3)

where I0(·) is the zero-order modified Bessel function of the first kind. For a
discrete set of observed signal magnitudes x̃, we fit a Gaussian to the likelihoods
via a Levenberg-Marquardt optimization scheme. In this way, we create (in a
preprocessing step) a lookup table mapping x̃ to the parameters of the Gaussian
approximation, and interpolate the parameters between sample points as needed
in subsequent likelihood calculations. At high SNR the means are close to x̃ while
at low SNR the means are substantially lower. Figure 2 shows the likelihood
PDFs and the approximated Gaussians for various observed signal magnitudes.

3.5 Computing the Posterior Mean

Equations 1 and 2, and the Gaussian approximated likelihood, give the posterior

P (X|X̃ = x̃, Ỹ = ỹi) =
1
η

∑
tj∈Ai

Gn(ỹi − yj , Ψn)G1(xj , σ
2
P )∑

tj∈Ai
Gn(ỹi − yj , Ψn)

G1(x̃L, σ̃2
L), (4)

where σ̃2
P is the Parzen-window kernel variance, and x̃L and σ̃2

L are the mean and
variance of the Gaussian approximation to the likelihood (from the lookup table).
The posterior mean is given by a sum of expectations of Gaussian products:

E[X|X̃ = x̃, Ỹ = ỹi] =

∑
tj∈Ai

Gn(ỹi − yj , Ψn)KijMij∑
tj∈Ai

Gn(ỹi − yj , Ψn)Kij
; (5)

Kij =
exp(−Aij(Cij − B2

ij/4))√
2π(σ̃2

P + σ̃2
L)

;Mij =
Bij

2
;

Aij =
σ̃2

P + σ̃2
L

2σ̃2
P σ̃2

L

;Bij = 2
xj σ̃

2
P + x̃Lσ2

L

σ̃2
P + σ̃2

L

;Cij =
x2

j σ̃
2
P + x̃2

Lσ2
L

σ̃2
P + σ̃2

L

;

where we exploit the property that the Gaussian is its own conjugate.



4 Bootstrapping Neighborhood Statistics from Noisy
Input Data

So far we discussed denoising with higher-order statistical priors. In the absence
of noiseless/high-SNR example images, we must estimate these from the noisy
input image. If we wish to construct an approximation to the prior (neighborhood
statistics) from the input data, we must address the affects of noise on this PDF.
We approximate Rician noise as (nonstationary) additive Gaussian. Hence the
proposed method derives from the effects of additive Gaussian noise on PDFs.
Additive noise in the signal corresponds to a convolution of the PDFs of the
signal and noise. Therefore, for probability densities, noise reduction corresponds
to deconvolving the PDF of the input data by the PDF of the noise.

4.1 Estimating Neighborhood Statistics

Rician noise affects the conditional PDFs in two ways: (a) it introduces a bias
(shift), and (b) it increases its entropy h(X̃|Ỹ = ỹ) [18]. Hence, we propose en-
tropy reduction coupled with bias correction in an attempt to recover the PDFs.
Of course, entropy reduction might also partly eliminate the normal variability
in the image. However, we are motivated by the observation that noiseless images
tend to have very low entropies relative to their noisy versions. Thus, entropy
reduction first affects the noise substantially more than the image statistics. We
propose bias correction by shifting intensities x̃ towards their likelihood mean
E[X̃ = x̃|X]. For the case of zero noise these two values coincide, thereby elimi-
nating the need for any correction. Otherwise, we move x̃ towards its likelihood
mean with a force proportional to the difference. Thus, to restore the conditional
PDFs of the input, we minimize the functional

∑
t∈T

[
λ1

(
h(X̃|Ỹ = ỹ)

)
+ λ2

(
x̃ − E[X̃ = x̃|X]

)2

/2
]

. (6)

The first term in the functional sharpens the conditional PDFs, and the second
term aids in bias correction. We use an iterative gradient-descent optimization
scheme with finite forward differences. The PDF restoration proceeds as follows:

1. The input image I comprises a set of intensities {x̃}t∈T . These values form
the initial values of a sequence of images I0, I1, I2, . . ..

2. Using the current image Im, construct a new image Im+1 with intensities
x̃m+1 = x̃m − λ1∂h/∂x̃m − λ2

(
x̃m − E[X̃ = x̃m|X]

)
.

3. If the estimated noise level (as per the method in [13]) in Im+1 is zero, then
stop. Otherwise, go to Step 2.

We call the final image generated by this process as the PDF-restored image.
This image forms the example image, from which samples are taken to model
the prior conditional probabilities in Equation 2. In practice, the results are
somewhat insensitive to the values of λ1 and λ2, and we choose λ1, as described
in Section 5, related to a mean-shift update.



4.2 Entropy Minimization via Gradient Descent

Entropy is the expectation of negative log-probability, and therefore we can
approximate it with the sample mean [20]. For a stationary ergodic process, we
approximate the entropy of the conditional PDF as

h(X̃|Ỹ = ỹi) ≈ − 1
|T |

∑
ti∈T

log

[∑
tj∈Ai

Gn+1(w̃i − w̃j , Ψn+1)

|Ai|P (Ỹ = ỹi)

]
(7)

where w̃i = (x̃i, ỹi), Ai is a small subset of T , chosen at random; as done in
Section 3.3 for computing the prior. A variety of practical issues associated with
this strategy, are discussed in Section 4.3. The gradient descent for wi is

∂x̃i

∂t
= − 1

|T |
∂w̃i

∂x̃i

∑
tj∈Ai

Gn+1(w̃i − w̃j , Ψn+1)∑
tk∈Ai

Gn+1(w̃i − w̃k, Ψn+1)
Ψ−1

n+1(w̃i − w̃j) (8)

where ∂w̃i/∂x̃i projects the n+1 dimensional vector w̃i onto the dimension asso-
ciated with the element x̃i. In previous work [1] we have shown that, a timestep
of |T |σ2

P corresponds to a mean-shift procedure on the conditional PDFs; that
is, each data value moves to the weighted average of the sample data.

4.3 Implementation Issues

This section discusses several practical issues that are crucial for the effectiveness
of the entropy reduction and prior estimation on image neighborhoods. A more
detailed discussion on these issues is given in [1].

Parzen-window kernel width: Parzen-window density estimates, using finitely
many samples, are greatly sensitive to the value of the Gaussian kernel σP [6].
The particular choice of σP is related to the sample size |Ai| in the stochastic
approximation. We automatically compute an optimal σP , that minimizes the
average entropy of all conditional PDFs in the image, via a Newton-Raphson
optimization scheme. Our experiments show that for sufficiently large |Ai| addi-
tional samples do not significantly affect the estimates of entropy and σP , and
thus |Ai| can also be generated automatically from the input data.

Stationarity and local sampling strategies: In practice, image statistics are
not homogeneous, and statistics for most images are more accurately modeled
as piecewise stationary ergodic. Thus the set Ai of samples used to evaluate
entropy and process pixel ti should consist of pixels that are spatially near ti. To
achieve this, we choose a unique set of samples for each pixel ti at random from
a Gaussian distribution on the image coordinates, centered at ti with standard
deviation 30. Thus, the set Ai comprises pixels biased to be more near ti. This
strategy gives consistently better results than uniform sampling, and we have
found that the it performs well for virtually any choice of the standard deviation
that encompasses more than several hundred pixels. For this sampling strategy,
|Ai| is automatically computed to be 500 for all examples in the paper.



Neighborhood shape and size: Larger neighborhoods generally yield better
results but take longer to compute. Typically 9 × 9 neighborhoods suffice, and
we use them for the results in this paper. To obtain rotational invariance we use
a metric in the feature space (neighborhood mask) that controls the influence of
each neighborhood pixel by making distances in this space less sensitive to neigh-
borhood rotations. Likewise image boundaries are handled through anisotropic
metrics that do not distort the neighborhood statistics of the image.

Computation: The computational complexity of the proposed method is sig-
nificant: O(|T ||Ai|ED) where D is the image dimension and E is the extent of
the neighborhood along a dimension. This is exponential in E, and our current
results are limited to 2D images. The literature suggests some potential improve-
ments (e.g. [23]). However, the purpose of this paper is to introduce the theory
and methodology—algorithmic improvements are the subject of future work.

5 Experiments and Results

We show results using (a) real T1 noisy data, as well as (b) simulated MR
data (181×217 pixels) obtained via BrainWeb [2] for unimodal and multimodal
denoising. We simulate Rician noise by adding zero-mean Gaussian noise to the
real and imaginary parts of the simulated MR data and taking the magnitude.
For entropy minimization in the functional 6, the time step λ1 = |T |σ2 (≡ mean-
shift update) can lead to oscillations, because of interactions of neighborhoods

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a) Noiseless T1 image. (b) Noisy image (gray matter SNR 12db, normalized
squared error 1.0). (c) PDF-restored image (13 iterations) (as described in Section 4.1).
(d) Denoised image (5 iterations, gray matter SNR 23db, normalized squared error
0.16). (e)-(h) show zoomed insets of images (a)-(d).
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Fig. 4. Multimodal denoising. (a)-(c) Noisy T1, T2, PD images (signal intensity
range 0:100, underlying noise N(0, 400)) (d) Zoomed inset of noisy T1 image.
(e),(f) Zoomed insets of PDF-restored (as described in Section 4.1) and denoised T1
images. (g),(h) Zoomed insets of PDF-restored and denoised T2 images.

from one iteration to the next. We have found that a time step of λ1 = 0.2|T |σ2

alleviates this effect. We fix λ2 = 0.2. We compute SNR as 20 log(x/σ) where x is
the signal magnitude and the (estimated) underlying noise PDF is N(0, σ2). Each
iteration on these data sets takes about 2 minutes on a Pentium-IV machine.

Multimodal denoising entails a simultaneous denoising of T1, T2, and PD
images in a coupled manner, treating the combination of images as an image of
vectors with the PDFs in the combined probability space. Although this paper
shows results with multimodal images that are well aligned, we have evidence
that the denoising is fairly robust to minor misregistration errors. The results
show that incorporating more information in the denoising framework, via im-
ages of multiple modalities, produces consistently better results.

Figure 3 shows a denoising example using T1 data (SNR 12db) for the gray
matter. With a normalized sum of squared pixel errors for the noisy image as
1.0, the denoised image has a squared error of 0.16. In general, the PDF-restored
image (as described in Section 4.1) appears more smooth than the denoised image
and may have less error. However the restoration of the neighborhood PDFs
can produce some loss of structure, and the subsequent Bayesian estimation,
which retains a fidelity to the input data, helps retain some of those details. We
can see this behavior in the regions corresponding to the cerebro spinal fluid.
This is even more clear in the next denoising example in Figure 4. With the
same underlying noise PDF the normalized squared errors for the T2 and PD



(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) Real noisy image. (b) PDF-restored image (as described in Section 4.1).
(c) Denoised image. (d)-(f) are zoomed insets of (a)-(c).

modalities are 0.3 and 0.19, respectively. Performing multimodal denoising with
T1, T2, and PD data gives improved normalized squared errors of 0.10, 0.29,
and 0.16, respectively.

Figure 4 shows T1, T2 and PD images (signal intensity range 0:100) with the
underlying noise PDF as N(0, 400). The SNR is 6db for the gray matter. Here,
with a normalized squared error for the noisy image as 1.0, the squared error for
the T1, T2, and PD denoised images are 0.08, 0.32, and 0.09 respectively. The
squared error for T1 is significantly better than results in [13] for an equivalent
gray matter SNR. Multimodal denoising, using T1, T2 and PD all together, gives
normalized squared errors as 0.06, 0.17 and 0.07, respectively. Figure 5 shows
results using real T1 noisy MRI data.
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