
Interactive Display of Isosurfaces
with Global Illumination

Chris Wyman, Steven Parker, Peter Shirley,
Charles Hansen

UUCS-04-012

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

July 22, 2004

Abstract

In many applications, volumetric datasets are examined by displaying isosurfaces, surfaces
where the data, or some function of the data, takes on a given value. Interactive applica-
tions typically use local lighting models to render such surfaces. This work introduces a
method to precompute or lazily compute global illumination to improve interactive isosur-
face renderings. The precomputed illumination resides in a separate volume and includes
direct light, shadows, and interreflections. Using this volume, interactive globally illumi-
nated renderings of isosurfaces become feasible while still allowing dynamic manipulation
of viewpoint and isovalue.



Interactive Display of Isosurfaces with Global Illumination

Chris Wyman Steven Parker Peter Shirley Charles Hansen

University of Utah

Figure 1: The left image in each pair shows our approach, the right shows Phong with shadows. Note the improvement in regions dominated
by indirect lighting, particularly in the eye sockets (left) and the concavities in the simulation data (right).

ABSTRACT

In many applications, volumetric datasets are examined by display-
ing isosurfaces, surfaces where the data, or some function of the
data, takes on a given value. Interactive applications typically use
local lighting models to render such surfaces. This work introduces
a method to precompute or lazily compute global illumination to
improve interactive isosurface renderings. The precomputed illumi-
nation resides in a separate volume and includes direct light, shad-
ows, and interreflections. Using this volume, interactive globally
illuminated renderings of isosurfaces become feasible while still
allowing dynamic manipulation of viewpoint and isovalue.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Keywords: path tracing, isosurface, visualization, rendering,
global illumination

1 INTRODUCTION

Isosurfaces, also known as implicit surfaces or level sets, are widely
used in computer graphics and scientific visualization, whether to
help model complex objects [21] or to reveal structure of scalar-
valued functions and medical imaging data [6]. Because both com-
putational and acquired datasets tend to be large, only recently has
interactive display and manipulation of isosurfaces become feasi-
ble for full-resolution datasets [15]. As in most interactive visual-
ization systems, the rendering of isosurfaces is based on only lo-
cal illumination models, such as Phong shading, perhaps coupled
with simple shadows. For partially lit concave regions, these sim-
ple shading models fail to capture the subtle effects of interreflect-
ing light. These regions are typically dominated by a local ambient
term which provides no cues to environmental visibility or reflec-
tions from nearby surfaces. Figure 1 shows the details brought out
by our approach, both in shadowed regions and those with high in-
terreflections.

While we usually think of “direct lighting” as coming from a
small light source, it can also come from extended light sources. In
the extreme case the entire sphere of directions is a light source and
“shadowing” occurs when not all of the background is visible at a
point. This results in darkening for concavities, exploited as acces-
sibility shading [13] and obscurance shading [27]. More recently,
direct lighting from a uniform extended source has been applied to
illuminating isosurfaces extracted from volumes to good effect [25].

In this paper we extend the class of lighting effects for isosur-
faces to include full global illumination from arbitrary light sources.
Previous approaches are special cases of our technique. Our method
requires an expensive preprocess but does not greatly affect inter-
active performance, and can even speed it up since shadows can be
computed as part of the preprocess. Our method uses a conventional
3D texture to encode volume illumination data. For static illumina-
tion and a static volume, a scalar texture encoding irradiance stores
the necessary global illumination for all isosurfaces. For dynamic
lights and complex materials, multiple values are used per texel, as
per Sloan et al. [23]. In either case, rendering interpolates between
neighboring texels to approximate the global illumination on the
correct isosurface.

2 BACKGROUND

Rendering images of isosurfaces can be accomplished by first ex-
tracting some surface representation from the underlying data fol-
lowed by some method of shading the isosurface. Alternatively,
visualizing isosurfaces with direct volume rendering requires an ap-
propriate transfer function and a shading model.

In practice, many volume datasets are rectilinearly sampled on a
3D lattice, and can be represented as a function ρ defined at lattice
points�xi. Some interpolation method defines ρ(�x) for other points�x
not on the lattice. Other datasets are sampled on a tetrahedral lattice
with an associated interpolation function. Analytical definitions are
possible for ρ(�x), often arising out of mathematical applications.
Such analytical representations can easily be sampled on either a
rectilinear or tetrahedral lattice.

Given a sampled dataset ρ(�xi), the marching cubes algo-
rithm [10] extracts explicit polygons approximating an isosurface
I(ρiso) with isovalue ρiso, where I(ρiso) = {�x | ρ(�x) = ρiso}. Var-
ious improvements make this technique faster and more robust,



but these improvements still generate explicit polygonal represen-
tations of the surface. Ray tracing and volume rendering provide
an alternate method of displaying isosurfaces, which need not con-
struct and store a polygonal representation [15, 9]. Once an iso-
surface has been identified, standard illumination models can be
applied to help visualize the data.

Commonly, extracted isosurfaces are shaded using the Phong
model [17] and variations using similar ambient, diffuse, and spec-
ular components. Such techniques give poor depth and proxim-
ity cues, as they rely on purely local information. Illumination
techniques for direct volume rendering, such as those surveyed in
Max [12], allow translucency and scattering along the viewing ray
and shadow rays, but they fail to allow area lights and are not in-
teractive. Sobierajski and Kaufman [24] apply global illumination
to volume datasets, but they shade at runtime, so few effects can be
incorporated while maintaining interactivity.

Several techniques have been proposed to interactively shade
volumes with global lighting. The Irradiance Volume [4] samples
the irradiance contribution from a scene, allowing objects mov-
ing around the scene to be shaded by static environment illumi-
nation. However, objects placed in the Irradiance Volume can-
not interact with themselves, which is important for correct global
illumination of isosurfaces. Precomputed radiance transfer tech-
niques [23, 22, 14] can be used to shadow or cast caustics on
nearby objects by sampling transfer functions in a volume around
the occluder. Unfortunately, these techniques do not allow dy-
namic changes to object geometry, which is important when ex-
ploring the isosurfaces of volume datasets. Kniss et al. [7] describe
an interactive volume illumination model that captures shadowing
and forward scattering through translucent materials. However, this
method does not allow for arbitrary interreflections and thus does
not greatly improve isosurface visualization. The vicinity shading
technique of Stewart [25] encodes direct illumination from a large
uniform light in a 3D texture and allows its addition to standard lo-
cal shading models while interactively changing the displayed sur-
face. However, this method only provides an approach for direct
illumination and does not incorporate indirect illumination.

3 OVERVIEW

A brute-force approach to globally illuminating an isosurface
would compute illumination at every point visible from the eye.
Figure 2 shows how a Monte Carlo path tracing technique would
perform this computation. Obviously, performing such compu-
tations on a per-pixel basis quickly becomes cost prohibitive, so
caching techniques [26] are usually preferable. Many existing tech-
niques cache radiance [1], irradiance [4], or more complex transfer
functions [19, 23, 14] to speed illumination computations.

In volume visualization, users commonly change the displayed
isovalue, thereby changing the isosurface, to view different struc-
tures in the volume. Most illumination caching techniques are ob-
ject specific, so as the surface changes new illumination samples
must be computed. We propose a technique which stores either
irradiance or more complex transfer functions in a 3D texture cou-
pled with the volume. Each texel t corresponds to some point�xt in
the volume. Our process is broken into two steps. During the com-
putation step, illumination values can be computed using any stan-
dard global illumination technique. For each texel t, we extract the
isosurface I(ρ(�xt)) running through �xt . Using this isosurface, the
global illumination is computed at point�xt via standard approaches
and stored in texel t. Figure 3 shows how this works for four ad-
jacent samples using a Monte Carlo sampling scheme. During the
rendering step, we interpolate between cached texels to the correct
isosurface, allowing the interactive display of arbitrary isosurfaces.

As with most illumination caching techniques, the rationale is
that global illumination generally changes slowly for varying spa-

isosurface

N

p 

Figure 2: Computing the irradiance at point �p involves sending a
shadow ray and multiple reflection rays. Reflection rays either hit
the background or another part of the isosurface, in which case rays
are recursively generated.

Figure 3: The global illumination at each texel t is computed using
standard techniques based on the isosurface I(ρ(�xt)) through the
sample.

tial location. In our method this assumption applies in two ways:
illumination should change gradually over a surface and illumina-
tion should change gradually with changing isosurfaces.

One situation exists where this approximation obviously breaks
down—hard shadows. Hard shadows involve a very visible dis-
continuity in the direct illumination. As shown in Figure 3, each
sample in our illumination lattice is potentially computed on a sep-
arate isosurface. In regions where a shadow discontinuity exists,
some samples will be in shadow and others will be illuminated.
Using an interpolation scheme to compute the illumination results
in a partially shadowed point between samples. Thus for a static
isosurface, results near shadow edges will be blurred, similar to the
effect achieved with percentage closer filtering [20].

Since we desire to dynamically change the rendered isosurface,
we must also examine the effect of such changes on shadow bound-
aries. As the displayed isosurface changes, the interpolated illu-
mination value on the surface changes linearly with distance from
illumination samples, just as the illumination varies over a single
isosurface. Thus, faint shadows may exist when there is no appar-
ent occluder or small occluders may cast no shadow. The effect is
that shadows will “fade” in and out as occluders appear and disap-



Figure 4: The Visible Female’s skull globally illuminated using our
technique. The right images show how the cord’s shadow fades out
with increasing isovalues.

pear. Examples of these effects can be seen in Figure 4. The scene
is illuminated by a blue and brown environment with a yellow point
light source. The shadows are blurred slightly, and as the isosurface
changes the cord fades out before its shadow.

Note that because sharp discontinuities in direct illumination
are most visible, hard shadow are a worst-case scenario. For soft
shadows or indirect illumination the perceived effects are less pro-
nounced, so our approximation of a smoothly changing illumina-
tion function becomes more accurate. While artifacts similar to
those in Figure 4 may still occur, they will be less noticeable.

The artifacts that occur with changing isovalues arise from our
approximation of the non-linear global illumination function using
simple trilinear interpolation. This approximation is what causes
the “fading” of shadows and the faint banding seen in our images.

While this assumption occasionally causes problems, our tech-
nique provides significantly more locality information than local
models, especially in concavities and dark shadows where ambient
terms either provide little or conflicting information. Additionally,
since shadows are included in our representation, they require no
additional computation. In fact, our technique renders faster than
simple Phong and Lambertian models when including hard shad-
ows.

4 ALGORITHM

Our technique has two stages: illumination computation and in-
teractive rendering. A simplistic approach would perform all the
computations as a preprocess before rendering. As this can require
significant time and not all illumination data may be required, it is
possible to lazily perform computations as needed, assuming the
display of some uncomputed illumination is acceptable until com-
putations are complete.

4.1 Illumination Computation

Each sample in our illumination lattice stores some representation
of the global illumination at that point. This illumination is de-

scribed by the rendering equation [5]:

L(�xt , �ω) =
∫

Ω
fr(�xt , �ω, �ω ′)L(�xt , �ω ′)(�ω ′ ·�nt)d�ω ′ (1)

Where �xt is the location of the illumination texel t with normal �nt ,
�ω is the exitant direction, �ω ′ is the incident direction varying over
the hemisphere Ω, and fr is the BRDF.

Depending on an application’s required materials and illumina-
tion this equation and the representation stored in the illumination
texture can be varied to reduce computation time and storage space.
For a simple diffuse surface with fixed lighting, a single irradiance
value is sufficient at each lattice point. In this case, the rendering
equation can be rewritten as:

L(�xt) = fr(�xt)
∫

Ω
L(�xt , �ω ′)(�ω ′ ·�nt)d�ω ′ =

R(�xt)E(�xt)
π

(2)

Here the diffuse BRDF has no dependency on �ω ′. It can be removed
from the integral and is then equivalent to the surface albedo R(�xt)
divided by π . The remainder of the integral is the irradiance at point
�xt , E(�xt). Storing E(�xt) in our texture allows for easy illumination
during rendering, as per Equation 2.

To compute the irradiance at each sample point�xt we use Monte
Carlo pathtracing. Using N random vectors, �v j , sampled over the
hemisphere Ω, the irradiance is approximated:

E(�xt) =
1
N

N

∑
j=1

L(�xt ,�v j) (3)

Using this equation we compute the irradiance at every point as
follows:

for all�xt in illumination lattice do
compute isovalue ρ(�xt)
compute isosurface normal�nt
sample hemisphere Ω defined by�nt
for all samples�vi ∈ Ω do

compute illumination at�xt in direction�vi using isosur-
face with isovalue ρ(�xt)

end for
compute irradiance at�xt using equation 3.

end for

Explicitly extracting different isosurfaces for each sample is
quite costly. To avoid this cost, we analytically intersect the trilinear
surface using a raytracer [16]. Unfortunately, trilinear techniques
generate noisy surfaces and normals, which can significantly im-
pact the quality of the computed global illumination (see Figure 5).
Rather than directly computing normals from the analytical trilinear
surface or using a simple finite difference gradient, we use a normal
defined by the gradient smoothed over a 4×4×4 voxel region with
a tricubic B-spline kernel. By smoothing normals and slightly off-
setting�xt in the normal direction during illumination computations,
we reduce this microscopic self-shadowing noise. Note the global
illumination artifacts seen in Figure 5 using gradient normals occur
on both microscopic and macroscopic scales. Noise occurs on the
microscopic scale due to aliasing on the trilinear surface. Artifacts
occur on the macroscopic scale when the volumetric dataset and
the illumination volume have different resolutions. Visible bands
occur where voxels from the two volumes align, as can be seen in
the bottom left image in Figure 5.

For more complex effects such as dynamic illumination or non-
diffuse material BRDFs, a simple irradiance value will not suffice,
and a more complex representation of the illumination must be
computed. We chose to use spherical harmonic (SH) basis functions



Figure 5: An isosurface from the Visible Female’s head extracted
using analytical intersection of the trilinear surface. Top: Direct il-
lumination from a point light using (left) gradient normals, (center)
tricubic B-spline smoothed normals, and (right) offset surface with
smoothed normals. Bottom: Four bounce global illumination us-
ing (left) gradient normals and (right) offset surface with smoothed
normals.

to represent more complex illumination as spherical harmonics rep-
resent low frequency lighting efficiently. They allow for quick in-
tegration during rendering, using a simple dot product or matrix
multiply operation, as well as dynamically changing illumination.

Assuming a diffuse material, incident illumination from a dis-
tant environment L∞(�ω ′) invariant over �x, and a visibility function
V (�xt , �ω ′), we can rewrite the rendering equation as:

L(�xt) = fr(�xt)
∫

Ω

[
L∞(�ω ′)V (�xt , �ω ′)(�ω ′ ·�nt)+

L(�x�ω ′
t )(1−V (�xt , �ω ′))

]
d�ω ′ (4)

Note �x�ω ′
t is the point occluding �xt in direction �ω ′. As the incident

illumination is assumed constant over the volume, it can be factored
out of the recursive integrals when using the SH basis, leaving a ge-
ometry term whose coefficients can be computed numerically using
Monte Carlo techniques. Green [3] clearly explains this process in
great detail. We store the SH coefficients of this geometry term at
each point in our illumination texture.

Similar SH values can be computed and stored at voxels for
more complex materials including glossy or transparent effects, as
described in Sloan et al. [23, 22]. Additionally other bases, like
wavelets, could be used to represent the global illumination in our
volume, especially if higher-frequency effects are desired.

4.2 Interactive Rendering

Once we have our illumination samples computed, rendering is
straightforward. At every visible point on the displayed isosur-
face, we index into the illumination texture to find the eight nearest
neighbors. We interpolate the coefficients stored in the texture, and
use the interpolated coefficients for rendering.

Figure 6: Engine block illuminated using (top left) the illumination
sample with closest isovalue, (top right) the nearest illumination sam-
ple, (bottom left) a trilinearly interpolated value, or (bottom right)
a value computed with a tricubic B-Spline kernel.

When using an irradiance texture, we simply use Equation 2 to
compute the illumination based on the stored irradiance and the
albedo. With the spherical harmonic representation, we interpolate
the stored spherical harmonic geometry coefficients and perform a
vector dot product with the environmental lighting coefficients.

We expected a higher order interpolation [11] scheme over
nearby neighbors would be required to generate smooth illumina-
tion over complex isosurfaces. Interestingly, we found simple trilin-
ear interpolation of stored coefficients sufficient. More complex in-
terpolation schemes gave equivalent or even worse results, as shown
in Figure 6. Methods with larger kernels generally gave worse re-
sults due to the increased likelihood of interpolating samples from
widely different isosurfaces.

5 RESULTS

We implemented our technique using several different approaches.
We used a Monte Carlo pathtracer to compute the illumination at
texels throughout the volume. Utilizing the precomputations in
our interactive raytracer allows dynamic changes to the visualized
surface and illumination. We extended our interactive raytracer
to compute illumination lazily, avoiding computations for surfaces
never seen. Finally, we imported our illumination texture into an
OpenGL visualization program to render global illumination inter-
actively on a single PC.

Our parallel implementation runs on an SGI Origin 3800 with
sixty-four 600 MHz R14000 processors. This is a shared memory
machine with 32 GB of memory, allowing for easy access to large
volume datasets and illumination textures. While large SGIs are
uncommon, users generating and interactively displaying large vol-
ume datasets typically have access to similarly powerful machines
(or clusters [2]) which could apply our technique. Our OpenGL im-
plementation runs on a Dell Precision 450 with 1 GB memory and
an Intel Xeon at 2.66 GHz. The graphics card is a GeForce FX 5900
with 256 MB memory. Because we use simple fragment shaders in
our implementation, older cards will work, but the increased graph-
ics card memory facilitates visualizing bigger volumes.

Computing global illumination values for every texel in a vol-
ume can be quite expensive, whether computing simple irradiances
or sets of spherical harmonic coefficients. Table 1 shows illumina-
tion computation timings for the volume shown in Figure 7. Times
are shown for computing the entire texture as well as for the single
views shown in Figure 7. Our prototype uses naive, unoptimized



100 625 2500 10000
samples samples samples samples

Sphr. Harm. 0.33 min 2.63 min 10.6 min 48.2 min
(single image)
Sphr. Harm. 8.47 min 52.8 min 210 min 853 min
(full texture)
Irradiance 0.95 min 5.80 min 23.7 min 98.3 min

(single image)
Irradiance 18.2 min 113 min 450 min 1806 min

(full texture)
Pathtraced 0.73 min 4.51 min 18.0 min 72.1 min

(single image)

Table 1: Illumination computation timings for images from Figure 7.
Timings performed on thirty 400 MHz R12000 CPUs.

Frames per Frames per Extra
Material second second memory

(30 CPUs) (60 CPUs) used

Diffuse 17.0 33.1 0
(no shadows)

Diffuse 8.75 17.3 0
(with shadows)

Phong 8.60 17.0 0
(with shadows)

Irradiance 15.6 30.5 9.75 MB
samples
Spherical 11.7 21.7 975 MB
harmonics

Table 2: Comparison of timings and memory consumption. Results
use our raytraced implementation on thirty or sixty 600 MHz R14000
CPUs with 512×512 resolution for the scene in Figure 7.

Monte Carlo pathtracing for precomputation. More intelligent al-
gorithms would significantly reduce these precomputation times.

For volumes with few interesting surfaces such as the engine
block, computing illumination on the fly may be preferential to a
long precomputation, as global illumination samples reside near
displayed isosurfaces. Samples elsewhere can remain uncomputed.
At the 512 × 512 resolution shown in the accompanying video,
computing a single irradiance for each sample takes a few seconds
per viewpoint using 60 CPUs. Densely sampled illumination tex-
tures and complex environmental lighting require longer computa-
tions, as shown in Table 1. In either case lazy computation main-
tains interactivity, so viewpoint and isovalue can be changed during
computation.

While precomputation is slow, it need only be done once. Using
the resulting illumination is simple and quicker than most light-
ing models used for visualization. Table 2 compares framerates
using Phong and Lambertian materials with our technique. Using
either spherical harmonic coefficients or a single irradiance sample
is faster than simple shading with hard shadows. Yet both these
techniques include shadows along with other global illumination
effects.

Table 2 also shows the memory overhead for our technique. The
irradiance sample requires one RGB triplet per voxel, which we
store in three bytes. Using the same resolution as the volume dataset
requires as much as three times more memory. Our spherical har-
monic representation uses no compression, so a fifth order represen-
tation uses 25 floating-point coefficients per channel, or two orders
of magnitude more memory. Using compression techniques from
Sloan et al. [22] would help reduce memory usage.

Simulation data, like the Richtmyer-Meshkov instability dataset

Figure 8: An enlarged portion of the Richtmyer-Meshkov dataset
shown in Figure 9. These images enlarge a crevice in the upper right
corner of images from the right column using (top) our approach,
(center) vicinity shading, and (bottom) Phong with varying ambient
component.

shown in Figures 8 and 9, also benefits from global illumination.
Often such data is confusing so shadows and diffuse interreflections
can give a sense of scale and depth lacking in Phong and Lamber-
tian renderings. Figures 8 and 9 compare our technique to vicinity
shading, Phong, and Lambertian with and without shadows. Our
Phong and Lambertian images use a varying ambient component
based on the surface normal. We also compare to a local approach
which adds distance information using OpenGL-style fog.

While vicinity shading provides better results than Phong or
Lambertian models, incident illumination must be constant over the
environment, such as on a cloudy day. Vicinity shading turns out
to be a special case of our full global illumination solution. By ig-
noring diffuse bounces and insisting on constant illumination, we
get identical results (as seen in Figure 10). While vicinity shad-
ing shades concavities darker than unoccluded regions, recent stud-
ies show humans use more than a “darker-means-deeper” percep-
tual metric to determine shape in an image [8]. By allowing inter-
reflections between surfaces and more complex illumination, our
approach adds additional lighting effects which may help users per-
ceive shape. However, if shadows or other illumination effects in-
hibit perception for a particular dataset, they can be removed from
our illumination computations.

We get comparable results to Monte Carlo pathtracing, partic-
ularly for our irradiance texture. As we compute each irradiance
texel using pathtracing, the differences seen in Figure 11 result from
the issues discussed in Sections 3 and 4. For the spherical harmonic
representation, our illumination is smoother and a bit darker. The
illumination intensity varies slightly based on the SH sampling of
the environment and material transfer functions, and our SH re-
sults in Figure 7 appear a bit brighter than the pathtraced results.
Figure 7 compares the convergence of illumination using a fifth or-
der SH basis, single irradiance values, and per-pixel pathtracing.
As expected, the SH representation converges significantly faster
than pathtracing, and the irradiance texture converges at roughly
the same rate, though the noise is blurred by the trilinear interpola-



Figure 7: The engine block illuminated by the Grace Cathedral lightprobe. Spherical harmonic samples (top) converge faster than Monte Carlo
irradiance samples (middle) or Monte Carlo pathtracing (bottom) due to the filtered low frequency environment. From left to right: 100, 625,
2500, and 10000 samples.

tion.
One last consideration when using our technique is what resolu-

tion illumination texture gives the best results. Figure 12 compares
the Visible Female head with three different resolutions. We found
that using roughly the same resolution for the illumination and the
data gave reasonable results for all our examples. In regions where
isosurfaces vary significantly, sampling more finely may be desir-
able. For instance, illumination texels near the bone isosurface from
Figure 12 fall on relatively distant isosurfaces giving rise to more
banding artifacts. Surfaces like the skin change slowly with chang-
ing isovalue, so a less dense illumination texture suffices.

6 CONCLUSION AND FUTURE WORK

This paper introduces a method for precomputing and interactively
rendering global illumination for surfaces from volume datasets.
By storing illumination data in a 3D texture like the underlying vol-
umetric data, interpolation between texels provides plausible global
illumination at speeds faster than illumination models commonly
used for visualization today. We have demonstrated that our ap-
proach generates high quality global illumination on dynamically
changeable surfaces extracted from a volume, running on either
GPU based visualization tools or interactive raytracers. Combin-
ing the technique with a spherical harmonic representation allows
dynamic environmental lighting.

A number of issues warrant future examination. For instance,
more complex material types can be represented using spherical
harmonics at the cost of additional storage requirements. Due to
the large number of samples required for an entire volume, this
may not be feasible without more aggressive compression than that
covered in Sloan et al. [22]. In some parts of a volume, the iso-
surfaces change slowly and smoothly requiring less dense samples.
Yet other regions demand extra samples to avoid artifacts. This sug-
gests a hierarchical approach could prove helpful to reduce memory

consumption. Future investigations could focus on when such hier-
archies are useful and what representations allow quick access for
rendering using GPU based renderers. Our illumination samples are
currently computed either in advance or lazily using an interactive
raytracer. Recent work [18] has discussed raytracing on graphics
hardware. Such techniques may extend to allow computation of il-
lumination samples on GPUs so expensive hardware is not required
for interactive lazy computation. Finally, a user study investigat-
ing when datasets benefit from more complex illumination should
prove interesting.

REFERENCES

[1] Kavita Bala, Julie Dorsey, and Seth Teller. Radiance interpolants for
accelerated bounded-error ray tracing. ACM Transactions on Graph-
ics, 18(3):213–256, 1999.

[2] David E. Demarle, Steven Parker, Mark Hartner, Christiaan Gribble,
and Charles Hansen. Distributed interactive ray tracing for large vol-
ume visualization. In Proceedings of the Symposium on Parallel and
Large-Data Visualization and Graphics, pages 87–94. ACM Press,
2003.

[3] Robin Green. Spherical harmonic lighting: The gritty details. In
Archives of the Game Developers Conference, March 2003.

[4] Gene Greger, Peter Shirley, Philip M. Hubbard, and Donald P. Green-
berg. The irradiance volume. IEEE Computer Graphics & Applica-
tions, 18(2):32–43, March-April 1998.

[5] James T. Kajiya. The rendering equation. In Computer Graphics
(Proceedings of ACM SIGGRAPH 86), volume 20, pages 143–150,
1986.

[6] Arie E. Kaufman. Volume visualization in medicine. In Handbook of
Medical Imaging, pages 713–730. Academic Press, 2000.

[7] Joe Kniss, Simon Premoze, Charles Hansen, Peter Shirley, and Allan
McPherson. A model for volume lighting and modeling. IEEE Trans-
actions on Visualization and Computer Graphics, 9(2):150–162, April
2003.



[8] Michael S. Langer and Heinrich H. Bülthoff. Depth discrimination
from shading under diffuse lighting. Perception, 29:649–660, 2000.

[9] Barthold Lichtenbelt, Randy Crane, and Shaz Naqvi. Introduction to
Volume Rendering. Prentice Hall, 1st edition, 1998.

[10] William E. Lorensen and Harvey E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. In Computer Graph-
ics(Proceedings of ACM SIGGRAPH 87), volume 21, pages 163–169.
ACM, 1987.

[11] Stephen R. Marschner and Richard J. Lobb. An evaluation of recon-
struction filter for volume rendering. In Proceedings of Visualization
’98, pages 100–107, October 1994.

[12] Nelson Max. Optical models for direct volume rendering. IEEE Trans-
actions on Visualization and Computer Graphics, 1(2):99–108, 1995.

[13] Gavin Miller. Efficient algorithms for local and global accessibility
shading. In Proceedings of ACM SIGGRAPH 94, pages 319–326.
ACM Press/ACM SIGGRAPH, 1994.

[14] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. All-frequency shad-
ows using non-linear wavelet lighting approximation. ACM Transac-
tions on Graphics, 22(3):376–381, 2003.

[15] Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike Sloan,
Charles Hansen, and Peter Shirley. Interactive ray tracing for vol-
ume visualization. IEEE Transactions on Visualization and Computer
Graphics, 5(3):287–296, July 1999.

[16] Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, and
Peter-Pike Sloan. Interactive ray tracing for isosurface rendering. In
Proceedings of Visualization ’98, pages 233–238, October 1998.

[17] Bui Thong Phong. Illumination for computer generated images. Com-
munications of the ACM, 18:311–317, 1975.

[18] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan.
Ray tracing on programmable graphics hardware. ACM Transactions
of Graphics, 21(4):703–712, 2002.

[19] Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for
irradiance environment maps. In Proceedings of ACM SIGGRAPH
2001, pages 497–500. ACM Press/ACM SIGGRAPH, 2001.

[20] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering
antialiased shadows with depth maps. In Computer Graphics (Pro-
ceedings of ACM SIGGRAPH 87), volume 21, pages 283–291. ACM,
1987.

[21] Will Schroeder, Ken Martin, and William Lorensen. The Visualization
Toolkit: An Object-Oriented Approach to 3D Graphics. Prentice Hall,
3rd edition, 2003.

[22] Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. Clustered
principal components for precomputed radiance transfer. ACM Trans-
actions on Graphics, 22(3):382–391, 2003.

[23] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency lighting
environments. ACM Transactions on Graphics, 21(3):527–536, 2002.

[24] Lisa M. Sobierajski and Arie E. Kaufman. Volumetric ray tracing. In
Proceedings of the Symposium on Volume Visualization, pages 11–18.
ACM Press, 1994.

[25] James Stewart. Vicinity shading for enhanced perception of volumet-
ric data. In Proceedings of Visualization, pages 355–362, 2003.

[26] Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A
ray tracing solution for diffuse interreflection. In Computer Graph-
ics (Proceedings of ACM SIGGRAPH 88), volume 22, pages 85–92.
ACM, 1988.

[27] Sergej Zhukov, Andrej Iones, and Grigorij Kronin. An ambient light
illumination model. In Eurographics Rendering Workshop, pages 45–
56, June 1998.

Figure 9: Views from a Richtmyer-Meshkov instability simulation:
(top to bottom) our technique, vicinity shading, Lambertian with
fog, Phong with varying ambient, Lambertian with varying ambient,
and Lambertian without shadows.



Figure 10: Our technique (left) and vicinity shading (right) with 625
samples per voxel.

Figure 11: Our technique (left half of each image) versus Monte Carlo
pathtracing with 10000 samples per pixel (right half of images). The
left image compares our irradiance texture to pathtracing, the right
image compares a fifth order spherical harmonic representation to
pathtracing.

Figure 12: Illumination texture of (left to right) 1/8, 1, and 8 times
the resolution of the head dataset. Due to the high variation in
isovalues near the bone isosurface, a denser illumination sampling is
needed to avoid banding artifacts.


