
Fast Local Approximation to Global
Illumination

Chris Wyman

UUCS-04-011

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

July 22, 2004

Abstract

Interactive global illumination remains an elusive goal in rendering, as energy from every
portion of the scene contributes to the final image. Integrating over a complex scene, with a
polygon count in the millions or more, proves difficult even for static techniques. Interact-
ing with such complex environments while maintaining high quality rendering generally
requires recomputing the paths of countless photons using a small number of CPUs. This
dissertation examines a simplified approach to interactive global illumination. Observing
that local illumination computations can be performed interactively even on fairly simple
graphics accelerators, a reduction of global illumination problems to local problems would
allow interactive rendering. A number of techniques are suggested that simplify global
illumination to specific global illumination effects (e.g., diffuse interreflection, soft shad-
ows, and caustics), which can individually be sampled at a local level. Rendering these
simplified global illumination effects reduces to a few lookups, which can easily be done
at interactive rates. While some tradeoffs exist between rendering speed, rendering quality,
and memory consumption, these techniques show that approximating global illumination
locally allows interactivity while still maintaining significant realism.

FAST LOCAL APPROXIMATION TO GLOBAL

ILLUMINATION

by

Christopher R. Wyman

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

August 2004

Copyright c© Christopher R. Wyman 2004

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Christopher R. Wyman

This dissertation has been read by each member of the following supervisory committee
and by majority vote has been found to be satisfactory.

Chair: Charles Hansen

Elaine Cohen

Victoria Interrante

Steven Parker

Peter Shirley

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of Christopher R. Wyman in its final form
and have found that (1) its format, citations, and bibliographic style are consistent and
acceptable; (2) its illustrative materials including figures, tables, and charts are in place;
and (3) the final manuscript is satisfactory to the Supervisory Committee and is ready
for submission to The Graduate School.

Date Charles Hansen
Chair, Supervisory Committee

Approved for the Major Department

Christopher R. Johnson
Director

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

Interactive global illumination remains an elusive goal in rendering, as energy from

every portion of the scene contributes to the final image. Integrating over a complex

scene, with a polygon count in the millions or more, proves difficult even for static

techniques. Interacting with such complex environments while maintaining high quality

rendering generally requires recomputing the paths of countless photons using a small

number of CPUs. This dissertation examines a simplified approach to interactive global

illumination. Observing that local illumination computations can be performed inter-

actively even on fairly simple graphics accelerators, a reduction of global illumination

problems to local problems would allow interactive rendering. A number of techniques

are suggested that simplify global illumination to specific global illumination effects (e.g.,

diffuse interreflection, soft shadows, and caustics), which can individually be sampled

at a local level. Rendering these simplified global illumination effects reduces to a few

lookups, which can easily be done at interactive rates. While some tradeoffs exist between

rendering speed, rendering quality, and memory consumption, these techniques show

that approximating global illumination locally allows interactivity while still maintaining

significant realism.

CONTENTS

ABSTRACT . iv

LIST OF FIGURES . vii

LIST OF TABLES . x

ACKNOWLEDGMENTS . xi

CHAPTERS

1. INTRODUCTION . 1

1.1 Local Illumination . 2
1.2 Global Illumination . 5

1.2.1 Radiometry . 5
1.2.2 Reflectance of Light . 7
1.2.3 The Rendering Equation . 8

1.3 Motivation for Global Illumination . 8
1.4 Overview of this Work . 13

2. PREVIOUS WORK . 15

2.1 Radiosity Approaches . 16
2.2 Ray-based Approaches . 17
2.3 Hybrid Radiosity-Raytraced Approaches . 20

2.3.1 Interactive Hybrid Approaches . 21
2.4 Soft Shadow Techniques . 22
2.5 Caustic Techniques . 26
2.6 Other Interactive Global Illumination Approaches 27

3. INTERACTIVE SOFT SHADOWS USING PENUMBRA MAPS . . 31

3.1 Shadow Plateaus . 32
3.2 Penumbra Maps . 34
3.3 Implementation . 39

3.3.1 Discussion of Limitations . 40
3.4 Results . 41

4. INTERACTIVE RENDERING OF CAUSTICS 45

4.1 Caustics . 47
4.1.1 Caustic Behavior . 47
4.1.2 Simplifying the Problem . 48

4.2 Caustic Sampling . 49
4.2.1 Sampling the Light . 49
4.2.2 Sampling Space . 50

4.2.3 Data Representation . 51
4.3 Caustic Rendering . 53

4.3.1 Rendering Algorithm . 53
4.3.2 Issues Rendering Caustic Data . 54

4.4 Results . 57
4.5 Discussion . 61

5. INTERACTIVE RENDERING OF ISOSURFACES WITH GLOBAL
ILLUMINATION . 63

5.1 Background . 65
5.2 Overview . 66
5.3 Algorithm . 70

5.3.1 Illumination Computation . 70
5.3.2 Interactive Rendering . 73

5.4 Results . 74

6. CONCLUSIONS AND FUTURE WORK . 85

APPENDICES

A. SHADER CODE FOR PENUMBRA MAPS . 88

B. SPHERICAL HARMONICS . 93

REFERENCES . 110

vi

LIST OF FIGURES

1.1 Examples of local illumination models . 3

1.2 The Phong illumination model uses four vectors to determine lighting for
each point . 4

1.3 Radiance is the energy per unit area per unit time per unit solid angle d�ω . 6

1.4 Renderings using local, direct, and global illumination 10

1.5 An object’s shadow affects the perception of object location 11

1.6 Refraction of light through the cup and water introduces apparent bends,
discontinuities, and other artifacts to a typical wooden pencil 12

1.7 Common caustics from everyday life . 13

3.1 The shadow umbra includes regions where the light is completely occluded,
and the penumbra occurs in regions where objects only partially occlude
the light . 32

3.2 Penumbra maps in a scene with multiple lights . 33

3.3 Approximate soft shadows using shadow plateaus . 34

3.4 Rendering using penumbra maps . 36

3.5 Explanation of penumbral sheets and cones . 37

3.6 Computing per-fragment intensity from cone or sheet geometry 37

3.7 Pseudocode for penumbra map fragment program . 38

3.8 These pathtraced images show three different types of interactions between
overlapping penumbra . 40

3.9 Penumbra map results for the Stanford bunny . 42

3.10 Penumbra map results for the dragon model . 43

4.1 A scene with caustics from a glass bunny . 46

4.2 The eight dimensions of a caustic . 48

4.3 Popping between adjacent light samples . 50

4.4 Sampling space on either a uniform grid or a set of concentric shells 51

4.5 Sharper caustics come at the expense of denser sampling 52

4.6 L̂ intersects the spherical triangle formed by L̂i, L̂j , and L̂k 55

4.7 Ghosting happens when the caustic changes significantly between neighbor-
ing light samples L̂i, L̂j , and L̂k . 55

4.8 Alternative approach to caustic lookups . 56

4.9 Caustic rendering techniques on a metal ring and glass cube 58

4.10 Caustic rendering techniques on a glass prism . 59

4.11 Casting caustics on complex objects . 60

4.12 The caustic of a prism in St. Peter’s cathedral using fifth order spherical
harmonics . 60

5.1 Comparison of globally illuminated and Phong shaded isosurfaces 64

5.2 Computing the irradiance at point p involves sending a shadow ray and
multiple reflection rays . 67

5.3 The global illumination at each texel t is computed using standard tech-
niques based on the isosurface I(ρ(xt)) through the sample 68

5.4 The Visible Female’s skull globally illuminated using the new technique . . . 69

5.5 Pseudocode to compute irradiance at samples in the illumination lattice. . . 71

5.6 An isosurface from the Visible Female’s head extracted using analytical
intersection of the trilinear surface . 72

5.7 Approaches to interpolating between illumination samples 74

5.8 The engine block illuminated by the Grace cathedral lightprobe 76

5.9 An enlarged portion of the Richtmyer-Meshkov dataset shown in Figure 5.11 78

5.10 A Richtmyer-Meshkov instability simulation under various illumination . . . 79

5.11 Another view of a Richtmyer-Meshkov instability simulation 80

5.12 Comparison with vicinity shading . 81

5.13 The new technique versus Monte Carlo pathtracing with 10000 samples per
pixel . 82

5.14 Effect of different illumination volume resolutions . 83

A.1 Vertex program for rendering a penumbra map. 88

A.2 Fragment program for rendering a penumbra map. 89

A.3 Vertex program for rendering using a penumbra map. 91

A.4 Fragment program for rendering using a penumbra map. 92

B.1 Header file describing the SHRotationMatrix C++ class. 104

B.2 Function definition for SHRotationMatrix::u i st(). 105

B.3 Function definition for SHRotationMatrix::v i st(). 105

B.4 Function definition for SHRotationMatrix::w i st(). 105

B.5 Function definition for SHRotationMatrix::U i st(). 105

B.6 Function definition for SHRotationMatrix::V i st(). 106

B.7 Function definition for SHRotationMatrix::W i st(). 106
viii

B.8 Function definition for SHRotationMatrix::P r i st(). 106

B.9 Function definition for SHRotationMatrix::R(). 106

B.10 Function definition for SHRotationMatrix::M(). 107

B.11 Function definition for SHRotationMatrix::matIndex(). 107

B.12 Definition of constructor SHRotationMatrix::SHRotationMatrix(). 107

B.13 Function definition for SHRotationMatrix::computeMatrix(). 108

B.14 Function definition for SHRotationMatrix::applyMatrix(). 109

ix

LIST OF TABLES

1.1 Units of radiometric properties . 7

3.1 Framerate comparison using shadow and penumbra maps 41

4.1 Caustic rendering and precomputation times . 57

5.1 Illumination computation timings for images from Figure 5.8 75

5.2 Comparison of framerates and memory consumption for Figure 5.8 77

B.1 Definitions of numerical coefficients ui
s,t, vi

s,t, and wi
s,t. 102

B.2 Definitions of the functions U i
s,t, V i

s,t, and W i
s,t. 102

B.3 Definitions of the function rP
i
s,t. 102

ACKNOWLEDGMENTS

I would like to thank everyone who helped and supported me during my graduate

work. In particular, my advisor Chuck Hansen deserves thanks for funding and enabling

my research as well as his helpful comments and discussion along the way. Pete Shirley

also provided immense help and guidance during my tenure in Utah; I would particularly

like to thank him for sharing his vast rendering knowledge and keeping the lab amused

with his unique sense of humor.

I would also like to thank my other committee members, Steve Parker, Elaine Cohen,

and Vicki Interrante, for interesting discussions, scheduling flexibility, and useful feedback

on my work.

My colleagues in the Graphics and SCI labs helped keep me sane during long nights in

the lab, provided insightful feedback on my work, and entertained me outside the lab. In

no particular order, I would like to thank Shaun Ramsey, Dave DeMarle, Charles Schmidt,

Rahul Jain, Aaron Lefohn, Milan Ikits, Joe Kniss, Mike Stark, Bill Martin, Erik Reinhard,

Simon Premoze, Helen Hu, Rose Mills, Margarita Bratkova, Justin Polchlopek, Kristi

Potter, Bruce Gooch, Amy Gooch, Dylan Lacewell, Dave Edwards, and Joel Daniels.

Outside of the department, I met many people in Utah who kept me from becoming

too focused on work. Particularly, all the people I met through various band organizations

in the Music Department helped keep my musical abilities alive. I would also like to thank

them for all the opportunities they afforded me, including the chance to participate in

the 2002 Winter Olympic Games.

Finally, I would like to acknowledge my family, and particularly my parents, for

the support they have given throughout my educational career. They had unwaivering

confidence in my abilities, even when I had doubts.

This work was supported by the National Science Foundation under Grants 9977218

and 9978099 as well as the College of Engineering’s Wayne Brown Fellowship. Addition-

ally, portions of Chapter 3, including figures and tables, are reprinted with permission

from my 2003 paper [152] from the Eurographics Symposium on Rendering, copyright

the Eurographics Association for Computer Graphics.

CHAPTER 1

INTRODUCTION

Computer graphics involves creating, or rendering, images of synthetic environments.

Often the goal is to render images of these environments as realistically as possible.

Achieving images indistinguishable from photographs, called photorealistic images, re-

quires accurate physical models of light transport, complex materials, and geometry.

Although object geometry is relatively easy to simulate given the right primitives, mod-

eling light transport and complex material properties are areas of active research. This

dissertation examines ways to simplify complex illumination so interactive applications

can benefit from improved realism.

In part due to the complex illumination present in real world environments, photo-

realistic renderings of environments remain difficult to generate using computer graphics

techniques. This difficulty arises because illumination requires global information. Light

bounces off virtually all objects, so computing the color at some point in a scene involves

integrating over all the incident illumination. Obviously, such an operation can prove

extremely time consuming. Even after 30 years of research, code optimization, and

dramatically improved computer processors, such illumination computations still prove

expensive. Because of this expense, realistic renderings are usually generated by batch

processes and interactive applications continue to use lower quality lighting approxima-

tions.

Over the past 30 years, assorted models have been proposed for simulating illumination

for computer graphics. Initially, objects were drawn in wire-frame [4, 80]. Later models

like flat, Gouraud [40], and Phong [102] shading use local information at every point

on the object to determine illumination. These models provide only local illumination.

Raytracing techniques [149] and rasterization techniques like shadow mapping [25] ex-

tended illumination models to allow direct illumination, which includes shadows when

objects occlude the light. Illumination arriving directly from a light, without bouncing

off intermediate objects, is called direct illumination.

2

More recent illumination models approximate the rendering equation [67], allowing

inclusion of indirect illumination—light reflected off other objects in the environment.

The rendering equation models the physical transport of light through a scene, and was

borrowed from the study of radiative heat transfer. Because solutions to the rendering

equation require global knowledge of the scene, such as geometry and material properties,

the resulting illumination is called global illumination.

Often the terms local and direct illumination are used interchangeably. However, local

lighting relies on local information such as position, surface normal, viewing direction,

and direction to the light. Hence, purely local models cannot achieve shadowing effects,

which require knowledge about global visibility. Direct illumination, on the other hand,

includes all the light directly hitting a surface. In cases where the light is hidden by an

occluder, a surface will not be illuminated. Similarly, global and indirect illumination

are often interchanged. Indirect illumination is a subset of global illumination, but the

shadowing effects of direct illumination models also require global visibility information.

Computing local lighting is easy because it requires only local information. Thus,

interactive applications such as simulators, architectural walkthroughs, computer-aided

design programs, and computer games usually rely on local illumination models. While

current techniques are vastly better than the interactive methods of a decade ago, due

to the improved computation power available on graphics hardware, most interactive

techniques still lack complex global lighting effects seen in the real world. Thus, only

applications that can afford slow computations, such as special-effects and computer

generated movies, enjoy the fruits of decades of global illumination research.

1.1 Local Illumination

Early computer graphics researchers focused their efforts on the most important

problems of the time, namely techniques to render geometry quickly. Generally, they

used simple empirical illumination models such as the flat, Gouraud, and Phong shading

techniques shown in Figure 1.1. These techniques are composed of three parts: an

ambient term which approximates indirect illumination, a diffuse term that approximates

matte materials, and a specular term which adds a specular, or glossy, appearance.

Because these local models ignore indirect illumination, the user-defined ambient term

helps brighten surfaces not directly illuminated. This gives renderings a more realistic

appearance.

3

(a) (b)

(c) (d)

Figure 1.1. Examples of local illumination models. (a) Flat shading. (b) Gouraud
shading. (c) Phong shading. (d) Phong shading with no specular component.

Materials that scatter light roughly uniformly are called diffuse or Lambertian surfaces.

Few surfaces are truly diffuse, but Lambertian materials reasonably approximate matte

surfaces like paper and painted walls. Equation 1.1 shows a local model for Lambertian

materials:

I = IakaOd + fattIpkdOd(�N · �L). (1.1)

Here �N is the surface normal at the illuminated point, �L is the direction to the light, Od

the object’s diffuse color, kd is the material albedo, and Ip is the light intensity. Ia and ka

are the global ambient constant and the material’s ambient coefficient. Note the first term

in Equation 1.1 represents the ad hoc approach to approximating indirect illumination

discussed above. Figure 1.1(d) shows an example of a Lambertian surface.

4

Since few completely diffuse materials exist, Phong introduced an illumination model

that approximates glossy highlights using cosine terms [102]. Perfect reflectors, like

mirrors, reflect incoming light around the surface normal (see Figure 1.2). Most other

objects reflect light imperfectly, so highlighted regions appear near the reflection direc-

tion. Phong presented an empirical model that approximates these highlights using the

following equation:

I = IakaOd + fattIp

[
kdOd(�N · �L) + ks(�R · �V)n

]
. (1.2)

Using the Phong model, when the viewing direction �V aligns with the reflection direction
�R, the highlight is brightest. This highlight fades as the angle between �V and �R increases.

Varying the material’s shininess n modifies the size of the highlight. The material’s

specular reflection coefficient, ks, affects the brightness of the specular highlight. However,

this model only renders whitish specular highlights, which leads to plastic-like object

appearance. To reduce this problem a new property Os, the specular color of the object,

is often introduced. The modified equation is then:

I = IakaOd + fattIp

[
kdOd(�N · �L) + ksOs(�R · �V)n

]
. (1.3)

Flat, Gouraud, and Phong shading typically use the Phong illumination model (Equa-

tion 1.2). The difference between these shading techniques is how frequently illumination

is sampled. Flat shading uses the same illumination over an entire polygon, whereas

�V

Light

Eye

�N

�R

�L

Figure 1.2. The Phong illumination model uses four vectors to determine lighting for
each point. �V is the direction to the eye, �L is the direction to the light, �N is the surface
normal, and �R is the reflection vector, which is �L reflected about the surface normal.

5

Gouraud samples the illumination at all polygon vertices and linearly interpolates the

results for a smoother effect. Phong shading interpolates the normals over the polygon

and performs lighting computations on a per-pixel basis. As seen in Figure 1.1, Phong

shading allows highlights to span less than a single triangle, whereas Gouraud shading

often spreads highlights over multiple triangles or misses them completely.

The models presented in this section run interactively and are easy to implement, but

they cannot represent many of the complex effects seen in everyday environments. Shad-

ows, reflections, interreflections, and caustics all require global information. Technically,

area lights can be handled using local illumination models, but the approaches used in

interactive applications typically handle only point lights.

1.2 Global Illumination

Global illumination provides much of the visual richness in typical real-world environ-

ments. For instance, indoor environments and star-lit night renderings are often almost

exclusively lit by indirect illumination. Unfortunately, incorporating global information

about all objects in an environment proves quite costly. In fact, generating photorealistic

images requires solving the rendering equation [67] introduced by Kajiya, which models

the physical transport of light. Solving this equation proves costly because it involves

integrating incoming illumination recursively at every point in a scene. In fact, computa-

tion of exact solutions are feasible only in the simplest environments. Renderers generally

use a numerical approximation technique to solve this integral.

Kajiya’s formulation of the rendering equation computes the intensity arriving at some

point x from some other point x′ in the environment via the following equation:

I(x,x′) = g(x,x′)
(

ε(x,x′) +
∫
x′′∈S

ρ(x,x′,x′′)I(x′,x′′)dx′′
)

. (1.4)

The illumination arriving at point x from point x′ depends on the visibility, g(x,x′),

between x and x′, the light emitted, ε(x,x′), from x′ to x, and a sum of the illumination

incident at x′ reflected towards x. Here ρ(x,x′,x′′) describes how much light from x′′ is

reflected towards x at point x′.

1.2.1 Radiometry

Kajiya’s rendering equation provides a framework to compute global illumination, but

rendering photorealistic images also requires accurate knowledge about an environment’s

lighting. The most pragmatic approaches to obtain physically accurate data are to either

6

measure light intensities in a real environment or allow users to input intensities in

common, human-understandable units. In either case radiometry, the measurement of

real-world radiation, proves useful. By rewriting the rendering equation in terms of

radiometric properties, physical measurements can easily be incorporated into simulated

environments.

The most basic radiometric property, radiant energy, has units of joules. Radiant flux,

Φ describes the radiant energy Q per unit time t, or Φ = dQ
dt . The commonly used unit

for radiant flux is the watt. Radiant flux area density represents the radiant flux per unit

area. Radiant flux area density is called irradiance, represented as E, when discussing

power arriving at a surface and is called radiosity, represented as B, when referring to

power leaving a surface. More explicitly:

E(x) =
dΦin

dA
, (1.5)

B(x) =
dΦout

dA
. (1.6)

The radiance, L, is defined as the energy per unit area per unit time per unit solid

angle, or the radiant flux area density per unit solid angle. Given the radiant flux at point

x in area dA from some direction d�ω (see Figure 1.3), the radiance can be computed as

x

�ωθ

dA

�N

d�ω

Figure 1.3. Radiance is the energy per unit area per unit time per unit solid angle d�ω.
If the area dA lies along a surface at point x with surface normal �N , the radiance is
computed using the projected area cos θdA.

7

follows:

L(x, �ω) =
d2Φ

cos θdAd�ω
, (1.7)

where cos θdA is the projected area of dA to the plane perpendicular to the direction �ω.

As an example, the energy radiated in the angle d�ω from the region dA during time dt

in Figure 1.3 can be computed:

Q = L(x, �ω) cos θdAd�ωdt.

Table 1.1 summarizes the physical units of the radiometric properties introduced in this

section.

1.2.2 Reflectance of Light

Another important property to consider when rendering photorealistic images is how

light interacts with materials in a scene. Every material reflects light in a slightly differ-

ent manner, depending on composition, age, translucency, and the microscopic surface

geometry. Until the introduction of the rendering equation, however, most materials used

in computer graphics were approximated by purely Lambertian models, purely specular

models (i.e., perfect reflectors or refractors), or the Phong model, which gives a plastic

appearance with varying specular highlights.

As more complex rendering techniques became widespread, a better representation

for material properties was needed. A more realistic approximation for reflected light

is the bidirectional reflectance-distribution function, or BRDF, introduced by Nicodemus

et al. [91]. The BRDF represents the portion of light from an incoming direction �ωin

that reflects in a particular outgoing direction �ωout, hence it can represent surfaces with

arbitrary reflectances. Cook and Torrance [24] and Immel et al. [57] first discussed

the bidirectional reflectance in the computer graphics literature, and Cabral et al. [14]

introduced the standardized notation of Nicodemus et al. Formally, the BRDF, fr, is

Table 1.1. Units of radiometric properties.
Symbol Property Units

Q Radiant energy J
Φ Radiant flux W
E Irradiance Wm−2

B Radiosity Wm−2

L Radiance Wm−2sr−1

8

defined as the ratio of outgoing radiance to the irradiance from the incident direction

�ωin:

fr(x, �ωout, �ωin) =
dL(x, �ωout)
dE(x, �ωin)

=
dL(x, �ωout)

L(x, �ωin) cos θind�ωin
. (1.8)

The BRDF approximates the reflectance of a material, but as a function independent

of surface location it cannot represent effects such as subsurface scattering and translu-

cency. Nicodemus et al. also introduced the bidirectional scattering-surface reflectance-

distribution function, or BSSRDF, a more general function than the BRDF which allows

such effects. While the BSSRDF still only encompasses a subset of all radiative trans-

fer [17], it allows transfer from all geometrical optics effects. Jensen et al. [66] recently

introduced a subsurface scattering model based on the BSSRDF.

1.2.3 The Rendering Equation

Using the radiometric properties from Section 1.2.1 and the reflectance discussed in

Section 1.2.2, the rendering equation can be rewritten to allow use of physically based

measurements. More explicitly, the rendering equation computes an outgoing radiance

from a surface based on the light emitted by the surface, the incident radiance, and the

surface’s material properties. Mathematically, this can be written [57]:

Lout(x, �ωout) = Lemit(x, �ωout) +
∫

Ω
fr(x, �ωout, �ωin)Lin(x, �ωin) cos θind�ωin, (1.9)

where Lemit is the radiance emitted from x in direction �ωout, Ω is the visible hemisphere

at x, fr is the BRDF, and θin is the angle between �ωin and the surface normal �N at x.

An interesting property of radiance is that it remains constant along a line in space,

assuming no intervening surfaces. So, assuming no surface exists between x and x + α�ω,

L(x, �ω) = L(x + α�ω, �ω),∀α ∈ R.

Because of this property, the outgoing radiance at x, Lout(x, �ω), is equal to the incoming

radiance at x′, Lin(x′,−�ω), if x′ is the closest surface along the line x + α�ω. Utilizing

this property, the rendering equation (Equation 1.9) becomes a recursive equation that

can be solved to compute a full global illumination solution.

1.3 Motivation for Global Illumination

Comparing the complexity of models described in Sections 1.1 and 1.2, global il-

lumination obviously requires significantly more computation than the commonly used

9

local illumination models. Considering the extra resources needed for global illumination,

several important questions need to be considered. What effects does global illumination

allow that local illumination does not? How important are the effects that global illumi-

nation captures? And can these global illumination computations be simplified and still

capture the same important effects?

Local illumination models assume light interacts with every surface facing the source

and restrict light to interact with a single surface. Thus, local illumination renders

images without shadows, reflections, color bleeding, refractions, or the focusing of light.

Moreover, local models typically assume light originates from point sources, so rendering

outdoor scenes illuminated by the entire sky is impossible. Such effects are all common

in real environments, hence for applications placing a high priority on realism the extra

computation time for global illumination is worthwhile. Figure 1.4 shows the importance

of a few of these global effects.

Experiments have shown shadows play an important role in human perception. Ker-

sten et al. [71] showed that fake shadows can cause illusory motion in stationary objects.

Further work by Kersten et al. [72] found an object moving along a set trajectory can

appear at different depths depending on shadow location. People attach an object to its

apparent shadow when determining relative locations, as shown in Figure 1.5. Accurate

spatial perception may not rely on accurate shadows [144], but adding them to a synthetic

scene improves both the spatial cues and the realism. For instance, changing shadow

size, position, or orientation in an image can cause occluders to change apparent size or

location [145]. A number of experiments have shown shadows provide important contact

cues in virtual environments [56, 81].

Reflections provide other useful information in real environments. Interior designers

commonly use mirrors to make rooms appear larger than their actual size [103, 104].

Diffuse reflections, also called color bleeding or interreflections, can be used for a similar

effect. Painting the walls of a room white, which increases the light reflected between adja-

cent walls, also makes a room seem larger [103, 104]. Besides allowing similar perceptions

in synthetic environments, reflections also play important roles in the appearance of many

materials, especially those with significant specular coefficients. Some research suggests

interreflections may provide spatial cues similar to those provided by shadows [81]. Ad

hoc planar mirrored reflections are straightforward to add to locally illuminated scenes;

however, reflections off curved objects are difficult [94] and lead to major artifacts without

10

(a) (b)

(c) (d)

Figure 1.4. Renderings using local, direct, and global illumination. (a) Local lighting
only. (b) Direct lighting using a point light source. (c) Globally illuminated scene. (d)
Globally illuminated scene with metallic (instead of Lambertian) buddha. Notice the
other walls of the room have green and purple tints, which can be seen in the diffuse
interreflections on the model in (c).

11

(a) (b)

Figure 1.5. An object’s shadow affects the perception of object location. These two
images are identical, except for shadow size and location.

utilizing global illumination techniques.

No studies have examined the effect of refractions on human perceptions in computer

generated renderings, yet they do add significantly to the realism of a scene. Objects

seen through refractive objects like magnifying glasses, textured windows, or bodies of

water can appear dramatically different from the same object seen without the refraction

(see Figure 1.6). The focusing of light by reflective or refractive surfaces, called a caustic,

provides similar realism. For instance, the caustic at the bottom of a coffee cup or caused

by a magnifying glass (see Figure 1.7) may or may not provide important perceptual

information, but images without such caustics lack realism. Similarly, light focused by the

water in a swimming pool forms caustics on the pool floor. As a common effect, renderings

without underwater caustics look distinctly odd, hence films and video games frequently

approximate such caustics using texture maps to help enhance realism [60, 127, 128].

In the real world, only objects with finite extent emit light. However, many interactive

computer graphics applications model light sources as infinitesimal points. Using point

light sources leads to illumination inaccurate in many ways. For instance, shadows have

hard, crisp edges as visibility between two points is a binary function. Real light sources

can be partially occluded, resulting in smoother soft shadows. Area light sources result in

quite complex illumination as direct light arrives from a variety of directions. In addition,

representing lights as spherical environment maps allows the use of lighting captured from

real environments [26]. This use of natural lighting conditions has been found to improve

the perceived realism of an image in certain circumstances [100, 110], though this topic

12

Figure 1.6. Refraction of light through the cup and water introduces apparent bends,
discontinuities, and other artifacts to a typical wooden pencil. Also note the wooden
table top visible in refractions where it would otherwise not appear.

13

(a) (b)

(c) (d)

Figure 1.7. Common caustics from everyday life. (a) A cardioid at the bottom of a
coffee cup. (b) Light focused on the bottom of a pool by the surface. And light focused
through (c) a magnifying glass and (d) an acrylic juggling ball.

remains the subject of active research.

These global illumination effects all provide significant amounts of realism to computer

generated scenes, but studies have shown that accuracy does not matter in all cases [144].

Furthermore, it may be unnecessary to accurately portray interreflections, refractions, or

caustics as long as the results appear plausible.

1.4 Overview of this Work

The major obstacle to using global illumination in interactive applications is the

significant computational resources required for accurate results. Many studies have

shown that global illumination effects provide important perceptual cues, yet they find

14

that perfect illumination is usually unnecessary and in some cases even physically im-

plausible illumination may be acceptable. This suggests techniques which simplify global

illumination via approximation could render images most users accept as real.

As current interactive applications extensively utilize local illumination techniques,

the approach suggested in this dissertation is to store global illumination approximations

locally. With global information stored at a local level, global illumination computations

simplify to lookups followed by simple computations (such as interpolation) over these

local values. Such an approach easily extends current interactive techniques to add more

complex lighting. This dissertation examines local ways to independently approximate

three different global effects: soft shadows, caustics, and diffuse interreflections. The

approaches for soft shadows and caustics rely on commonly used polygonal datasets,

whereas the work on diffuse interreflection focuses on volumetric datasets used in visual-

ization applications.

Chapter 2 discusses the goals and drawbacks of previous work in global illumination

and interactive techniques. Chapter 3 examines a technique for rendering plausible

approximations to soft shadows using penumbra maps [152], Chapter 4 describes an

approach for generating interactive caustics dynamically [153], and Chapter 5 introduces

a method for globally illuminating isosurfaces dynamically extracted from volumetric

datasets. Finally, conclusions and future work are discussed in Chapter 6.

CHAPTER 2

PREVIOUS WORK

Researchers have long examined techniques to render more realistic illumination.

Early empirical models such as Phong [102], Blinn [11], and Whitted [149] illumination

were augmented by more realistic techniques such as the Cook-Torrance model [24]. The

Cook-Torrance model incorporates additional information, such as the solid angle the

light subtends, the slope distribution of microscopic surface facets, and the Fresnel term,

which describes how surface reflectance varies based upon illumination angle, extinction

coefficient, and index of refraction. The Cook-Torrance model renders objects more

realistically than earlier empirical models, but it still relies only on local information, and

thus misses many important illumination effects.

Two basic approaches emerged for computing global lighting: radiosity and raytracing.

Radiosity [38] builds on ideas from radiative heat transfer [17] to model diffuse interactions

between Lambertian surfaces. This allows color-bleeding to occur between nearby objects

and easily incorporates the effects of uniform area lights. An additional benefit is that

computed radiosities are viewpoint independent, so viewers can interactively move about

a static scene without recomputing the solution. Unfortunately, radiosity is based upon

energy transfer between discrete regions, so solutions are constant over these finite regions.

This leads to aliasing and interpolation artifacts unless a scene is highly tessellated, in

which case computation times can become prohibitive.

Raytracing shoots rays from the cemera into the scene. These rays intersect scene

objects to determine which surfaces are visible in a given direction. Whitted [149]

extended the basic idea to a recursive raytracer, where rays need not terminate once

they hit a surface. Instead, should a ray intersect a specular surface, it continues on in

the reflected or refracted direction.

The remainder of this chapter discusses numerous categories of related work in render-

ing. Sections 2.1, 2.2, and 2.3 respectively discuss research related to radiosity, raytracing,

16

and hybrid radiosity-raytracing techniques. Sections 2.4 and 2.5 introduce research on

interactively rendering two specific global illumination effects: soft shadows and caustics.

2.1 Radiosity Approaches

The basic radiosity approach [8], introduced to computer graphics by Goral et al. [38],

associates a form factor with each pair of patches in a scene. The form factor specifies

what percentage of the outgoing energy from the first patch hits the second. Using these

form factors, a large linear system can be solved to compute the radiosity at each patch.

Cohen and Greenberg [22] introduced the hemi-cube method for computing form factors

between patches in a complex scene. By projecting scene geometry onto an imaginary

cube centered on a patch, visibility information is stored in the form factor, allowing one

patch to occlude portions of the light traveling between other patches.

Further work on radiosity techniques has focused on three areas: easing the restriction

to exclusively diffuse materials, increasing accuracy, and speeding up the computations,

either for the original solution or for dynamic scenes.

Immel et al. [57] extended standard radiosity to allow specular materials. Instead

of storing a single radiance, each patch stores a directional radiance for a variety of

incoming and outgoing directions. This allows surfaces with specular properties to be

precomputed. Just like in diffuse radiosity, the solution is view-independent, even though

view-dependent specular effects are captured. Unfortunately, with specular surfaces

interpolation artifacts over patches become much more noticeable, particularly as the

eyepoint moves. Additionally, since all patches are planar, curved surfaces are handled

poorly.

Until Cohen et al. [21] introduced progressive radiosity, solutions were completely

computed before display could begin. Progressive radiosity shoots energy progressively,

one patch at a time, instead of solving the entire system of linear equations defined

by a scene’s form factors. This allows incremental display of the scene as computation

progresses, albeit with initially coarse estimates.

Chen [19] described a method called incremental radiosity, which extends progressive

radiosity to allow changes to scene properties between iterations. Thus, increasing or

decreasing a light’s brightness shoots incremental positive or negative light into the scene.

Changing geometry involves removing energy (or shooting negative energy) contributed

by the object in its former location, and adding energy contributed from the new loca-

17

tion. Hence, scenes can dynamically change during computations without necessitating

a complete recomputation. Unfortunately, such changes can noticeably affect the scene,

and propagating the changes through the radiosity solution often requires significant

time, especially for dramatic changes in light intensity. In most interactive applications,

where scenes continuously change, incremental radiosity never converges and can lead to

objectionable lighting artifacts.

As interpolation across patches causes significant artifacts in radiosity-based render-

ings, a number of researchers have proposed techniques for reducing these artifacts.

Hanrahan et al. [46] used a hierarchical quad-tree approach to adaptively subdivide

patches as needed. Accordingly, areas where radiance changes quickly become finely

subdivided. Hanrahan et al. also used this hierarchy to estimate form factors based on

interactions between large patches. This reduces the standard O(n2) radiosity technique,

which computes interactions between all n patches in the scene, to O(n).

Interpolation artifacts still occur in hierarchical radiosity, as patches do not coincide

with discontinuities in the illumination. Lischinski et al. [78] combined hierarchical

radiosity with discontinuity meshing [50, 51, 77] to create patches which coincide with

illumination discontinuities, such as shadow boundaries. Gortler et al. [39] generalized

the idea of hierarchical radiosity by introducing wavelet radiosity, and work by Zatz [154]

and Troutman and Max [134] explored the idea of representing radiosity by non-constant,

higher order functions to reduce interpolation artifacts.

Radiosity techniques poorly capture specular effects and converge slowly, particularly

in dynamic environments. However, when combined with the ray-based approaches

described in Section 2.2, these techniques provide much of the basis for more recent

interactive global illumination techniques.

2.2 Ray-based Approaches

The recursive raytracing technique introduced by Whitted [149] is an easily imple-

mentable, elegant approach to shading objects. Distributed raytracing [23] extends the

idea to allow reflecting or refracting in a variety of directions, based on material properties.

In effect, this allows a Monte Carlo sampling [89] of the material BRDF at intersection

points. As most surfaces do not reflect or refract perfectly (like a mirror or window pane),

distributed ray tracing allows much more realistic material properties. Additionally, by

distributing rays over time, an area light, or a camera lens, effects such as motion blur,

18

soft shadows, and depth-of-field can be rendered. Kajiya and Von Herzen [68] extended

raytracing to handle volumes such as smoke, dust, or clouds via multiple sampling of

scattering functions over the volumes.

Kajiya [67] showed that all these raytracing techniques solved a subset of a more gen-

eral illumination problem posed by the rendering equation (discussed in Section 1.2.3). He

proposed a new approach, called pathtracing, which solved Equation 1.9 by Monte Carlo

integration. A path describes the motion of a photon through reflections, refractions, and

scattering from the light to the eye. Sampling numerous paths at every pixel in an image

thus computes a full global illumination solution, with bounded error for each pixel. The

results are quite compelling; however, large numbers of paths are required before images

converge. Using fewer samples results in noisy images, particularly in regions containing

complex paths to luminaires, like caustics.

One approach to accelerate pathtracing involves reducing path variance so that fewer

samples per pixel are necessary for good results. Arvo and Kirk [7] discuss the tradeoffs

between terminating rays early via Russian roulette and splitting rays at intersections.

Spawning new rays can reduce variance by concentrating work in regions most sensitive

to noise, but it can also focus more work at leaves of the ray tree, where contributions are

minimal. Russian roulette stochastically terminates rays early, as if a surface absorbed

the photon. This reduces the total number of rays, at the cost of slightly higher variance.

One reason for high variance in pathtraced images is the varying number of bounces

before a light is hit. By combining rays cast from the eye with photons emitted from the

light, bidirectional pathtracing [74] reduces variance by using each intersection on the light

path as an emitter for points on the eye path. Considering the importance of particular

paths [31, 32, 101, 123], both from the eye and the light, allows reduced numbers of

paths in regions less important to the rendering, which allows higher sampling rates and

reduced variance in important regions.

Observing that illumination frequently changes slowly and gradually over space, with

occasional discontinuities, also suggests that caching illumination values and interpolating

over relatively constant regions could significantly reduce the frequency at which expen-

sive illumination computations must be performed. Ward et al. [146] demonstrated that

such caching techniques provide significant savings for pathtracers.

The areas in a pathtraced image with greatest variance result from specular interac-

tions. For instance, caustics are formed when light from specular objects focuses in one

19

small area. The paths of light causing these effects are often convoluted and difficult to

sample tracing only rays from the eye. Arvo [6] suggested emanating photons from the

light and storing them in illumination maps located on Lambertian surfaces. Using this

technique, paths need not randomly bounce around numerous times before accidentally

reaching a light source. Instead, at each diffuse surface, a simple lookup provides the

incident illumination. Heckbert [49] proposed adaptively subdividing these illumination

maps based on photon density and regions of importance, such as shadow boundaries.

The bidirectional pathtracing of Lafortune and Willems [74] also extended this approach.

Jensen [64] introduced the concept of a photon map. Instead of storing a texture

of irradiance values, as in an illumination map, the photons themselves are stored,

usually in a kd-tree. When computing incident illumination at a point, contributions

from the n-nearest photons are averaged. Since photon mapping does not use discrete

texels, fewer photons are necessary to eliminate noise. Extensions to the photon map use

importance to determine where to shoot photons [61], allow more efficient soft shadow

rendering [63], eliminate the requirement for diffuse receivers [62], and allow interaction

with participating media [65].

Photon mapping reduces the number of paths and photons to render complex specular

effects, such as caustics, yet large numbers of photons are still required. In the case of

dynamic scenes, recomputation must occur after every object movement or change of

material property. Purcell et al. [105] implemented a basic photon mapping scheme on

graphics hardware in an attempt for quicker rendering. Due to limitations of graphics

cards, their implementation uses a simple grid-based storage scheme for photons instead

of a kd-tree, reducing caustic reconstruction quality. Additionally, their approach requires

a number of seconds per frame, even for simple scenes.

Bala et al. [10] stored sampled radiance in a linetree, which is the four-dimensional

equivalent of an octree. By interpolating and reprojecting these sampled radiances when

encountering similar rays, the costs of raytracing are significantly reduced. In addition,

they provided bounds on the resulting errors so image fidelity can be maintained at

any desired level. Radiance interpolants can provide a significant speedup over standard

raytracing approaches; however, in areas where radiance varies quickly, such as in caustics,

artifacts may be difficult to eliminate.

A number of approaches utilize coherency to speed up rendering times. Beam trac-

ing [52] traces beams instead of individual rays. As adjacent rays typically hit nearby

20

surfaces, a single intersection can save significant computation. Veach and Guibas [136]

mutated existing paths in a Monte Carlo pathtracer. Once an important path is found,

mutated paths generally significantly contribute to the image as well. Recently, Chen and

Arvo [18] examined perturbations of specular paths to accelerate computation of specular

reflections.

2.3 Hybrid Radiosity-Raytraced Approaches

Both radiosity and ray-based approaches have advantages. Pathtracing captures any

global illumination effect, albeit at great cost, whereas radiosity progressively computes

view-independent diffuse solutions. Numerous researchers have examined techniques of

combining these approaches to get the benefits of each while reducing variance and

computation time.

Wallace et al. [140] proposed a two-pass approach. In the first pass, a radiosity

solution is computed that stores diffuse to diffuse surface interactions and specular to

diffuse interactions. The second pass uses a distributed raytracing approach to compute

specular to specular and diffuse to specular interactions. Sillion and Puech [118] extended

this two-pass approach to allow multiple specular interactions along a light path and

eliminate the restriction limiting specular objects to planar patches.

Malley [82] and Maxwell et al. [85] proposed using raytracing to compute form factors

between patches. By casting rays out from a patch, accurate form factors to other patches

can be computed, even with complex occluding geometry. Wallace et al. [141] turned this

around and gathered light at patch vertices via ray casting, which allowed smoother

interpolation over patches.

Shirley [114] proposed a three-pass process that first shoots photons from luminaires

via illumination mapping, then computes diffuse interreflections using a modified radiosity

approach (which ignores direct lighting), and finally traces rays from the eye and performs

direct lighting computations. This approach easily captures complex effects like caustics,

unlike most earlier methods.

Chen et al. [20] extended hybrid approaches to provide user feedback during rendering,

and allow elimination of most interpolation artifacts from the radiosity steps. Using an

initial progressive radiosity pass with nondiffuse form factors computed using ray tracing,

the most important effects are seen quickly. A second pass using pathtracing computes

shadows and caustics, although computations focus only on bright objects that cause

21

such effects. A final pass uses per-pixel pathtracing to remove interpolation artifacts

from the initial radiosity solution. This final pathtracing pass uses the radiosity solution

for secondary reflections, so path lengths are kept short.

Keller [70] introduced a quasi-Monte Carlo approach that sends out particles from

the light. Where these particles hit scene geometry, virtual lights are placed which also

illuminate the scene. Accumulating direct lighting results from the virtual point lights and

samples on area lights allows approximate global illumination to be computed on hardware

graphics accelerators relatively quickly. Extensions allow simple specular effects, but they

also increase the number of hardware passes needed for convergence. The complexity of

Keller’s approach is linear in both light samples and scene complexity. Unfortunately, for

high quality renderings, these values are not independent. As scene complexity increases,

more samples may be required for accurate illumination reconstruction.

2.3.1 Interactive Hybrid Approaches

The hybrid approaches discussed so far attempted to reduce rendering time of photo-

realistic results, but a number of hybrid approaches took the opposite approach: keeping

interactive rendering speeds while still achieving as much realism as possible.

George et al. [37] provided a mechanism to update an existing progressive radiosity

solution as changes occur in a dynamic environment. Before an object moves, negative

energy is emitted from its patches, to counteract the energy it contributed to the current

solution. After movement, positive energy is directed at it from important patches in the

scene to relight the object in its new location. A similar approach can handle changing

material properties.

Forsyth et al. [36] suggested a link hierarchy building on the hierarchical radiosity

algorithm [46]. Links between patches can either become occluded, or need “promo-

tion” or “demotion” between levels of the hierarchy. By using predictive link tests and

extrapolation, they can compute radiosity interactively in simple scenes.

Smits et al. [122] grouped patches in a scene into clusters, which could interact on a

cluster level, rather than the patch level. This allows objects that have little effect on each

other to interact at a higher level, which reduces computational costs. They described

two approaches to bound the error this clustering technique introduces. Depending on

the acceptable approximation error, the O(n2) radiosity computation reduces to either

O(n log n) or O(n).

22

Drettakis and Sillion [30] combined clustering with an approach similar to Forsyth et al.

During object motion, intersections between the object’s bounding volume and existing

links are computed. Their technique expedites radiosity computations, but interactive

framerates are limited to fairly simple scenes.

Granier et al. [42] proposed another approach using hierarchical radiosity with clus-

tering for the diffuse pass, and utilizing particle tracing for specular effects. Particles

contribute to surfaces based on the hierarchy, which allows acceleration of visibility

computations during path tracing. Granier and Drettakis [41] extend this approach,

constructing caustics directly on the radiosity mesh or in a “caustic texture,” depending

on required accuracy. Furthermore, they include the line-space hierarchy of Drettakis

and Sillion, allowing interactive modification of the scene. However, as with most particle

tracing systems their approach works best with relatively simple scenes. The number of

paths necessary for high quality increases dramatically as scene complexity increases.

2.4 Soft Shadow Techniques

Significant research has focused on creating a unified global illumination technique

that renders complete illumination at interactive rates, yet other research has focused

on more specific problems. Interactive raytracing-radiosity hybrids have potential, but

most current applications cannot afford the expense they entail. More specific techniques,

which focus on soft shadows for example, can quickly be applied in applications, as they

are simpler than complete solutions.

Since shadows can significantly improve image comprehension, researchers have long

examined techniques to incorporate them into existing applications that use only lo-

cal illumination. Crow [25] proposed an object-space solution to compute simple hard

shadows. The extrusions of an object’s silhouettes away from the light bound the

shadowed region. Computing shadow volumes, these silhouettes and their polygonal

extrusions, allows analytic computation of hard shadows for polygonal models. Another

early technique introduced by Williams [150] computed shadows using an image-based

approach. By storing distances to the objects nearest the light in a shadow map, objects

further away can be correctly occluded. Because of the simplicity of shadow volumes

and shadow maps, these techniques are the most widely used approaches in interactive

applications, especially as both techniques are easily adaptable to acceleration on graphics

hardware [53, 113]. Woo et al. [151] and Akenine-Möller and Haines [3] have surveyed

23

early shadow techniques and discussed their relative advantages and disadvantages.

A number of interesting extensions to these basic techniques have been introduced.

Reeves et al. [109] introduced percentage closer filtering, which helps eliminates shadow

map aliasing along shadow boundaries. Percentage closer filtering renders shadows with

soft boundaries. However, this blur is proportional to a fixed parameter and does not

vary with light size or distance between receiver and occluder. McCool [86] developed a

hybrid approach which generates shadow volumes from shadow maps. McCool’s approach

does not render soft shadows, but its use may become widespread as graphics accelerators

become more powerful and can implement the process independent of the CPU.

Shadow mapping and shadow volumes quickly render hard shadows. However, they

do not allow generation of soft shadows, except by sampling the light many times and

accumulating the result (suggested by Heckbert and Herf [48]). As with most sampling-

based integral approximations, this approach requires many samples to avoid artifacts,

which in this case manifest as banding. For typical scenes, at least 64 samples per light

are necessary for smooth shadows. Even with modern graphics accelerators, rendering a

scene an additional 64 times per frame proves prohibitive.

A number of approaches speed exact soft shadow computation. Drettakis and Fi-

ume [29] and Steward and Ghali [132] used backprojection to compute a discontinuity

mesh. Using backprojection of objects onto light sources, regions of the scene where light

occlusions have similar structure are computed. A discontinuity mesh represents the

boundaries of these regions on scene geometry. Using this approach dramatically reduces

clipping costs for computing light visibility.

Stark and Riesenfeld [130] reformulated Lambert’s formula for computing irradiance.

The original formula sums over the edges of a polygon while the reformulation sums over

vertices. By tracing vertices onto the image plane, this new formulation can exactly

compute accurate shadows for polygonal scenes. The algorithm quickens shadow compu-

tations, yet it fails to accelerate the process enough for use in interactive applications.

Although exact shadow computations are possible to quickly compute for simple

scenes with polygonal sources and occluders, they slow dramatically as scene complexity

increases. Thus, many researchers have investigated approximate approaches for ren-

dering soft shadows. Soler and Sillion [125, 126] computed approximate soft shadows

by convolving an image of the light source with a projected image of the occluders.

Unfortunately, their approach required lights and occluders to occupy parallel planes,

24

which rarely happens in real-world situations. As positions of lights and occluders diverge

from parallel planes their approximation breaks down, and for very complex geometry

the artifacts are quite obvious without error reduction techniques that drastically increase

computation time. Additionally, this approximation breaks down as occluders approach

receivers, where the shadow should become sharp.

Another image-based method, suggested by Agrawala et al. [1], samples the light,

renders the scene for each sample, and warps these images into a layered depth image.

In some ways this approach is similar to simply sampling the light many times, as scene

geometry still must be rendered 64 or more times to compute accurate layered depth

images. Agrawala et al. also discussed a number of approaches to speeding up this

precomputation, but their results still require minutes of computation for complex scenes.

In environments with dynamic geometry or illumination, such precomputation speeds are

unacceptable.

An algorithm developed by Heidrich et al. [54] renders approximate soft shadows from

a linear light source. At samples along the light, shadow maps are computed. Using image

warping techniques, visibility percentages are computed for each point in the shadow

maps. This value represents the percentage of the light seen from that location in the

scene. This process can be costly for complex scenes, especially when more than two or

three samples on the light are used. Additionally, a number of situations exist where

artifacts occur and the technique limits scenes to two-dimensional lights.

Ouellette and Fiume [95] proposed projecting occluders onto the light, using an algo-

rithm to find discontinuities along the edges of the light source, and using discontinuity

locations to approximately determine the portion of the light occluded. The results

are compelling, but projecting all objects onto every light source quickly becomes cost

prohibitive, especially since nontriangular sources must be subdivided, with the projection

process being repeated on each subdivided, triangular light.

Hart et al. [47] lazily computed visibility information. As a first pass, cast rays

determine visible geometry. Shadow rays spawned in a uniform pattern at intersections

determine some occluders. Using a flood-fill algorithm, neighboring pixels are checked to

determine if the same blockers also occlude nearby regions. A second pass computes

illumination for each pixel based on the blockers found during the first pass. This

approach can provide significant speedups over Monte Carlo visibility evaluation at each

pixel, but it has a number of problems. First, it is not designed for interactivity. Worse,

25

when objects are subdivided into many small triangles, each triangle casts only a very

small shadow, which could easily be missed with only a few shadow rays per pixel. In

such a case, a pixel deep in an umbral region may be only partially occluded.

Haines [45] introduced a technique which quickly renders a shadow texture on a

plane. This technique approximates umbral regions using a hard shadow, and extends

these regions with approximate penumbrae. Parker et al. [99] suggested this approach of

extending hard shadows by approximate penumbral regions. Haines’ approach generates

plausible soft shadows when occluders lie relatively close to the shadowed plane, and is

discussed further in Section 3.1.

Brabec and Seidel [12] described a technique for computing soft shadows using an

image-space search of a single shadow map. If the shadow map shows a pixel as il-

luminated, a pixel-by-pixel search conducted in nearby regions of the shadow map de-

termines whether the pixel lies in a penumbral region. Similarly if the shadow map

shows a blocker occluding the pixel, a search of nearby shadow map texels determines

if the pixel is partially illuminated. The results provide acceptable shadows quickly,

but stepping artifacts appear in penumbral regions and artifacts occur near overlapping

objects. Additionally pixel-by-pixel searches currently must be performed on the CPU.

The illumination computation for each pixel includes such a search, so this process can

become costly, especially as the shadow map size increases.

Akenine-Möller and Assarsson [2] extended the shadow volume approach to render

soft shadows. Instead of computing a single shadow quadrilateral at each silhouette

edge, a penumbra wedge that surrounds the penumbral region is computed in addition

to the shadow quadrilateral. A per-fragment shader program renders these wedges

into a light buffer, used during the final illumination pass. The problems with this

technique include assuming silhouettes form closed loops with exactly two silhouette

edges per vertex, requiring a 16-bit stencil buffer for use as the light buffer, and increased

bandwidth requirements for the additional penumbra wedge geometry. An extension to

this technique [9] eliminated most of these problems and allowed for colored area lights.

However, the bandwidth limitation restricts the complexity of objects casting shadows.

Even on state of the art graphics hardware, simple scenes (with a few hundred polygon

occluders) render at only a few frames per second.

26

2.5 Caustic Techniques

Although the problem of rendering caustics has not received as much attention as soft

shadow rendering, a number of researchers have proposed techniques for interactively

rendering caustics. As with soft shadows, the hybrid raytracing-radiosity approaches can

interactively render caustics for very simple objects, but more complex objects require

significantly more time.

Watt [147] described a variant of beam tracing [52] called light beam tracing. In

beam tracing, bundles of rays, or beams, are used instead of single rays. Using beams

reduces computation time by utilizing coherency information between nearby rays which

intersect the same surface. Watt’s light beam tracing shoots beams from the light, instead

of individual photons. Each specular polygon in the scene is the base of a pyramidal

light beam, with the apex at the light. These light beams can individually be reflected

and refracted by specular polygons with a single transformation, rather than on a per-

photon basis. This allows much quicker computation of caustics through a single specular

interaction. Problems with the beam tracing approach include the limitation to a single

specular interaction, which limits the applicability, and the need to highly tessellate

curved surfaces in order to achieve realistic results.

Mitchell and Hanrahan [88] introduced a technique for directly computing the caustic

intensity from a reflecting implicit surface. Their approach uses results from geometric

optics that describe the energy in a spherical wavefront and how the wavefront interacts

with reflective and refractive materials. Instead of a ray-surface intersection problem,

their approach locates ellipsoid-surface tangencies. The results have few discretization

artifacts, but they limit themselves to implicit surfaces and single specular interactions.

Finally, their technique requires significant computational resources.

Nishita and Nakamae [92] combined metaball surfaces with illumination volumes

(essentially light beams refracted by a single surface) using Z-buffers, A-buffers, and

shadow volumes to render caustics on underwater curved objects. In addition, they

handle underwater scattering effects, giving visible “shafts” of light. Like most previous

techniques, this approach allows only single-interaction caustics, namely caustics from a

light-water interaction, limiting the applicability to a small subset of real-world caustics.

Furthermore, because each illumination volume must be recomputed and rasterized each

frame, similar to a shadow volume, the cost prohibits dynamic caustics.

Stam [127] suggested dynamically computing underwater caustics may be unneces-

27

sary, as an approximation stored in a series of texture maps generates plausible results.

Combining this approach with aperiodic texture mapping [128] noticeably reduces the

periodicity resulting from a short series of caustic textures.

Diefenbach and Badler [28] utilized graphics hardware to render approximate global

illumination effects quickly. They proposed using light volumes, analogous to shadow

volumes, to bound regions where additional light should be added. These volumes are

similar to refracted light beams and can be rasterized using the same stencil method [53]

used for shadow volumes. Light volumes can be recursively generated as they intersect

second specular surfaces. This approach does not directly render caustics, but when

combined with explosions maps [94] to reflect from curved surfaces, caustic generation

may be possible. Unfortunately, this approach is very fragile and requires significant

fill rate (for multiple recursive shadow and light volumes). Even without caustics, this

multi-pass pipeline approach requires multiple seconds per frame.

Wand and Straßer [143] proposed using recent programmability of graphics accelera-

tors to render caustics. Using a pixel shader for every pixel P in the scene, they sample

points S on a specular surface, reflect
−−−→
S−P around the normal at S, and index into a

cube map of the surrounding environment. By sampling the surface numerous times,

they perform Monte Carlo sampling of a single-bounce caustic. With current hardware,

they performed three samples per rendering pass. This allows interactive framerates

for a few samples per pixel (from 60–500), though caustics often require one or two

orders of magnitude more samples for crisp results. However, for simple metallic objects

where blurry caustics are acceptable, their approach runs interactively on current graphics

accelerators.

2.6 Other Interactive Global Illumination
Approaches

While hybrid radiosity-raytracing techniques and specialized approaches for specific

effects have materialized, a number of other interesting techniques have been introduced.

Greger et al. [44] introduced the irradiance volume which allows dynamic objects to

traverse an environment and allows nearby geometry to illuminate them via diffuse

interreflection. The environment is sampled on a grid and an approximation to the

irradiance function is stored in each cell. Interpolation between samples allows dynamic

objects to be illuminated by the scene, however dynamic objects cannot affect illumination

of static geometry.

28

A number of approaches have achieved interactivity via brute force. Raytracing

algorithms are embarrassingly parallel, meaning they scale linearly as additional CPUs

are added to a computation. Parker et al. [96] implemented an interactive raytracer

on a multiprocessor SGI Origin. Using 60 CPUs, a combination of good acceleration

structures, load balancing, memory bricking, and code optimization allowed interactive

framerates for fairly complex scenes. A similar interactive raytracing technique was in-

troduced by Wald et al. [139] which uses clusters of commodity PCs to achieve interactive

speeds. The approach of Wald et al. takes advantage of SIMD streaming instructions

on modern commodity CPUs, reduces all objects to triangle primitives, and carefully

monitors network traffic to maintain interactivity.

Wald et al. [138] extended their work to render scenes with global illumination at

interactive rates. Because of a limit on rays per frame, a number of assumptions were

made to expedite rendering. Instead of randomly sampling the lights at each pixel, a set

number of predetermined light samples are used. In order to eliminate the structured

noise resulting from this sampling, the raytracer uses a discontinuity buffer to smooth

irradiance over nearby pixels. Caustics are computed using a photon map stored in a

grid instead of a kd-tree, for faster creation and lookups. While this improved approach

allows interactive global illumination, 5 × 5 pixel blocks are blurred together by the

discontinuity buffer, which causes blurred caustics and noise along object boundaries. By

performing an approximate importance sampling, they showed [137] that light samples

can be intelligently chosen, even in complex environments with thousands of lights.

Walter et al. [142] introduced the render cache, which caches previous illumination

computations and reprojects them as a user interacts with the environment. By reusing

and reprojecting existing illumination samples, new rays and paths can be concentrated

in regions that significantly change between frames. The render cache also allows frames

to be generated asynchronously, rather than waiting for all illumination computations at

every pixel on screen. The render cache allows interactivity without shooting rays for

every pixel (similar to the approach of [10]), but high quality results require a number of

frames, and artifacts and blurriness occur in regions of movement and near discontinuities.

Udeshi and Hansen [135] combined hardware acceleration and raytracing to achieve re-

alistic effects like soft shadows, one bounce diffuse interreflections, and specular reflections

in dynamic environments. Using a parallel SGI Origin with eight Infinite Reality graphics

pipelines, shadows and direct illumination were computed using the graphics hardware,

29

and raytracing on the CPUs gave accurate specular reflections. They approximated

indirect illumination by rerendering the scene from virtual lights.

A number of recent techniques have explored compressing and storing global lighting

using various basis functions. Generally these techniques rely on incident illumination

from infinitely distant light sources, so that lighting remains constant over objects in the

scene. Ramamoorthi and Hanrahan [106] applied spherical harmonics to environment

maps to compress them to nine coefficients for each of the red, green, and blue channels.

Rendering requires a simple matrix multiply followed by a dot product to accurately

illuminate Lambertian materials with direct light from the environment. Programmable

graphics hardware can easily implement this approach, and with third order spherical

harmonics per-pixel error remains below three percent. Ramamoorthi and Hanrahan [108]

extended their work to allow rendering of more complex, isotropic BRDFs by combining

precomputed illumination coefficients with precomputed BRDF coefficients. By assuming

a distant viewpoint (in addition to distant illumination), the spherical harmonic functions

can be evaluated only once per frame instead of once per pixel, allowing for interactive

rendering.

Sloan et al. [120] introduced precomputed radiance transfer, which allows interactive

integration of incident illumination and precomputed coefficients describing radiance

transfer within a single object. This approach allows interreflections, self-shadowing

and low frequency caustics. Both the incident illumination and precomputed radiance

transfer are represented using spherical harmonic coefficients. Observing that integration

of two functions projected into the same spherical harmonic basis simplifies to a simple

dot product of coefficient vectors, the illumination integral of Equation 1.9 simplifies to

a few multiplies and adds, which they implement using programmable pixel shaders for

interactive rendering. The results are impressive for diffuse materials, yet caustics are

poorly represented because they require high frequency information eliminated by the

projection of the environment map into a spherical harmonic basis. Additionally, in order

for nearby objects to contribute to each other’s illumination, they must remain stationary

relative to each other. Radiance transfer for more complex materials must be represented

by a matrix of coefficients rather than a single vector, so non-Lambertian materials signifi-

cantly slow rendering times. Sloan et al. [121] extended this work to allow a combination of

surface microgeometry with precomputed radiance transfer. Sloan et al. [119] compressed

the spherical harmonic transfer coefficients using a variety of approaches, allowing for

30

high quality rendering of specular materials with fewer coefficients. Additionally, they

extended the transfer function to permit subsurface scattering effects. Using newer

graphics cards with extended functionality, this new approach renders interactively for

dynamic illumination and viewpoint.

Ng et al. [90] suggested using a nonlinear wavelet basis instead of a spherical harmonic

basis. Because wavelets have local, instead of global, support, they can compactly rep-

resent high frequency illumination in addition to low frequency lighting. They projected

each row of the transfer matrix into a Harr wavelet basis, quantized the elements to eight

bits, and discarded any zero coefficients, allowing for a sparse transfer matrix. As with

the approach of Sloan et al., this approach requires static geometry, as recomputing the

transfer matrix is expensive.

CHAPTER 3

INTERACTIVE SOFT SHADOWS USING

PENUMBRA MAPS

Shadows provide cues to important spatial relationships. By changing shadow size,

position, or orientation in an image, an object can appear to change size or location [145].

Similarly, soft shadows give contact cues. As an occluder approaches a shadowed object,

its soft shadow becomes sharper. When objects touch the shadow is completely hard.

Many recent interactive applications have incorporated real-time shadows, but they

generally use shadow volumes [25], shadow maps [150], or related techniques. These

methods use point light sources that cast only hard shadows. Since real world lights

occupy not a point but some finite area, photorealistic images require soft shadows. Thus,

as interactive graphics systems become more realistic, methods for quickly rendering soft

shadows are needed.

Shadows consist of two parts, an umbra and a penumbra. Umbral regions occur

where a light is completely occluded from view and penumbrae occur when a light

is partially visible (Figure 3.1). Until very recently the only techniques to compute

these regions involved either evaluating complex visibility functions [47] or merging hard

shadows rendered from various points on the light [48]. Evaluating visibility is slow,

and sampling techniques produce banding artifacts unless many samples are used. Other

approximations have emerged, but most do not allow dynamically moving objects to

shadow arbitrary receivers.

This chapter introduces the penumbra map [152], which allows arbitrary polygonal

objects to dynamically cast approximate soft shadows onto themselves and other arbitrary

objects. A penumbra map augments a standard shadow map with penumbral intensity

information. Shadows rendered using this approach (see Figure 3.2) harden when objects

touch, avoid banding artifacts inherent in sampling schemes, and are generated interac-

tively using commodity graphics hardware. Additionally, penumbra maps can leverage

existing research on shadow maps (e.g. perspective shadow maps [129] or adaptive

32

(a) (b)

Figure 3.1. The shadow umbra includes regions where the light is completely occluded,
and the penumbra occurs in regions where objects only partially occlude the light.
Hard shadows (a) have only an umbra, whereas soft shadows (b) have both umbral and
penumbral regions.

shadow maps [35] to help reduce shadow aliasing). On the other hand, the penumbra

map approach breaks down when the umbra region shrinks significantly or completely

disappears. This happens for very large area light sources or when an occluder shadows

distant objects.

The next section describes related work on shadow plateaus, followed by a discussion of

the penumbra map algorithm in Section 3.2. Section 3.3 discusses some implementational

specifics and outlines the limitations. Section 3.4 presents the results.

3.1 Shadow Plateaus

Recent work by Haines [45] proposed a technique for generating approximate soft

shadows on a ground plane using “plateaus.” Haines’ method creates a texture containing

intensity which is used to modulate the local illumination at points on the plane to

approximate a shadow. This approach first projects geometry onto the plane from

the center of a light, as in Figure 3.3(a), giving a standard hard shadow, and then

extends the hard shadow by an approximation to the penumbral regions, similar to the

work of Parker et al. [99]. To draw these approximate penumbrae, polygons attached

33

(a) (b)

Figure 3.2. Penumbra maps in a scene with multiple lights. With two penumbra maps
(a), this scene runs at 21.6 fps for 1024x1024 images. Compare to shadow maps (b) which
only render hard shadows.

34

to the silhouette edges of occluding geometry, similar to the shadow quads used for

shadow volumes, are projected into the shadow texture with varying intensity based on

distance to the ground plane. First, cones based at the ground plane with apexes at

silhouette vertices are rendered (Figure 3.3(b)). Usually these cones are discretized into

triangles for quick rendering via acceleration on graphics cards. Finally, the cones are

connected by hyperboloid sheets attached to silhouette edges and tangent to adjacent

cones (Figure 3.3(c)). When the adjacent cones have differing radii, the connecting sheet

is nonplanar. As OpenGL and DirectX introduce artifacts when rasterizing nonplanar

quadrilaterals, these sheets are subdivided into smaller triangles.

When rendered into the shadow texture, these cones and sheets have intensities of

zero, for fully shadowed, at silhouette edges and one, for fully illuminated, at the ground

plane. For locations in between the ground and the silhouette, the intensity is interpolated

either linearly or sinusoidally, as proposed Parker et al. [99].

3.2 Penumbra Maps

Shadow plateaus give compelling shadows quickly enough for use with dynamic occlud-

ers, but this approach cannot shadow arbitrary surfaces. However, since people are often

poor judges of soft shadow shape [144], similar plausible soft shadows should suffice in

interactive environments. The penumbra map technique extends Haines’ shadow plateau

(a) (b) (c)

Figure 3.3. Approximate soft shadows using shadow plateaus. The shadow plateau
technique generates soft shadows by (a) first rendering a hard shadow, (b) rendering
cones at each silhouette vertex, (c) rendering sheets connecting the cones.

35

work to allow dynamic soft shadows on arbitrarily complex objects.

Two observations form the basis for the penumbra map technique. First, a shadow

map can easily create the hard shadow to approximate an umbra. Second, if one assumes

this hard shadow approximates the umbra, then the entire penumbra is visible from the

point on the light used for the hard shadow. This allows the penumbra information to

be stored in a single texture called a penumbra map. This texture stores the penumbral

intensity on the foremost polygons visible from the light, just as a shadow map stores

depth information about these surfaces. These observations led to similar, concurrent

work by Chan and Durand [16], allowing them to render approximate soft shadows using

new geometric primitives called smoothies.

Rendering with penumbra maps is a three-pass process. The first pass renders a

standard shadow map from the viewpoint of a point light source at the approximate

center of the light. The second pass renders the penumbra map. The third pass combines

depth information from the shadow map and intensity information from the penumbra

map to render the final image.

Let V ≡ {v1, v2, . . .} and E ≡ {e1, e2, . . .} be the set of silhouette vertices and edges,

as seen from the light. Let Lr be the light radius, Zvi the depth value of vertex vi from

the light, and Zfar be the distance to the light’s far plane. Then, to generate a penumbra

map (such as in Figure 3.4):

• Clear the penumbra map to white.

• Find V and E for the current light.

• ∀vi ∈ V, draw a cone with tip at vi and base at the far plane (see Figure 3.5) with

a radius at the base of Cri = (Zfar−Zvi)Lr

Zvi
. Subdivide each cone into a number of

triangles with one vertex at vi and two on the far plane.

• ∀ei ∈ E , draw a sheet connecting adjacent cones. Depending on the cone radii, this

quad may be nonplanar. Subdivide extremely nonplanar quads to avoid artifacts.

Every pixel in the penumbra map corresponds to a pixel in the shadow map. Each

penumbra map pixel stores the shadow intensity at the corresponding surface in the

shadow map. A fragment program applied to the penumbra sheets and cones computes

this intensity using the simple geometry shown in Figure 3.6. The idea is that by using

Zvi , the depth of the current cone or sheet fragment ZF , and depth of the corresponding

36

(a) (b)

(c)

Figure 3.4. Rendering using penumbra maps. (a) An example shadow map, (b) the
corresponding penumbra map, and (c) the final rendered result.

37

Occluder
Penumbra Cone

Far Plane

Light Radius Lr

Zvi

Zfar

Cone Radius Cri

(a)

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Light

Occluder

Far Plane

Penumbra Sheet

Penumbra
Cone

(b)

Figure 3.5. Explanation of penumbral sheets and cones. (a) Each cone’s tip is located
at a vertex vi with the base located at the far plane. Simple geometry allows computation
of the cone radius Cri . (b) Each sheet connects two adjacent cones.

Edge of penumbra

Zvi

Light

Far Plane

Receiver

Occluder

P

F

ZF

ZP
Edge of umbra
using this method

Figure 3.6. Computing per-fragment intensity from cone or sheet geometry. Each
fragment F corresponds to some surface location P visible in the shadow map. By using
Zvi , ZF and ZP , the intensity I is computed via Equation 3.1.

38

shadow map pixel ZP , one can compute the light intensity at point P. Equation 3.1

specifies this computation:

I = 1 − ZP − ZF

ZP − Zvi

=
ZF − Zvi

ZP − Zvi

. (3.1)

The CPU computes Zvi on a per-vertex basis. For cones Zvi is constant, and for sheets

the graphics card’s rasterizer interpolates between the Zvi values of the two adjacent

cones. ZP can be computed by referencing the shadow map, and ZF is automatically

computed by the rasterizer when processing fragment F .

This process gives a linear intensity gradient through approximate penumbral regions.

Parker et al. [99] note that for spherical lights this intensity should vary sinusoidally. They

approximate this sinusoidal falloff using the Bernstein interpolant s = 3τ2 − 2τ3. The

results presented in Section 3.3 use this approximation, with the same assumption of

spherical light sources.

Figure 3.7 contains pseudocode for a fragment program to compute the penumbra

map (Appendix A contains the actual vertex and fragment programs). Since both the

shadow map, Smap, and the penumbra map are rendered with the same viewing matrices,

the window coordinates of fragment F can be used to find its corresponding point P in the

shadow map. Due to the nonlinearity of z-buffer values, ZF and ZP must be converted

back to world-space distances (Z ′
F and Z ′

P) before use. Note that Z ′
F can be computed on

a per-vertex basis and can be interpolated by the rasterizer to save fragment instructions.

Since the penumbra map only requires a single color channel, further savings can be

Require: silhouette vertex depth Zvi for current cone or sheet, shadow map Smap

for all fragments F on the current cone or sheet do
Fcoord = GetWindowCoord(F)
ZP = TextureLookup(Smap, Fcoord)
ZF = Fcoordz

if (ZF > ZP) DiscardFragment()
Z ′

P = ConvertToWorldSpace(ZP)
Z ′

F = ConvertToWorldSpace(ZF)
I = (Z ′

F - Zvi) / (Z ′
P - Zvi)

I ′ = 3I2 − 2I3

Outputcolor = I ′
Outputdepth = I ′

end for

Figure 3.7. Pseudocode for penumbra map fragment program.

39

achieved by storing the shadow map and penumbra map in different channels of the same

image.

Rendering soft shadows with a penumbra map is simple. For each pixel rendered from

the camera’s viewpoint, a comparison with the depth in the shadow map determines if

the pixel is completely shadowed. If not fully shadowed, a lookup into the penumbra

map gives an approximation of the light reaching the surface. Like shadow mapping,

penumbra maps work in scenes with multiple light sources. Instead of computing a single

shadow map and penumbra map, each light requires one of each.

3.3 Implementation

The prototype application used in this chapter makes a number of implementational

choices which affect the results. First, only spherical light sources are used, because people

often cannot distinguish between shadows from lights of various shapes. As Haines [45]

notes, this algorithm need not be limited to spherical light sources. For example, in

the case of a triangular source the cones generated for the penumbra map would have

triangular bases.

Second, this prototype detects silhouettes using a brute force algorithm. A more

intelligent silhouette extraction technique was not used because the graphics card was

the expected bottleneck. Surprisingly, the silhouette code takes 30% of the prototype’s

render time. Obviously, fast silhouette techniques would be used for future interactive

applications.

One detail that complicates implementation is how to deal with overlapping shadows.

Given two silhouette edges with overlapping penumbral regions, there are multiple ways

of counting their contributions (see Figure 3.8). When one shadow completely contains

another only the darkest shadow should be used. If just the penumbrae overlap the

shadow contributions should be summed. Often when the object silhouettes intersect,

multiplication best approximates the true interaction. Unfortunately, there does not

seem to be a straightforward way to determine which of the three methods to use on a

per-fragment basis during cone and sheet rasterization. The prototype implementation

uses a modified depth test to determine which cone or sheet shades a particular fragment

in the penumbra map. As the pseudocode above shows, the penumbra intensity is stored

in the depth channel and glDepthFunc(GL LESS) is used to always choose the darkest

shadow in a given pixel. This leads to artifacts in the shadows. As in Haines’ work,

40

(a) (b) (c)

Figure 3.8. These pathtraced images show three different types of interactions between
overlapping penumbra. (a) Only the darkest contribution is needed, (b) shadow contri-
butions should be summed, and (c) multiplying the contributions from the two polygons
best approximates the result.

these are most noticeable at silhouette concavities. Such artifacts worsen as the size of

the penumbra increases.

3.3.1 Discussion of Limitations

This work assumes that object silhouettes remain constant over the area of a light and

that the umbra can be approximated by a hard shadow. Akenine-Möller and Assarsson [2]

and Haines [45] also use silhouettes computed at a single point on the light. Brabec and

Seidel’s [12] technique implicitly makes this assumption by using only a single depth map.

Obviously as an area light increases in size, silhouettes vary more over the light so the

generated shadows will become less realistic.

Approximating the umbra by a hard shadow proves reasonable in many cases, as most

people are poor judges of soft shadow shape [144]. If plausible soft shadows are required

in an interactive application, using a hard shadow for the umbra may be sufficient. As

a shadow’s umbra size shrinks, such approximation leads to noticeably larger, darker

shadows. Shadow umbrae shrink as light size grows and as occluders and receivers move

further apart. Thus, penumbra maps work best for relatively small light sources and

occlusions between nearby objects.

41

3.4 Results

The prototype penumbra map implementation uses OpenGL and was tested on three

systems: a 2.0 GHz Pentium 4 PC with an ATI Radeon 9700 PRO graphics card,

a 2.66 GHz Pentium 4 PC with an nVidia GeForce 5900 Ultra graphics card, and a

3.2 GHz Pentium 4 PC with a prerelease nVidia GeForce 6800 GT graphics card (with

a 300 MHz core clock speed and 500 MHz DDR memory). Vertex and fragment shaders

(see Appendix A) utilize the OpenGL ARB vertex program and ARB fragment program

extensions. Both the shadow and penumbra maps are rendered into p-buffer textures, a

type of onboard memory buffer, for direct use without necessitating a read-back through

main memory.

All scenes are rendered at 1024 x 1024 with shadow and penumbra maps of the same

size. As soft shadows effectively blur detail, simplified models of complex objects such

as the bunny, buddha, and dragon can be used to render the shadow and penumbra

maps while still retaining equivalent quality shadows. This increases aliasing artifacts,

though adding a larger bias can help reduce them. 10,000 polygon models were used to

generate shadows for the bunny and the dragon (Figures 3.9 and 3.10). Buddha’s shadow

(Figure 3.2) uses 5,000 polygons. Table 3.1 shows framerates for these models using

penumbra and shadow maps. Note that for comparison purposes, the hard shadows were

timed using a fragment program similar to the one used for penumbra maps. This program

computes the Phong lighting and performs the lookup into the shadow map, which is

significantly slower than using other capabilities of the hardware designed specifically for

those operations.

Thirty percent of the computation time is used for brute force silhouette extraction.

Thirty-five percent is spent rendering the penumbra map and the render pass consumes

the remaining time. Note that the render pass includes fragment code to perform lighting

Table 3.1. Framerate comparison between shadow and penumbra maps.
Object Penumbra Shadow Penumbra Shadow Penumbra Shadow

Map on a Map on a Map on a Map on a Map on a Map on a
Radeon Radeon GeForce GeForce GeForce GeForce

9700 PRO 9700 PRO 5800 Ultra 5800 Ultra 6800 GT 6800 GT
Bunny 18.1 42.0 19.9 30.0 67.9 97.2
Dragon 14.5 48.1 15.0 30.0 44.9 108.2
Buddha,

1 Light 18.1 48.1 15.0 30.0 45.3 109.3
Buddha,

2 Lights 11.0 27.4 6.67 20.0 21.6 68.8

42

(a) (b)

(c) (d)

Figure 3.9. Penumbra map results for the Stanford bunny. Comparison of shadow maps
(a), penumbra maps with two different sized lights (c,d), and a pathtraced shadow using
the larger light (b). For this data set, a 10,000 polygon model is used to render the
shadows onto the full (∼70,000 polygon) model.

43

(a) (b)

(c) (d)

Figure 3.10. Penumbra map results for the dragon model. Using a standard shadow
map (a) results in hard shadows (b), add a penumbra map (c) to get soft shadows (d).
Using a 10,000 polygon dragon model for shadow generation and a 50,000 polygon model
to render, 1024 × 1024 images render at 44.9 fps.

44

computations and check light visibility using the shadow map. These operations take

15 of the 22 instructions in the ARB fragment program. To render penumbra maps,

the prototype application uses a fragment program with 24 assembler instructions. See

Appendix A for these shader programs.

This chapter presented the penumbra map, a new technique for rendering approximate

soft shadows in real-time. Penumbra maps allow dynamically moving polygonal models

to cast soft shadows onto themselves and other complex objects. These results work best

for relatively small penumbrae. Penumbra maps provide a simple multipass extension to

shadow mapping for easy incorporation into existing shadow map-based systems.

CHAPTER 4

INTERACTIVE RENDERING OF

CAUSTICS

Daily life immerses everyone in environments rich in illumination, particularly compli-

cated specular effects such as caustics. These effects are important to capture in computer

renderings. Unfortunately rendering complex illumination such as a caustic often incurs a

significant computational cost. Since many applications require interactive speeds, costly

path tracing algorithms for computing caustics are often infeasible, and hybrid techniques

suffer from a common computer graphics problem—poor scaling with scene complexity.

Often techniques that run quickly on simple scenes bog down when used on a complex

environment.

Although global illumination appears to have a significant impact upon how humans

view interactions between objects, computing a full global illumination solution is often

unnecessary. In fact, global illumination provides humans perceptual cues as to relative

object locations, yet accuracy is not always important [56, 71]. Some researchers [111]

have looked into simplifying the environment to reduce unnecessary computations, but

questions remain as to what level of simplification compromises the perceived quality of

global illumination.

This chapter examines the focusing of light caused by reflective and refractive surfaces.

This focusing, known as a “caustic,” potentially affects the entire environment, yet in most

cases appears in a relatively localized space around a specular object. For example, one

might see a caustic from a glass figurine on a table (see Figure 4.1) or the caustic from a

mirror on an adjacent wall.

This chapter explores a technique for sampling the caustic near a focusing object. This

allows the reduction of caustic rendering to a localized property which can be computed

with a simple lookup. This lookup can be performed at interactive framerates, even

as objects and lights move. However, sampling takes significant precomputation and

memory, and accurate caustics are limited to the sampled region.

46

(a)

(b)

Figure 4.1. A scene with caustics from a glass bunny. Using a raytracer running on 30
processors, this scene (a) runs at 2.3 fps while allowing movement of either the bunny or
the light, compared to (b) 25 seconds for shooting photons for a photon mapped image.

47

The rest of this chapter is divided as follows. Section 4.1 discusses the behavior of

caustics and suggests ways to deal with their complexities. Section 4.2 discusses various

ways to sample a caustic and the tradeoffs involved and Section 4.3 discusses some issues

involved in rendering a caustic from sampled data. Section 4.4 presents the results.

Finally, Section 4.5 discusses conclusions and future work.

4.1 Caustics

This section describes the behavior of caustics and discusses assumptions and simpli-

fications used to interactively render caustics. The goal was to develop a method that

locally approximates a caustic, which requires little or no recomputation from frame to

frame even as objects and lights move.

4.1.1 Caustic Behavior

Caustics result from focused light due to reflection or refraction off specular sur-

faces [93]. Some examples of caustics in daily life include sunlight reflected off a watch

onto a car ceiling, the cardioid shape at the bottom of a coffee mug (Figure 1.7(a)), and

the focusing of light through a magnifying glass (Figure 1.7(c)).

Caustics are common, yet few people understand exactly how they should look. For

example, one would expect a glass figure to cast a caustic onto a table, but blurred,

slightly offset, or even missing details may go unnoticed.

Flat surfaces, like mirrors, reflect light without focusing it. However any concave

reflector focuses light into bright lines or points. Technically, only curved surfaces cause

caustics, but this chapter adopts the common graphics usage and refers to any specularly

reflected or refracted light as a caustic, as both planar and curved specular surfaces lead

to important illumination effects.

Consider a transmissive object fixed relative to a lightsource, as in Figure 4.2. The

caustic’s intensity at point p changes based upon the position of p relative to the object

and the normal �Np of the surface at p. For fixed light and object positions, the caustic

can be considered a five-dimensional function. Allowing the light (or equivalently the

object O) to move changes the caustic into a eight-dimensional function, by allowing the

vector �L to vary.

Rendering caustics interactively involves quickly evaluating this eight-dimensional

caustic intensity function. Unfortunately, analytical descriptions of an arbitrary object’s

48

�Dp

�L

�Np

O

Surface Sp

Figure 4.2. The eight dimensions of a caustic. Given the object O at point p on surface
S, the caustic function has three dimensions from �Dp, three dimensions from �L, and two
dimensions from the orientation �Np of the receiving surface relative to �Dp.

caustic cannot be obtained using current methods, so a numerical approximation to this

function is used.

4.1.2 Simplifying the Problem

A number of simple observations allow simplification of the problem:

• The direction of incoming light often has greater impact on the visible caustic than

distance to the light.

• Lights located relatively far away generate caustics similar to those of lights located

infinitely far away.

• Most objects that focus light are relatively far away from the light. The most

prevalent exception, mirrors in light fixtures, can usually be treated as part of the

lightsource (e.g., Canned Lightsources [55]).

• The most complex caustic behavior usually occurs in regions near the focusing

object.

These observations allow some simplifying assumptions. Combining the first two obser-

vations, a directional light source can replace point lights (i.e., ignoring the distance to

the light). Using directional light sources reduces the dimensionality of the problem by

49

one.

Furthermore, limiting caustics to some finite volume around a reflective or refractive

surface allows samples to be focused in regions where the caustics contributes significantly

to the illumination of other objects. This allows sampling �Dp over a finite region. Outside

this region, extrapolated samples from the outermost samples can approximate the caus-

tic. Alternately, outside the sampling region caustic contributions could be gradually

faded. Note that considering the caustic a local object property limits interactively

rendered caustics to diffuse surfaces, to avoid specularly reflecting the precomputed

caustic.

Finally, assuming a known surface orientation, �Npfixed
, reduces the dimensionality by

two. Incorporating this known surface orientation into the sampling allows approximation

of the caustic for an arbitrary orientation �Np by multiplying the precomputed intensity

by �Np · �Npfixed
. This approach was found to work for �Npfixed

= −D̂p = − �Dp/‖ �Dp‖ at

each sample p. Conceptually, this method treats all caustic light from O as coming from

a point light at O’s center and computes the caustic intensity at p using a cosine falloff

based on �Np · −D̂p. As discussed above, the local sampling limits rendered caustics to

mainly diffuse surfaces, so using a cosine falloff is appropriate.

Using these assumptions a simplified five-dimensional caustic function can be sampled.

These five dimensions are x, y, z, φ, and θ, where �Dp = (x, y, z), and φ and θ correspond

to the direction of L̂.

4.2 Caustic Sampling

This section outlines a number of approaches for sampling and representing the five

dimensional caustic function discussed above. Since these sampled caustics are local

properties of an object, sampling must be independently performed on each object which

focuses light. Sampling of the volume over x, y, and z is discussed separately from the

sampling of incoming light directions φ and θ.

4.2.1 Sampling the Light

For each caustic object, information about how the caustic changes as the light moves

must be stored. Due to the assumption of directional lighting, sampling varying light

positions is equivalent to sampling directions (φ, θ) over a unit sphere. Each such sample

(φi, θi) is referred to as a light sample L̂i.

50

Sampling φ and θ in a fixed, uniform or near-uniform, pattern generally works as

well as adaptively sampling. Each linear change in φ or θ corresponds to varying non-

linear changes (see Figure 4.3) in the caustic intensity over the volume (x, y, z). Because

incoming light often bounces around the object many times, few incoming directions L̂

have a “simpler” caustic behavior than others. Thus, adaptive sampling of the sphere

tends to quickly converge to a relatively uniform sampling.

The rest of this chapter uses φ and θ sampled on a geodesic. Specifically, we subdivide

an icosahedron between three and six times and project the vertices to the unit sphere.

Samples can be taken as either the vertices or centers of the subdivided triangles. This

provides a nearly uniform sampling over the sphere, but has the advantage that existing

samples need not be recomputed for denser samplings (i.e., subdivisions) of the sphere.

4.2.2 Sampling Space

For each light sample L̂i, some region around object O should be sampled. If the

object has a bounding volume of radius r, tests showed a region with radius ≈ 3r should

be sampled to capture the most important regions of the caustic. However, this varies

depending on where focal points of the object lie.

Two different approaches to storing volumetric samples were examined, a uniform grid

and a set of concentric shells subdivided as a geodesic (see Figure 4.4). After selecting a

representation for the volume, sampling the caustic function uses the following algorithm.

For each light sample L̂i, we shoot photons from the directional lightsource towards the

object O. Once a photon specularly bounces, it contributes to all the cells it passes

though (the dashed lines in Figure 4.4).

Figure 4.3. Popping between adjacent light samples. Here a minute change in object
position results in a nonlinear change to the caustic, as a different light sample is used
after movement.

51

L̂i
L̂i

Figure 4.4. Sampling space on either a uniform grid or a set of concentric shells.

A photon’s contribution to a cell is computed as if it hit a surface at the sample

point ps with surface normal in the direction of Ocenter − ps. Each sample point ps

stores only the caustic intensity (i.e., no direct lighting is included), so contributions

from nonreflected and nonrefracted photons are ignored. The result is a grid storing

approximate irradiance at each cell’s center (similar to the Irradiance Volume [44]), with

the caveat that only irradiance due to specularly reflected light is stored.

Storing data on a grid has the advantage of easy implementation and fast lookups.

However, a rectangular grid structure does not correspond well to caustic data because

intensity data changes in a generally radial fashion. This means much space is wasted

storing data which changes slowly and not enough is concentrated in regions where the

caustic changes quickly.

Storing data on concentric shells allows nonuniform placement of the shells to densely

sample the data radially in regions where the caustic varies significantly. Using this allows

a reduction of the sampling frequency in one dimension by up to a factor of five, either

reducing memory usage or allowing a finer sampling in other dimensions. To avoid the

difficulty of indexing into a geodesic, a table lookup is used.

4.2.3 Data Representation

One of the major problems with sampling a high dimensional function, such as

the caustic intensity, is the large storage requirement. Using such data in interactive

applications can be difficult if significant portions must remain in memory. A number of

methods to represent these data can reduce the memory overhead. Each approach has

52

its advantages and disadvantages.

A naive implementation stores a complete set of sampled data, both on disk and in

memory. Obviously, this requires a machine with lots of memory. For instance, storing all

sampled data for the ring images (see Figure 4.5) requires around a gigabyte of memory,

with data stored in colors of three bytes each: one byte for each the red, green, and

blue channels. The advantage of this technique is easy implementation and fast lookups,

leading to faster framerates when the data completely resides in main memory. Since

caustics typically have a large dynamic range, we cannot use these bytes to store the

usual values in the range [0, 1]. The examples shown require intensity values in the [0, 3]

(a) (b) (c)

(d) (e) (f)

Figure 4.5. Sharper caustics come at the expense of denser sampling. The images shown
require (a) 5.7, (b) 22.5, (c) 90.1, (d) 360, and (e) 1440 kilobytes of memory per light
sample. The data is stored using the concentric shell representation. Compare to (f) a
photon traced solution. Using a multiresolution approach, similar results require (a) 4.8,
(b) 12.6, (c) 29.5, (d) 70.4, and (e) 179 kilobytes of memory per light sample.

53

range. Using 8-bit values in this way obviously reduces precision; however, when using

interpolation to get the irradiance at each point, no significant degradation in quality was

noticed.

A multiresolution approach helps save memory. Multiresolution techniques that adap-

tively subdivide the sampled geodesic as needed often reduce memory usage by up to a

factor of 10 with equivalent quality results. The tradeoff is that lookups take longer due

to the more expensive data traversal routines, leading to moderately reduced framerates.

Additionally, multiresolution approaches may not always reduce storage space.

Using spherical harmonics coefficients (see Appendix B) to represent sampled data

also allows significant compression. For each cell in the volume, instead of storing a

color for each light sample L̂i, spherical harmonic coefficients approximating the transfer

function from the environmental luminaire to a sample point are stored. Alternately,

each set of spherical harmonic coefficients can represent the transfer from a light sample

to a single concentric shell, though rendering using the first approach is faster and more

straightforward.

One main advantage of spherical harmonics is that a large amount of data can be

approximated by a few coefficients. The major problem with the representation, however,

is that spherical harmonics eliminate most of the high frequency information in a caustic.

Such sharp features are believed to be very important for rendering caustics. Higher

order spherical harmonics better represent sharp features, but increasing the order of the

spherical harmonic approximation increases precomputation, significantly increases the

number of coefficients required, and decreases rendering speed.

4.3 Caustic Rendering

After sampling the five-dimensional caustic function, a number of approaches can be

used to render the caustic. Results in this chapter use an interactive raytracer to render

the scene, because it runs interactively on a large shared-memory machine, easily allowing

access to large amounts of memory necessary for complicated caustics. Any renderer that

can access the necessary data quickly and perform per-pixel operations could use these

sampled data to compute caustic intensity.

4.3.1 Rendering Algorithm

Raytracing the scene proceeds normally until the determination of the color at a diffuse

surface. At these surfaces, instead of just looking for direct illumination, the raytracer

54

performs lookups into the sampled data to determine if they are illuminated by a caustic.

This process can be described algorithmically as follows:

1. Determine the direction L̂ from the center of the object O to the light. Locate the

nearest light sample L̂i (where L̂ · L̂i is maximal). This volume stores the closest

approximation to the caustic from the current light position. This step should be

done only once per frame, since it is independent of the intersection point p.

2. At each intersection point p, find p’s location in the volume sampled around O and

look up the caustic contribution. Add this result to the direct lighting computed

by the renderer.

4.3.2 Issues Rendering Caustic Data

Unfortunately, using a single light sample L̂i to render the caustic causes temporal

coherence issues as objects move. This is due to differences in the caustic from one light

sample to the next (see Figure 4.3). The popping can be reduced by combining the caustic

from multiple light samples L̂i, L̂j , and L̂k (where L̂ · L̂i ≥ L̂ · L̂j ≥ L̂ · L̂k ≥ L̂ · L̂m,∀m /∈
{i, j, k}). L̂i, L̂j , and L̂k form the three vertices of a spherical triangle on the unit sphere

which includes L̂ (see Figure 4.6).

Combining three light samples using barycentric coordinates [15] eliminates pop-

ping between caustic samples but introduces a new problem—ghosting (see Figure 4.7).

Ghosting happens because object O’s caustic can differ significantly between neighboring

light samples, so blending data from L̂i, L̂j , and L̂k results in three separate faint caustics.

Unfortunately, the best way to eliminate ghosting is to sample the caustic for more light

directions. This significantly increases memory consumption.

Below, an approach which helps reduce ghosting for relatively smooth objects is

described. This algorithm replaces step 2 from the rendering algorithm above:

A. Compute the vector �Dp from Ocenter to p.

B. Find the barycentric coordinates of L̂ in the spherical triangle formed by L̂i, L̂j ,

and L̂k. This gives the relative contributions from each light sample (Figure 4.6).

C. Compute the angles βi, βj , and βk between L̂ and the three nearest sampled light

directions L̂i, L̂j , and L̂k.

55

βk

Light

L̂i

βi

βj

L̂j

O

L̂k
L̂

Figure 4.6. L̂ intersects the spherical triangle formed by L̂i, L̂j , and L̂k.

(a) (b) (c)

Figure 4.7. Ghosting happens when the caustic changes significantly between neighbor-
ing light samples L̂i, L̂j , and L̂k. Images (a) without caustics, (b) with ghost caustics,
and (c) a correct caustic.

56

D. Calculate rotation axes �Ri, �Rj , and �Rk by taking the cross product between �L and
�Li, �Lj , and �Lk, respectively.

E. Rotate vector �Dp around the axis �Ri by angle βi to find a new vector �Dp′i . Similarly

find �Dp′j and �Dp′k by rotating around �Rj and �Rk by angles βj and βk (Figure 4.8).

F. Find the points p′
i, p′

j , and p′
k. Where p′

i = Ocenter + �Dp′i .

G. Perform caustic lookups as if p′
i, p′

j , and p′
k were the intersection points (instead of

p). Weight the contributions from these points based on the barycentric coordinates

computed in step B.

The process performs an interpolation between samples. Unfortunately, such an

interpolation is not generally valid, as it assumes the caustic changes linearly in space

for a linear change in light direction. For relatively smooth objects, like the sphere and

bunny, such “interpolation” generally allows us to use fewer light samples. For objects

such as the cube and prism that have sharp angles, this approach does not significantly

reduce ghosting, so a large number of light samples are still required.

When using spherical harmonic coefficients, which essentially filter over the sampled

light directions, this complicated rendering process can be avoided. Instead the caustic

is computed by integrating the transfer function (stored at the samples as spherical

harmonic coefficients) with the incident illumination, as described by Green [43], Sloan

Sampled

p

L̂
L̂i

Light
Light

�Dp
p′

βi

�Dp′
i

Figure 4.8. Alternative approach to caustic lookups. Find the cell to use in the weighted
average by rotating �Dp around the axis �Ri (which points into the page at Ocenter) by angle
βi.

57

et al. [120], and Appendix B. Caustics rendered with spherical harmonics, however, tend

to be very blurry.

4.4 Results

This approach was implemented on an interactive parallel raytracer running on an

SGI Origin 3800 with thirty-two 400 MHz R12000 processors, a shared memory machine

that easily holds the entire scene and caustic datasets in main memory. However, this

approach is not limited to such applications. Any renderer that has per-pixel lighting

control could implement the technique given enough memory. Existing systems (e.g.,

[42, 96, 133, 142, 138]) could easily incorporate such precomputed caustics to avoid the

cost of reshooting photons each frame.

Table 4.1 contains timings for the images generated for Figures 4.1, 4.9, 4.10, and 4.11.

The lookups into the precomputed caustic data incur a 10–45% speed penalty when

displaying caustics, depending on the relative costs of the lookups to the raytracing costs

of the scene. The cost of the photon shooting preprocess ranges from 1.3 to 25 seconds

per light sample, using a single 400 MHz R12000 CPU. Shooting photons for a photon

map takes a similar amount of time, though additional overhead is needed to create the

required kd-tree. Framerates are reported for a 360 × 360 window running on thirty

400 MHz R12000 processors.

Figures 4.9 and 4.10 compare a photon map with precomputed caustics using both

the grid and concentric shell storage techniques. These comparisons show grids and shells

requiring roughly the same amount of memory. The figures also show data compressed

using 5th and 15th order spherical harmonics. Using the spherical harmonic represen-

tation provides advantages such as the ability to use area lights (see Figure 4.12), high

Table 4.1. Caustic rendering and precomputation times.
Object Grid Shell MultiRes No 5th Order Shoot Photons

Caustics Caustics Caustics Caustics Spherical (per sample)
(fps) (fps) (fps) (fps) Harmonics (sec)

(fps)
Sphere 15.2 17.3 15.0 26.9 8.1 1.7
Cube 12.1 12.6 10.8 20.2 6.1 2.4
Prism 12.7 13.2 11.0 20.3 6.5 2.0
Ring 9.3 9.5 8.8 12.9 5.2 1.3
Building 1.94 2.01 1.90 2.29 1.48 4.5
Bunny 2.16 2.30 2.25 2.55 1.80 25.0

58

(a) (b) (c)

(d) (e)

Figure 4.9. Caustic rendering techniques on a metal ring and glass cube. Caustics from
(a) a photon map, (b) the concentric shell approach, (c) the grid technique, (d) 5th order
spherical harmonics, and (e) 15th order spherical harmonics.

59

(a) (b) (c)

(d) (e)

Figure 4.10. Caustic rendering techniques on a glass prism. Caustics from (a) a photon
map, (b) the concentric shell approach, (c) the grid technique, (d) 5th order spherical
harmonics, and (e) 15th order spherical harmonics.

60

Figure 4.11. Casting caustics on complex objects. This “building” can dynamically
cast caustics on surrounding terrain based on the sun’s position.

Figure 4.12. The caustic of a prism in St. Peter’s cathedral using 5th order spherical
harmonics. Note there are no shadows in this image.

61

temporal coherence, and low memory consumption. For comparison, these fifth order

representations use around 10 MB memory, about as much as the uncompressed data

used for Figure 4.5(a). Since the number of coefficients increases quadratically with

order, computation costs quickly become the bottleneck. All of these scenes run at less

than one frame per second using fifteenth order spherical harmonics.

Figure 4.5 illustrates the effect of sampling density on memory consumption and

caustic quality. For a relatively smooth object few light samples are necessary. The

bunny (see Figure 4.1) needed only 162 light samples. For objects where the rotational

alignment technique from Section 4.3.2 does not work well (like the cube and prism), up

to 2500 light samples are necessary. Note that number of light samples does not affect

framerate, assuming the data all fit into memory.

Obviously, with symmetric objects one need not sample the entire sphere of incoming

light directions. For a sphere, a single light sample suffices. For the metallic ring, between

50 and 100 light samples are sufficient for good temporal coherence. Many common

objects have symmetrical properties that could be used to simplify sampling.

4.5 Discussion

This chapter presented a novel technique for rendering approximate caustics inter-

actively by localizing the problem to the vicinity of the focusing object. This approach

avoids the recurring cost of photon shooting that other methods require to generate

dynamic caustics. Because particle tracing is not necessary between frames, this tech-

nique can be applied to other interactive systems that cannot traditionally perform such

computations (e.g., hardware based renderers). Additionally, the rendering costs of this

method are independent of object complexity. Since caustics are rendered using table

lookups, memory becomes the bottleneck, so a number of ways to sample, represent, and

compress the data in memory were examined.

Storing a highly sampled caustic function in memory produced the best looking results.

Unfortunately, the memory requirements make the technique difficult to use unless object

symmetries or other simplifying conditions exist. Multiresolution approaches can signif-

icantly reduce memory overhead by storing densely sampled data only where necessary.

In exchange lookups become more costly.

Spherical harmonic basis functions generally blur caustics extensively, and the results

look unconvincing. However, memory requirements are modest enough to allow imple-

62

mentation on current graphics hardware. Higher order approximations improve results at

the expense of additional coefficients, though this additional expense can quickly expand

memory requirements beyond reach of graphics hardware.

Scenes that lend themselves well to this technique include outdoor scenes where the sun

effectively acts as a constant directional lightsource. Such a scene requires a single light

sample. Leveraging object symmetries also can reduce some of the memory burden. Many

common objects have such symmetries, so these sampling techniques may be feasible for

such objects.

This work has a number of limitations, including extensive memory requirements for

general environments requiring the entire sampled space, poor realightment of neighboring

samples, and inability to handle area lights without spherical harmonics. However, by

tailoring the caustic representation to the application, these limitations can be overcome.

Thus, the results presented in this chapter indicate that viable techniques exist for

including specular effects as well as diffuse global illumination in interactive applications.

CHAPTER 5

INTERACTIVE RENDERING OF

ISOSURFACES WITH GLOBAL

ILLUMINATION

Isosurfaces, also known as implicit surfaces or level sets, are widely used in computer

graphics and scientific visualization, whether to help model complex objects [112] or to re-

veal the structure of scalar-valued functions and medical imaging data [69]. Because both

computational and acquired datasets tend to be large, only recently has interactive display

and manipulation of surfaces with varying isovalues become feasible for full-resolution

datasets [97]. In most interactive visualization systems, the rendering of isosurfaces is

based on only local illumination models, such as Phong shading, perhaps coupled with

simple shadows. For partially lit concave regions, these simple shading models fail to

capture the subtle effects of interreflecting light and shadows. These regions are typically

dominated by a local ambient term which provides no cues to environmental visibility or

reflections from nearby surfaces. Figure 5.1 shows the details brought out by the approach

introduced in this chapter, both in shadowed regions and those with high interreflections.

One usually thinks of “direct lighting” as coming from a small light source, but it can

also come from extended light sources. In the extreme case the entire sphere of directions

is a light source and “shadowing” occurs when not all of the background is visible at a

point. This results in darkening for concavities, exploited as accessibility shading [87] and

obscurance shading [155]. More recently, direct lighting from a uniform extended source

has been applied to illuminating isosurfaces extracted from volumes to good effect [131].

This chapter extends the class of lighting effects for isosurfaces to include full global

illumination from arbitrary light sources. The new method requires an expensive pre-

process but does not greatly affect interactive performance, and can even speed it up

since shadows can be precomputed and stored. This approach uses a conventional

three-dimensional texture to encode volume illumination data. For static illumination

and a static volume, a scalar texture encoding irradiance stores the necessary global

64

(a) (b)

(c) (d)

Figure 5.1. Comparison of (a,c) globally illuminated and (b,d) Phong shaded isosurfaces.
Note the improvement in regions dominated by indirect lighting, particularly in the eye
sockets (a,b) and the concavities in the simulation data (c,d).

65

illumination for all isosurfaces. For dynamic lights and complex materials, multiple values

are used per texel, as in Sloan et al. [120]. In either case, rendering interpolates between

neighboring texels to approximate the global illumination on the correct isosurface.

The next section introduces some volume rendering terminology and describes the

illumination models for display. Section 5.2 gives an overview of the new illumination

technique, and Section 5.3 describes the algorithm in greater detail. Section 5.4 discusses

the results.

5.1 Background

Rendering images of isosurfaces can be accomplished by first extracting some surface

representation from the underlying data followed by some method of shading the iso-

surface. Alternatively, visualizing isosurfaces with direct volume rendering requires an

appropriate transfer function and a shading model.

In practice, many volume datasets are rectilinearly sampled on a three-dimensional

lattice, and can be represented as a function ρ defined at lattice points xi. Some

interpolation method defines ρ(x) for other points x not on the lattice. Other datasets

are sampled on a tetrahedral lattice with an associated interpolation function. Analytical

definitions are also possible for ρ(x), often arising out of mathematical applications. Such

analytical representations can easily be sampled on either a rectilinear or tetrahedral

lattice.

Given a sampled dataset ρ(xi), the marching cubes algorithm [79] extracts explicit

polygons approximating an isosurface I(ρiso) with isovalue ρiso, where I(ρiso) = {x | ρ(x) =

ρiso}. Various improvements make this technique faster and more robust, but these

improvements still generate explicit polygonal representations of the surface. Raytracing

and volume rendering provide an alternate method of displaying isosurfaces, which need

not construct and store a polygonal representation [76, 97]. Once an isosurface has been

identified, standard illumination models can be applied to help visualize the data.

Commonly, extracted isosurfaces are shaded using the Phong model [102] and vari-

ations using similar ambient, diffuse, and specular components. Such techniques give

poor depth and proximity cues, as they rely on purely local information. Illumination

techniques for direct volume rendering, such as those surveyed in Max [84], allow translu-

cency and scattering along the viewing ray and shadow rays, but they fail to allow area

lights and are not interactive. Sobierajski and Kaufman [124] apply global illumination

66

to volume datasets, but they shade at runtime, so few effects can be incorporated while

maintaining interactivity.

Several techniques have been proposed to interactively shade volumes with global

lighting. The Irradiance Volume [44] samples the irradiance contribution from a scene,

allowing objects moving around the scene to be shaded by static environment illumination.

However, objects placed in the Irradiance Volume cannot interact with themselves, which

is important for correct global illumination of isosurfaces. Precomputed radiance transfer

techniques [90, 119, 120] can be used to shadow or cast caustics on nearby objects

by sampling transfer functions in a volume around the occluder. Unfortunately, these

techniques do not allow dynamic changes to object geometry, which is important when

exploring the isosurfaces of volume datasets. Kniss et al. [73] describe an interactive

volume illumination model that captures shadowing and forward scattering through

translucent materials. However, this method does not allow for arbitrary interreflec-

tions and thus does not greatly improve isosurface visualization. The vicinity shading

technique of Stewart [131] encodes direct illumination from a large uniform light in a

three-dimensional texture and allows its addition to standard local shading models while

interactively changing the displayed surface. However, this method provides an approach

for only direct illumination and does not incorporate indirect illumination.

5.2 Overview

A brute-force approach to globally illuminating an isosurface would compute illumina-

tion at every point visible from the eye. Figure 5.2 shows how a Monte Carlo path tracing

technique would perform this computation. Obviously, performing such computations on

a per-pixel basis quickly becomes cost prohibitive, so caching techniques [146] are usually

preferable. Many existing techniques cache radiance [10], irradiance [44], or more complex

transfer functions [90, 106, 120] to speed illumination computations.

In volume visualization, users commonly change the displayed isovalue, thereby chang-

ing the isosurface, to view different structures in the volume. Most illumination caching

techniques are object specific, so as the surface changes new illumination samples must

be computed. This chapter introduces a technique that stores either irradiance or more

complex transfer functions in a three-dimensional texture coupled with the volume. Each

texel t corresponds to some point xt in the volume. The process is broken into two

steps. During the computation step, illumination values can be computed using any

67

Light

p
isosurface

�n

Figure 5.2. Computing the irradiance at point p involves sending a shadow ray and
multiple reflection rays. Reflection rays either hit the background or another part of the
isosurface, in which case rays are recursively generated.

standard global illumination technique. For each texel t, extract the isosurface I(ρ(xt))

running through xt. Using this isosurface, compute the global illumination at point

xt via standard approaches and store the result in texel t. Figure 5.3 shows how this

works for four adjacent samples using a Monte Carlo sampling scheme. When rendering,

interpolate between cached texels to the correct isosurface, allowing for interactive display

of arbitrary isosurfaces.

As with most illumination caching techniques, the rationale behind this approach is

that global illumination generally changes slowly for varying spatial location. Here this

assumption applies in two ways: illumination should change gradually over a surface and

illumination should change gradually with changing isosurfaces.

One situation exists where this approximation obviously breaks down—hard shadows.

Hard shadows involve a very visible discontinuity in the direct illumination. As shown in

Figure 5.3, each sample in the illumination lattice is potentially computed on a different

isosurface. In regions where a shadow discontinuity exists, some samples will be in shadow

and others will be illuminated. Using an interpolation scheme to compute the illumination

68

Figure 5.3. The global illumination at each texel t is computed using standard techniques
based on the isosurface I(ρ(xt)) through the sample.

results in a partially shadowed point between samples. Thus for a static isosurface, results

near shadow edges will be blurred, similar to the effect achieved with percentage closer

filtering [109].

Since dynamically changing the rendered isosurface is desirable, the effect of such

changes on shadow boundaries must also be considered. As the displayed isosurface

changes, the interpolated illumination value on the surface changes with distance from

illumination samples, just as the illumination varies over a single isosurface. Thus, faint

shadows may exist when there is no apparent occluder or small occluders may cast no

shadow. The effect is that shadows will “fade” in and out as occluders appear and

disappear. Examples of these effects can be seen in Figure 5.4. The scene is illuminated

69

Figure 5.4. The Visible Female’s skull globally illuminated using the new technique.
The right images show how the cord’s shadow fades out with increasing isovalues.

by a blue and brown environment with a yellow point light source. The shadows are

blurred slightly, and as the isosurface changes the cord fades out before its shadow.

Note that because sharp discontinuities in direct illumination are most visible, hard

shadow are a worst-case scenario. For soft shadows or indirect illumination the perceived

effects are less pronounced, so this approximation of a smoothly changing illumination

function becomes more accurate. Artifacts similar to those in Figure 5.4 may still occur,

but they will be less noticeable.

The artifacts that occur with changing isovalues arise from approximating the non-

linear global illumination function using simple trilinear interpolation. This approxima-

70

tion is what causes the “fading” of shadows and the faint banding seen in the results.

This assumption occasionally causes problems, but the proposed technique provides

significantly more locality information than local models, especially in concavities and

dark shadows where ambient terms either provide little or conflicting information. Ad-

ditionally, since shadows are included in the representation, they require no additional

computation. In fact, this technique renders faster than simple Phong and Lambertian

models when including hard shadows.

5.3 Algorithm

This technique has two stages: illumination computation and interactive rendering. A

simplistic approach would perform all the computations as a preprocess before rendering.

As this can require significant time and not all illumination data may be required, it

is possible to lazily perform computations as needed, assuming the display of some

uncomputed illumination is acceptable until computations are complete.

5.3.1 Illumination Computation

Each sample in the illumination lattice stores some representation of the global illu-

mination at that point. This illumination is described by the rendering equation (from

Section 1.2.3), without the emission term:

L(xt, �ωout) =
∫

Ω
fr(xt, �ωout, �ωin)L(xt, �ωin) cos θind�ωin,

where xt is the location of the illumination texel t with normal �nt, �ωout is the exitant

direction, �ωin is the incident direction varying over the hemisphere Ω, and fr is the BRDF.

Note that cos θin is equivalent to �ωin · �nt, which is used in the rest of this chapter.

Depending on an application’s required materials and illumination this equation and

the representation stored in the illumination texture can be varied to reduce computation

time and storage space. For a simple diffuse surface with fixed lighting, a single irradiance

value is sufficient at each lattice point. In this case, the rendering equation can be

rewritten as:

L(xt) = fr(xt)
∫

Ω
L(xt, �ωin)(�ωin · �nt)d�ωin =

R(xt)E(xt)
π

. (5.1)

Here the diffuse BRDF has no dependency on �ωin. It can be removed from the integral

and is then equivalent to the surface albedo R(xt) divided by π. The remainder of the

71

integral is the irradiance at point xt, E(xt). Storing E(xt) in a texture allows for easy

illumination during rendering, as per Equation 5.1.

The simplest way to compute the irradiance at each sample point xt uses naive Monte

Carlo pathtracing. Using N random vectors, �vj , sampled over the hemisphere Ω, the

irradiance is approximated:

E(xt) =
1
N

N∑
j=1

L(xt, �vj). (5.2)

Using this equation, compute the irradiance at every point as shown in Figure 5.5.

Explicitly extracting different isosurfaces for each sample is quite costly. To avoid this

cost, a raytracer performs intersections with the trilinear surface analytically [98]. Unfor-

tunately, trilinear techniques generate noisy surfaces and normals, which can significantly

impact the quality of the computed global illumination (see Figure 5.6). Rather than

directly computing normals from the analytical trilinear surface or using a simple finite

difference gradient, a smoothed normal defined by a tricubic B-spline kernel applied to the

gradient over a 4×4×4 voxel region gives better results. Smoothing normals and slightly

offsetting xt in the normal direction during illumination computations significantly re-

duces this microscopic self-shadowing noise. Note the global illumination artifacts seen

in Figure 5.6 using gradient normals occur on both microscopic and macroscopic scales.

Noise occurs on the microscopic scale due to aliasing on the trilinear surface. Artifacts

occur on the macroscopic scale when the volumetric dataset and the illumination volume

have different resolutions. Visible bands occur where voxels from the two volumes align,

as can be seen in Figure 5.6(d).

For more complex effects such as dynamic illumination or nondiffuse material BRDFs,

a simple irradiance value will not suffice, and a more complex representation of the

for all xt in illumination lattice do
compute isovalue ρ(xt)
compute isosurface normal �nt

sample hemisphere Ω defined by �nt

for all samples �vi ∈ Ω do
compute illumination at xt in direction �vi using isosurface with isovalue ρ(xt)

end for
compute irradiance at xt using equation 5.2.

end for

Figure 5.5. Pseudocode to compute irradiance at samples in the illumination lattice.

72

(a) (b) (c)

(d) (e)

Figure 5.6. An isosurface from the Visible Female’s head extracted using analytical
intersection of the trilinear surface. Direct illumination from a point light using (a)
gradient normals, (b) tricubic B-spline smoothed normals, and (c) offset surface with
smoothed normals. Four bounce global illumination using (d) gradient normals and (e)
offset surface with smoothed normals.

73

illumination must be computed. Choosing to use spherical harmonic (SH) basis functions

to store more complex illumination efficiently represents low frequency lighting. As

diffuse global illumination tends to vary smoothly over space, such a representation makes

sense. Spherical harmonics allow for dynamically changing illumination as well as quick

integration during rendering, using a simple dot product or matrix multiply operation.

Assuming a diffuse material, incident illumination from a distant environment L∞(�ωin)

invariant over x, and a visibility function V (xt, �ωin), the rendering equation can be

rewritten as:

L(xt) = fr(xt)
∫

Ω

[
L∞(�ωin)V (xt, �ωin)(�ωin · �nt) + L(x�ωin

t)(1 − V (xt, �ωin))
]
d�ωin. (5.3)

Note x�ωin
t is the point occluding xt in direction �ωin. As the incident illumination is

assumed constant over the volume, it can be factored out of the recursive integrals

when using the SH basis, leaving a geometry term whose coefficients can be computed

numerically using Monte Carlo techniques. Green [43] clearly explains this process in

great detail. Every point in the illumination texture stores SH coefficients of this geometry

term.

Similar SH values can be computed and stored at voxels for more complex materials

including glossy or transparent effects, as described in Sloan et al. [120, 119]. Additionally

other bases, like wavelets, could be used to represent the global illumination in the volume,

especially if higher frequency effects are desired.

5.3.2 Interactive Rendering

After computing the illumination samples, rendering is straightforward. At every

visible point on the displayed isosurface, first index into the illumination texture to find

the eight nearest neighbors. Afterwards, interpolate the coefficients stored in the texture,

and use the interpolated coefficients for rendering.

When using an irradiance texture, simply use Equation 5.1 to compute the illumina-

tion based on the stored irradiance and the albedo. With the spherical harmonic repre-

sentation, interpolate the stored spherical harmonic geometry coefficients and perform a

vector dot product with the environmental lighting coefficients.

A higher order interpolation [83] scheme over nearby neighbors was expected to gen-

erate better smooth illumination over complex isosurfaces. Interestingly, simple trilinear

interpolation of stored coefficients proved sufficient. More complex interpolation schemes

gave equivalent or even worse results, as shown in Figure 5.7. Methods with larger kernels

74

(a) (b)

(c) (d)

Figure 5.7. Approaches to interpolating between illumination samples. Engine block
illuminated using (a) the illumination sample with closest isovalue, (b) the nearest
illumination sample, (c) a trilinearly interpolated value, or (d) a value computed with a
tricubic B-Spline kernel.

generally gave worse results due to the increased likelihood of interpolating samples from

widely different isosurfaces.

5.4 Results

Several different approaches were used to implement this technique. First, a Monte

Carlo pathtracer computed the illumination at texels throughout the volume. Utilizing

the precomputations in an interactive raytracer allows dynamic changes to the visualized

surface and illumination. An extension to the interactive raytracer allowed computation

of illumination lazily, avoiding computations for isosurfaces never seen. Finally, import-

ing the illumination texture into an OpenGL visualization program allows interactive

75

rendering of global illumination on a single PC.

The interactive raytracer runs in parallel on an SGI Origin 3800 with sixty-four

600 MHz R14000 processors. This is a shared memory machine with 32 GB of memory,

allowing for easy access to large volume datasets and illumination textures. Large SGIs

are uncommon, but users generating and interactively displaying large volume datasets

typically have access to similarly powerful machines (or clusters [27]) which could apply

this technique. The OpenGL implementation runs on a Dell Precision 450 with 1 GB

memory and an Intel Xeon at 2.66 GHz. The graphics card is a GeForce FX 5900 with

256 MB memory. The code utilizes only simple fragment shaders, so older cards should

suffice, but the increased graphics card memory facilitates visualizing bigger volumes.

Computing global illumination values for every texel in a volume can be quite ex-

pensive, whether computing simple irradiances or sets of spherical harmonic coefficients.

Table 5.1 shows illumination computation timings for the volume shown in Figure 5.8.

Times are shown for computing the entire texture as well as for the single views shown

in Figure 5.8. The prototype uses naive, unoptimized Monte Carlo pathtracing, on

thirty 400 MHz R12000 CPUs, for precomputation. More intelligent algorithms would

significantly reduce these precomputation times.

For volumes with few interesting surfaces such as the engine block, computing illu-

mination on the fly may be preferential to a long precomputation, as global illumination

samples reside near displayed isosurfaces. Samples elsewhere can remain uncomputed. At

a 512× 512 resolution, computing a single irradiance for each sample takes a few seconds

per viewpoint using sixty 600 MHz R14000 CPUs. Densely sampled illumination textures

and complex environmental lighting require longer computations, as shown in Table 5.1.

In either case lazy computation maintains interactivity, so viewpoint and isovalue can be

changed during computation.

Table 5.1. Illumination computation timings for images from Figure 5.8.
100 625 2500 10000

Sample type samples samples samples samples
per voxel per voxel per voxel per voxel

Spherical harmonics (single image) 0.33 min 2.63 min 10.6 min 48.2 min
Spherical harmonics (full texture) 8.47 min 52.8 min 210 min 853 min
Irradiance samples (single image) 0.95 min 5.80 min 23.7 min 98.3 min
Irradiance samples (full texture) 18.2 min 113 min 450 min 1806 min
Pathtraced (single image) 0.73 min 4.51 min 18.0 min 72.1 min

76

(a) (b) (c)

Figure 5.8. The engine block illuminated by the Grace cathedral lightprobe. Spherical
harmonic samples (a) converge faster than Monte Carlo irradiance samples (b) or Monte
Carlo pathtracing (c) due to the filtered low frequency environment. From top to bottom:
100, 625, 2500, and 10000 samples.

77

Precomputation is slow, but it need be done only once. Using the resulting illumi-

nation is simple and quicker than most lighting models used for visualization. Table 5.2

compares framerates using Phong and Lambertian materials with this technique. Timings

use the interactive raytraced implementation on either thirty or sixty 600 MHz R14000

CPUs with image resolutions of 512 × 512. Notice that rendering from either spherical

harmonic coefficients or a single irradiance sample is faster than simple shading with hard

shadows. Yet both these techniques include shadows along with other global illumination

effects.

Table 5.2 also shows the memory overhead for this technique. The irradiance sample

requires one RGB triplet per voxel, stored as one byte per color channel. Using the same

resolution as the volume dataset requires as much as three times more memory as simply

storing the volumetric data. The spherical harmonic representation uses no compression,

so a fifth order representation uses 25 floating-point coefficients per channel, or two orders

of magnitude more memory. Using compression techniques from Sloan et al. [119] would

help reduce memory usage.

Simulation data, like the Richtmyer-Meshkov instability dataset shown in Figures 5.9,

5.10, and 5.11, also benefits from global illumination. Often such data are confusing so

shadows and diffuse interreflections can give a sense of scale and depth lacking in Phong

and Lambertian renderings. Figures 5.9, 5.10, and 5.11 compare the new technique

to vicinity shading, Phong, and Lambertian with and without shadows. The Phong

and Lambertian images use a varying ambient component based on the surface normal.

Figures 5.10 and 5.11 also compare with a local approach that adds distance information

using OpenGL-style fog.

Vicinity shading provides better results than Phong or Lambertian models, but in-

cident illumination must be constant over the environment, such as on a cloudy day.

Vicinity shading turns out to be a special case of a full global illumination solution. By

Table 5.2. Comparison of framerates and memory consumption for Figure 5.8.
Material Type Frames per second Frames per second Extra memory used

(on 30 CPUs) (on 60 CPUs) (in MB)
Diffuse, No Shadows 17.0 33.1 0

Diffuse, With Shadows 8.75 17.3 0
Phong, With Shadows 8.60 17.0 0

Irradiance Samples 15.6 30.5 9.75
Spherical Harmonics 11.7 21.7 975

78

(a)

(b)

(c)

Figure 5.9. An enlarged portion of the Richtmyer-Meshkov dataset shown in Figure 5.11.
These images enlarge a crevice in the upper right corner of images from the right column
using (a) the new approach, (b) vicinity shading, and (c) Phong with varying ambient
component.

79

(a) (b)

(c) (d)

(e) (f)

Figure 5.10. A Richtmyer-Meshkov instability simulation under various illumination.
A view using (a) the new technique, (b) vicinity shading, (c) Lambertian with fog, (d)
Phong with varying ambient, (e) Lambertian with varying ambient, and (f) Lambertian
without shadows.

80

(a) (b)

(c) (d)

(e) (f)

Figure 5.11. Another view of a Richtmyer-Meshkov instability simulation. This different
view using (a) the new technique, (b) vicinity shading, (c) Lambertian with fog, (d) Phong
with varying ambient, (e) Lambertian with varying ambient, and (f) Lambertian without
shadows.

81

ignoring diffuse bounces and insisting on constant illumination, identical results can be

achieved utilizing the illumination texture (as seen in Figure 5.12). Although vicinity

shading shades concavities darker than unoccluded regions, recent studies show humans

use more than a “darker-means-deeper” perceptual metric to determine shape in an

image [75]. By allowing interreflections between surfaces and more complex illumination,

the new approach adds additional lighting effects which may help users perceive shape.

However, if shadows or other illumination effects inhibit perception for a particular

dataset, they can be removed from the illumination computations.

The results comparable favorably to Monte Carlo pathtracing, particularly when

using an irradiance texture. As each irradiance texel is computed using pathtracing,

the differences seen in Figure 5.13 result from the issues discussed in Sections 5.2 and 5.3.

For the spherical harmonic representation, the resulting illumination is smoother and a bit

darker. Illumination intensity varies slightly based on the SH sampling of the environment

and material transfer functions, and the SH results in Figure 5.8 appear a bit brighter

than the pathtraced results. Figure 5.8 compares the convergence of illumination using

a fifth order SH basis, single irradiance values, and per-pixel pathtracing. As expected,

the SH representation converges significantly faster than pathtracing, and the irradiance

texture converges at roughly the same rate, though the noise is blurred by the trilinear

interpolation.

One last consideration when using this technique is what resolution illumination

(a) (b)

Figure 5.12. Comparison with vicinity shading. Compare (a) the new technique and
(b) vicinity shading with 625 samples per voxel.

82

(a) (b) (c) (d)

Figure 5.13. The new technique versus Monte Carlo pathtracing with 10000 samples
per pixel. At left, compare (a) an irradiance texture to (b) pathtracing in a bicolored
environment. At right, compare (c) a fifth order spherical harmonic representation to (d)
pathtracing inside a lightprobe of St. Peter’s cathedral.

83

texture gives the best results. Figure 5.14 compares the Visible Female head with

three different resolutions. It turns out that using roughly the same resolution for

the illumination and the data gave reasonable results for all the test cases. In regions

where isosurfaces vary significantly, sampling more finely may be desirable. For instance,

illumination texels near the bone isosurface from Figure 5.14 fall on relatively distant

isosurfaces giving rise to more banding artifacts. Surfaces like the skin change slowly

(a) (b) (c)

Figure 5.14. Effect of different illumination volume resolutions. Illumination texture
of (a) 1/8, (b) 1, and (c) 8 times the resolution of the head dataset. Due to the high
variation in isovalues near the bone isosurface, a denser illumination sampling is needed
to avoid banding artifacts.

84

with changing isovalue, so a less dense illumination texture suffices.

This chapter introduced a method for precomputing and interactively rendering global

illumination for surfaces from volume datasets. By storing illumination data in a three-

dimensional texture like the underlying volumetric data, interpolation between texels

provides plausible global illumination at speeds faster than illumination models commonly

used for visualization today. This approach generates high quality global illumination on

dynamically changeable surfaces extracted from a volume, running on either GPU based

visualization tools or interactive raytracers. Combining the technique with a spherical

harmonic representation allows dynamic environmental lighting.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, three approaches for approximating global illumination effects

with local information have been described. These techniques split out individual global

illumination effects to examine individually. This allows applications to incorporate

the most important global illumination effects for their environments without including

the computational baggage of unimportant effects. The three results presented include

the penumbra map for interactively rendering soft shadows described in Chapter 3,

the interactive caustic rendering using a simplified five-dimensional caustic described

in Chapter 4, and the interactive visualization of isosurfaces under dynamic lighting by

interpolating precomputed illumination samples described in Chapter 5.

Penumbra maps augment the standard shadow map approach for rendering hard

shadows with information about penumbral intensity on surfaces visible from the center of

the light. This technique generates plausible looking penumbrae for moderately complex

models at over ten frames per second. Furthermore, implementations using standard

shadow maps easily extend to allow penumbra mapping. This approach does not allow

complete representation of the penumbra, but studies have shown accurate shape is

unnecessary for human perception—a shadow that looks plausible could thus be perceived

as real. For the penumbra map, as long as the penumbral regions are small relative to

the total shadow size the results look convincing.

Future work might examine adding more information so the full penumbra can be ren-

dered. This might be possible using a vertex program to adjust silhouette edge positions,

or by including another corresponding map containing inner penumbral information.

Unfortunately when adding another map, additional penumbrae will not reside on the

foremost polygons in the shadow map. Additional work may allow implementation of the

entire algorithm on a graphics card. Bleeding-edge graphics accelerators recently intro-

duced support for render-to-vertex-array, which should allow silhouette extraction (via

McCool’s approach [86]) and generation of cones and sheets entirely onboard, drastically

86

improving performance.

For rendering caustics, the eight-dimensional caustic function was simplified by ex-

amining caustic behavior and eliminating degrees of freedom which contribute little to

the rendered result. These simplifications resulted in a five-dimensional function. When

sampled locally near reflective and refractive objects, this representation allows interactive

rendering of caustics with dynamic geometry and illumination. When rendering using

this approach, tradeoffs exist between rendering speed, rendering quality, and memory

consumption. Increased rendering speed comes at the cost of reduced quality or higher

memory consumption (e.g., by using naive sampling and storage techniques). Tailoring

the data representation to specific applications significantly reduces precomputation and

memory costs. For instance, outdoor scenes typically require a single light direction, due

to illumination from a constant direction.

A number of directions for future work on caustics exist. Additional data represen-

tations such as spherical wavelets, principle component analysis, or other basis functions

may further compress the sampled caustic or allow higher fidelity reconstruction. A better

measure over the five-dimensional caustic space is necessary for accurate interpolation

between samples. Until such a measure is found, ad hoc interpolation will continue

to cause artifacts for certain object types. Finally, perhaps representations other than

spherical harmonics can allow interactive rendering of caustics from area lights without

the blurriness inherent with a spherical harmonic representation.

The technique from Chapter 5 provides the first method for interactively rendering

dynamic isosurfaces of a volumetric dataset with full global illumination. As users explore

a volumetric dataset, they often vary the current isovalue to examine different portions

of the volume; this interactive global illumination technique provides valuable global

information to such users. A three-dimensional texture stores precomputed irradiance or

spherical harmonic transfer functions, allowing rendering of any isosurface of the volume

under arbitrary, changing lighting. Again, a tradeoff exists between rendering quality,

rendering speed, and memory consumption. Using a single irradiance value at every

texel, commodity graphics accelerators can render static global illumination on arbitrary

isosurfaces. On the other hand, rendering dynamic lighting and complex material types

requires a machine with multiple gigabytes of memory. Moreover, illumination computa-

tions can be performed lazily instead of as an expensive preprocess. Lazy computation

allows illumination calculations for just the interesting isosurfaces instead of the entire

87

volume. This proves valuable if only a small subset of the volume need be displayed or if

a long precomputation is undesirable.

Interesting future work in this area includes examining if illumination can be stored in

a hierarchy instead of a regular grid. As indirect illumination generally varies slowly over

local regions in space, hierarchical storage techniques could leverage slow gradations into

reduced memory consumption. Compression techniques, both within a sample as well

as over neighboring samples, may help reduce memory consumption without affecting

rendering quality. Again, principal component analysis may reduce spherical harmonic

coefficient storage. Spherical wavelets or other basis functions over the sphere may require

fewer coefficients or lead to more practical compressions schemes. Finally, implementation

of this technique using commodity graphics hardware is currently limited to small datasets

by limited onboard memory. Research into hierarchy and compression schemes may allow

more complex illumination textures to fit into graphics memory, allowing higher fidelity

global illumination at interactive rates on desktop PCs.

Beyond direct extensions to the methods described in this dissertation, a number of

questions remain as to the importance of global illumination. Studies show that shadows

provide important information, yet visualization researchers widely claim that shadows

and other complex illumination actually detract from perception of complex datasets. In

some cases this may prove correct, but conducting user studies to determine when global

illumination helps and when it hurts would yield interesting results. Furthermore, it may

turn out that some global illumination effects help and some hurt. Or perhaps shadows

detract from an image when included individually, but in conjunction with interreflections,

which augment shading in shadowed regions, shadows may help. These questions all

suggest interesting user studies.

Another open question is how much global illumination can be approximated without

affecting perceived realism. By knowing which approximations detract from a user’s

experience, techniques focused on retaining salient information can be developed.

In summary, this dissertation suggested three different approaches for locally ap-

proximating global illumination effects. As interactive applications continue to become

more realistic, they will begin demanding nonlocal illumination effects; however, global

approaches that utilize the existing framework to accelerate local lighting will be accepted

and integrated first, providing an intermediate step on the way to full interactive global

illumination.

APPENDIX A

SHADER CODE FOR PENUMBRA MAPS

This appendix provides the vertex and fragment shader programs used in Chapter 3.

The code conforms to the ARB vertex program and ARB fragment program OpenGL

extensions [116] defined by the OpenGL Architecture Review Board. These programs

will run on any graphics board that supports these ARB extensions; however, they were

designed on and optimized for ATI Radeon 9700 graphics cards, so they run significantly

faster on the ATI Radeon line of graphics cards than on corresponding generation graphics

cards from nVidia.

A.1 Generating a Penumbra Map

The penumbra map is rendered into a p-buffer, which is a buffer in onboard video

memory that does not get rendered to the screen. Once rendered, a p-buffer can be used

as a texture in a later render pass. Figures A.1 and A.2 show the vertex and fragment

!!ARBvp1.0
Grab the OpenGL state variables the vertex & fragment shaders use.
ATTRIB v24 = vertex.texcoord[0];
ATTRIB v19 = vertex.color;
ATTRIB v16 = vertex.position;
PARAM s259[4] = { state.matrix.mvp };
Move textcoord[0] & [1] directly to the fragment shader, the
graphics card will linearly interpolate them for us.
MOV result.texcoord[1], v19;
MOV result.texcoord[0], v24;

Apply the modelview/projection matrix to the vertex positions.
DP4 result.position.x, s259[0], v16;
DP4 result.position.y, s259[1], v16;
DP4 result.position.z, s259[2], v16;
DP4 result.position.w, s259[3], v16;
END

Figure A.1. Vertex program for rendering a penumbra map.

89

!!ARBfp1.0
Stores {1/pbufferWidth, 1/pbufferHeight, 1, 1}
PARAM u0 = program.local[0];

The 3 and 2 are used for Bernstein interpolation...
PARAM c0 = {1, 0, 3, 2};
TEMP R0, R1, H0;

Take window position, convert to [0-1] tex space
MUL R0.xyz, fragment.position, u0;

Lookup depth in shadow map
TEX R1.y, R0.xyxx, texture[0], 2D;

Compare ZF , ZP , kill if ZF > ZP

(of course, current cards the kill doesn’t *actually* do
anything, so this doesn’t really speed things up)
ADD R0.x, R1.y, -R0.z;
CMP H0.x, R0.x, -c0.x, -c0.y;
KIL H0;

Convert to world space & computation of I
* Texcoord[0] contains far/near values needed to convert to
world space. This probably could have been a local param
instead of passing through the texture coordinate.
* Texcoord[1] contains ZVi and assorted other forms to make
the conversion & I computation easier (i.e. fewer operations)
MAD R0.x, R1.y, fragment.texcoord[0].x, -fragment.texcoord[0].z;
RCP R0.x, R0.x;
MAD R0.y, -fragment.texcoord[0].y, R0.x, -fragment.texcoord[1].x;
MUL R0.y, fragment.texcoord[1].z, R0.y;
RCP R0.y, R0.y;
ADD R0.x, fragment.texcoord[1].y, -fragment.texcoord[1].x;
MUL R0.y, R0.x, R0.y;
ADD R0.x, R0.y, -c0.y;
CMP H0.x, R0.x, c0.x, c0.y;
CMP R0.y, -H0.x, c0.x, R0.y;

Compute Bernstein interpolation
MAD R0.x, -c0.w, R0.y, c0.z;
MUL R0.y, R0.y, R0.y;
MUL R0.y, R0.x, R0.y;

Stores the output color into color.zw and depth.z
Stores the shadow map into color.x (so we only use 1 texture)
MOV result.color.zw, R0.y;
MOV result.color.x, R1.y;
MOV result.color.y, fragment.texcoord[1].w;
MOV result.depth.z, R0.y;
END

Figure A.2. Fragment program for rendering a penumbra map.

90

programs used for this work. The value of the vertex.texcoord[0] input to the shaders

is:

vertex.texcoord[0] =

⎛
⎜⎜⎝

lfar − lnear

lfar ∗ lnear

lfar

lnear

⎞
⎟⎟⎠ ,

where lfar and lnear are the distances to the far and near planes when rendering the

shadow map (i.e., the far an near planes from the light’s point of view). Note a slightly

faster and better approach would be to pass these directly to the fragment program, as

they are constant over the polygon and do not need interpolation by the rasterizer. The

value of the vertex.color shader input is given by:

vertex.color =

⎛
⎜⎜⎝

ZVi

currentz
1.0

projz

⎞
⎟⎟⎠ ,

where ZVi is the distance to the silhouette vertex, currentz is the distance to the current

vertex, and projz is the projected depth of the silhouette vertex (i.e., projz ∈ [0, 1]).

A.2 Rendering with a Penumbra Map

Figures A.3 and A.4 show the vertex and fragment shaders used to render using a

penumbra map and a simple Phong shading model for the direct illumination. The vertex

program mainly performs Phong lighting computations, except for the transformation of

the world-space vertex positions into light space via the matrix.program[0] matrix,

which contains the SPlightL−1V matrix given in Equation 4 from Everitt et al. [34].

Notice in the fragment shader, the texture texture[0] contains the shadow map in

the red (or x) channel, the penumbra map in the blue and alpha (or z and w) channels,

and the projz value interpolated during penumbra map creation is stored in the green (or

y) channel. projz was used in the program as a reality check, to determine if penumbrae

were being cast onto the correct surfaces.

91

!!ARBvp1.0
PARAM c6 = { 0, 0, 1, 1 }, c7 = { 75, 0, 0, 0 };
TEMP R0, R1, R2, R3;
ATTRIB v16 = vertex.position, v18 = vertex.normal;
PARAM c0 = program.local[0]; ## The light position
PARAM s631[4] = { state.matrix.modelview[0].invtrans };
PARAM s255[4] = { state.matrix.projection };
PARAM s327[4] = { state.matrix.program[0] };
PARAM s223[4] = { state.matrix.modelview[0] };
Apply the modelview matrix to the vertex position.
DP4 R0.x, s223[0], v16;
DP4 R0.y, s223[1], v16;
DP4 R0.z, s223[2], v16;
DP4 R0.w, s223[3], v16;
Convert vertex position into (a) projected light coords
(for shadow map texture lookup) and (b) projected eye coords
DP4 result.texcoord[0].x, s327[0], R0;
DP4 result.texcoord[0].y, s327[1], R0;
DP4 result.texcoord[0].z, s327[2], R0;
DP4 result.texcoord[0].w, s327[3], R0;
DP4 result.position.x, s255[0], R0;
DP4 result.position.y, s255[1], R0;
DP4 result.position.z, s255[2], R0;
DP4 result.position.w, s255[3], R0;
Find the normalized light direction.
ADD R1, c0, -R0;
DP3 R0.x, R1, R1;
RSQ R0.x, R0.x;
MUL R3, R0.x, R1;
Find the transformed surface normal & normalize it.
DP4 R1.x, s631[0], v18;
DP4 R1.y, s631[1], v18;
DP4 R1.z, s631[2], v18;
DP4 R1.w, s631[3], v18;
DP3 R0.x, R1, R1;
RSQ R0.x, R0.x;
MUL R2.xyz, R0.x, R1;
Perform vertex-level Phong illumination computations.
DP3 R0.x, R3, R2;
MOV result.color.front.primary, R0.x;
ADD R1, R3, c6;
DP3 R0.x, R1, R1;
RSQ R0.x, R0.x;
MUL R0.xyz, R0.x, R1;
DP3 R1, R2, R0;
MOV R0.xy, R1.x;
MOV R0.zw, c7.x;
LIT R0.z, R0;
MOV result.color.front.secondary, R0.z;
END

Figure A.3. Vertex program for rendering using a penumbra map.

92

!!ARBfp1.0
PARAM u0 = program.local[0];
PARAM c0 = {1.0, 1.0, 0.0, 0.0};
PARAM c1 = {1.0, 1.0, 1.0, 1.0};
TEMP R0, R1, R3, H0;

Do the perspective divide on the shadow map coords.
RCP R0.x, fragment.texcoord[0].w;
MUL R0.xyz, fragment.texcoord[0], R0.x;

Compare current fragment coords with shadow map frustum.
If outside frustum, then R1.x is non-zero.
CMP H0.xy, R0, c0.x, c0.z;
MOV R1.xy, H0;
ADD R1.zw, R0.xxxy, -c0.x;
CMP H0.xy, R1.zwww, c0.z, c0.x;
MOV R1.zw, H0.xxxy;
DP4 R1.x, R1, c1;

Grab the value in the combined penumbra/shadow map.
Compare shadow map (R3.x) to fragment’s light depth (R0.z).
TEX R3, R0, texture[0], 2D;
ADD R0.x, R0.z, -R3.x;
ADD R0.x, u0.x, -R0; ## Add in shadow map bias.
CMP H0.x, R0.x, c0.x, c0.z; ## Is illuminated?
CMP R0.x, -H0, c0.z, c0.x; ## Convert from a (H) register to an (R)
CMP R0.x, -R1, c0, R0; ## Consider if inside frustum

Reality check: shadowing correct surface?
(Probably can be removed/moved to someplace cheaper)
ADD R3.y, fragment.position.z,-R3.y;
ADD R3.y, u0.y, -R3.y;
CMP R3.z, R3.y, R3.z, c1;

Perform Phong lighting, modulate by light intensity value.
MUL R0.x, R0.x, R3.z;
MUL R1, fragment.color.secondary.x, state.material.front.specular;
MAD R1, fragment.color.primary.x, state.material.front.diffuse, R1;
MAD result.color, R0.x, R1, state.material.front.ambient;
END

Figure A.4. Fragment program for rendering using a penumbra map.

APPENDIX B

SPHERICAL HARMONICS

Spherical harmonics provide an orthogonal basis for functions defined on a unit

sphere. As global illumination deals with incident and exitant energies over spheres and

hemispheres, spherical harmonics are a natural basis for representing these functions. A

number of researchers [14, 106, 107, 108, 117, 119, 120] have used spherical harmonic

coefficients to store illumination values, though few take time to clearly describe the

mathematics supporting the approach or describe implementational details. Hence, ac-

tually implementing their techniques requires significant background reading of cryptic

mathematics texts.

B.1 Laplace’s Equation in Spherical Coordinates

A harmonic is a function that satisfies Laplace’s equation:

∇2ϕ = 0. (B.1)

In spherical coordinates, Laplace’s equation becomes:[
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin2 θ

∂2

∂φ2
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
ϕ = 0. (B.2)

By using separation of variables, where ϕ = R(r)Φ(φ)Θ(θ) and eliminating the 1
r2 factor:

Θ(θ)Φ(φ)
∂

∂r

(
r2 ∂R(r)

∂r

)
+

Θ(θ)
sin2 θ

∂2Φ(φ)
∂φ2

+
Φ(φ)
sin θ

∂

∂θ

(
sin θ

∂Θ(θ)
∂θ

)
= 0. (B.3)

By dividing through by Φ(φ)Θ(θ), the r-dependence is reduced to a single term:

∂

∂r

(
r2 ∂R(r)

∂r

)
+

1
Φ(φ) sin2 θ

∂2Φ(φ)
∂φ2

+
1

Θ(θ) sin θ

∂

∂θ

(
sin θ

∂Θ(θ)
∂θ

)
= 0. (B.4)

As the r-dependent terms and the r-independent terms are constant relative to each

other and sum to zero, equating the r-dependent term to a constant (of the form l(l + 1) [5])

gives:
∂

∂r

(
r2 ∂R(r)

∂r

)
= l(l + 1). (B.5)

94

Substituting Equation B.5 back into Equation B.4 eliminates the dependency on r,

resulting in the spherical harmonic differential equation:

l(l + 1)Φ(φ)Θ(θ) +
Θ(θ)
sin2 θ

∂2Φ(φ)
∂φ2

+
Φ(φ)
sin θ

∂

∂θ

(
sin θ

∂Θ(θ)
∂θ

)
= 0. (B.6)

The solutions to Equation B.6 are called spherical harmonics, and can be computed by

continuing the separation of variables. Multiplying by sin2 θ
Φ(φ)Θ(θ) reduces φ-dependency to

a single term, which again can be equated to a constant (typically called −m2):

1
Φ(φ)

∂2Φ(φ)
∂φ2

= −m2, (B.7)

which has solutions:

Φ(φ) = Ae−imφ + Beimφ. (B.8)

Plugging Equation B.7 back into Equation B.6 gives an equation dependent on only θ:

l(l + 1) sin2 θ − m2 +
sin θ

Θ(θ)
∂

∂θ

(
sin θ

∂Θ(θ)
∂θ

)
= 0. (B.9)

And by replacing cos θ with x, and ∂θ with ∂x
− sin θ , Equation B.9 becomes:

∂

∂x

[
(1 − x2)

∂Θ
∂x

]
+
[
l(l + 1) − m2

1 − x2

]
Θ = 0. (B.10)

Equation B.10 is known as the associate Legendre differential equation, which has solu-

tions [5, 13]:

Θ(θ) = Pm
l (cos θ), −l ≤ m ≤ l for l, m ∈ Z. (B.11)

Here Pm
l (x) are the associated Legendre polynomials, discussed further in Section B.2.

Combining the solutions for Φ(φ) and Θ(θ) with a normalization factor gives a solution

for the angular portion of Laplace’s Equation in spherical coordinates. These are the

spherical harmonics Y m
l (θ, φ), defined for θ ∈ [0, π] and φ ∈ [0, 2π) as:

Y m
l (θ, φ) ≡

√
2l + 1

4π

(l − m)!
(l + m)!

Pm
l (cos θ)eimφ, (B.12)

here the normalization constant
√

2l+1
4π

(l−m)!
(l+m)! is chosen such that

∫ 2π

0

∫ π

0
Y m1

l1
(θ, φ)Y m2

l2
(θ, φ) sin θdθdφ = δm1,m2δl1,l2 , (B.13)

with z defined as the complex conjugate of z.

95

B.2 Legendre Polynomials

Legendre polynomials are the solution to the Legendre differential equation, which is

a second-order ordinary differential equation of the form:

(1 − x2)
∂2y

∂x2
− 2x

∂y

∂x
+ l(l + 1)y =

∂

∂x

[
(1 − x2)

∂y

∂x

]
+ l(l + 1)y = 0, (B.14)

which is a special case of the associated Legendre differential equation given in Equa-

tion B.10, where m = 0. The solutions to Equations B.10 and B.14 are Pm
l (x) and Pl(x),

respectively the associated and unassociated Legendre functions. When l, m ∈ Z and

x ∈ R these functions become polynomial.

Interestingly, these functions have many representations, allowing for significant im-

plementational freedom to choose between speed and accuracy. Legendre polynomials are

special cases of hypergeometric functions pFq, such that:

Pl(x) = 2F1(−l, l + 1; 1;
1
2
(1 − x)) =

∞∑
n=0

(−l)n(l + 1)n

n!
(1
2(1 − x))n

n!
, (B.15)

where (a)b is the rising factorial defined as (a)b = a(a + 1) · · · (a + b − 1). Note that this

sum converges, as (−l)n spans zero for n > l. Alternately, the Rodrigues representation

yields a generating function for Pl(x) [148] which expands to:

Pl(x) =
1
2l

�l/2�∑
k=0

(−1)k(2l − 2k)!
k!(l − k)!(l − 2k)!

xl−2k =
1
2l

�1/2�∑
k=0

(−1)k

(
l

k

)(
2l − 2k

l

)
xl−2k. (B.16)

Finally, the Legendre polynomials satisfy the following recurrence relations, with

Equation B.18 providing more numerical stability for computational implementations [5]:

Pl+1(x) =
(2l + 1)x

l + 1
Pl(x) − l

l + 1
Pl−1(x) (B.17)

= 2xPl(x) − Pl−1(x) − xPl(x) − Pl−1(x)
l − 1

. (B.18)

The associated Legendre polynomials can be written in terms of the unassociated

polynomials. As long as l ≥ 0 and 0 ≤ m ≤ l:

Pm
l (x) = (−1)m(1 − x2)m/2 ∂m

∂xm
Pl(x). (B.19)

The polynomials with negative m values correspond to the polynomials with positive m

via the following identity:

P−m
l (x) = (−1)m (l − m)!

(l + m)!
Pm

l (x). (B.20)

Equations B.19 and B.20 provide a framework to compute the spherical harmonic basis

functions, but this approach is computationally infeasible due to the mth partial deriva-

tives used in Equation B.19. Luckily another representation exists for the associated

96

Legendre polynomials. Four relations allow easy computation of all associated Legendre

polynomials with m > 0:

Pm
l+1(x) =

x(2l + 1)
l − m + 1

Pm
l (x) − l + m

l − m + 1
Pm

l−1, (B.21)

Pm+1
l (x) =

2mx√
1 − x2

Pm
l (x) + [m(m − 1) − l(l + 1)] Pm−1

l , (B.22)

P l
l+1(x) = x(2l + 1)P l

l (x), (B.23)

P l
l (x) = (−1)l(2l − 1)!!(1 − x2)

1
2 . (B.24)

Not all four relations are necessary to compute Pm
l for all m, l, but choosing relations for a

particular application can reduce discretization error. Only two equations are necessary to

compute all Pm
l , though Green [43] suggests combining Equations B.21, B.23, and B.24

to reduce errors for spherical harmonic based illumination. In Equation B.24, n!! is

the double factorial, defined for positive integers. For n odd, n!! = n · (n − 2) · · · 5 · 3 · 1,

and for n even, n!! = n · (n − 2) · · · 6 · 4 · 2. Two special cases are defined, which makes

computation of n!! easy, as −1!! ≡ 0!! ≡ 1.

To find the associated Legendre polynomials with negative m, use the relation:

P−m
l (x) = (−1)m (l − m)!

(l + m)!
Pm

l (x). (B.25)

Another useful identity, particularly when finding the spherical harmonic normaliza-

tion factor using Equation B.13, shows how to integrate the product of two associated

Legendre polynomials:∫ 1

−1
Pm

l1 (x)Pm
l2 (x)dx =

2δl1,l2(l1 + m)!
(2l1 + 1)(l1 − m)!

=
2δl1,l2(l2 + m)!

(2l2 + 1)(l2 − m)!
. (B.26)

B.3 Spherical Harmonics

Spherical harmonics functions Y m
l (θ, φ) are the angular portion of the solution to

Laplace’s equation in spherical coordinates (Equation B.2). They represent an infinite

set of orthogonal functions over the sphere. In fact, any function f(θ, φ) over the unit

sphere can be represented in terms of the complex spherical harmonic basis:

f(θ, φ) ≡
∞∑
l=0

l∑
m=−l

Am
l Y m

l (θ, φ), (B.27)

where Am
l are the spherical harmonic coefficients. The function f(θ, φ) can also be written

in terms of the real spherical harmonic basis functions:

f(θ, φ) ≡
∞∑
l=0

l∑
m=0

[
Cm

l Y mc

l (θ, φ) + Sm
l Y ms

l (θ, φ)
]
. (B.28)

97

The representation in Equation B.28 is a Laplace series, which is a generalized Fourier

series. In this sense, spherical harmonics are analogous to the Fourier basis in one

dimension. Here Y mc

l and Y ms

l are respectively the real and imaginary parts of Y m
l :

Y mc

l ≡
√

2l + 1
4π

(l − m)!
(l + m)!

Pm
l (cos θ) cos(mφ), (B.29)

Y ms

l ≡
√

2l + 1
4π

(l − m)!
(l + m)!

Pm
l (cos θ) sin(mφ). (B.30)

Generally, the single symbol Y m
l (x) is used in global illumination literature to repre-

sent the real spherical harmonic functions instead of a pair of symbols, such as Y mc

l (x)

and Y ms

l (x). To understand the illumination definition, realize that Equation B.28 could

easily be rewritten:

f(θ, φ) =
∞∑
l=0

[
l∑

m=0

Cm
l Y mc

l (θ, φ) +
0∑

m=−l

S
|m|
l Y

|m|s
l (θ, φ)

]
. (B.31)

Thus, the real form of the spherical harmonics are typically written in cases, such that:

Y m
l (θ, φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2l + 1

2π

(l − m)!
(l + m)!

Pm
l (cos θ) cos(mφ) if m > 0√

2l + 1
4π

P 0
l (cos θ) if m = 0√

2l + 1
2π

(l − |m|)!
(l + |m|)!P

m
l (cos θ) sin(|m|φ) if m < 0

. (B.32)

Notice the normalization factor has changed from the case of complex spherical harmonics.

Here the normalization factors have once again been chosen to satisfy Equation B.13. In

the rest of this chapter, Y m
l refers to a real spherical harmonic basis function, as defined

in Equation B.32.

B.4 Using Spherical Harmonics Bases

By approximating a spherical function using a finite sum of the form:

f(θ, φ) =
∞∑
l=0

l∑
m=−l

Cm
l Y m

l (θ, φ) ≈
n−1∑
l=0

l∑
m=−l

Cm
l Y m

l (θ, φ),

a low frequency function can easily be represented with a few Cm
l coefficients instead of a

more complex form, like an environment map. But the real advantage of using a spherical

harmonic basis, particularly for lighting computations, is the property that integration of

98

two functions simplifies to a dot product of their spherical harmonic coefficients Cm
l . In

other words, if f has spherical harmonic coefficients am
l and g has coefficients bm

l then:

∫
θ,φ

f(θ, φ)g(θ, φ)dθdφ =
∞∑
l=0

l∑
m=−l

am
l bm

l ≈
n−1∑
l=0

l∑
m=−l

am
l bm

l =
n2∑
i=0

aibi. (B.33)

Often for ease of use, coefficients are represented with a single dimensional array ai instead

of a two-dimensional array am
l . In this case, i = l(l+1)+m, and the sum above simplifies

to a summation over i. Typically, an nth order spherical harmonic representation is taken

to include the bands l = 0 . . . n − 1 and requires n2 coefficients. For clarity of notation

when using ai, Yi will be used for Y m
l .

Finding the coefficients ai for function f is called projecting f into the spherical

harmonic basis. Projection is accomplished by integrating f over the sphere S with

respect to each basis function Yi:

ai =
∫

s∈S

f(s)Yi(s)ds. (B.34)

As f(θ, φ) often has no closed form solution or is defined on discrete samples (e.g., a

texture map), computing this integral numerically proves simpler in practice. Generally,

this is done using Monte Carlo integration [89]. By sampling randomly over the domain

of a function h, the Monte Carlo method approximates an integral by the sum:

∫
h(x)dx ≈ 1

N

N∑
i=1

h(xi)
p(xi)

, (B.35)

where N is the number of samples, and p(xi) is the probability density function of the

samples xi. Basically, this approach averages numerous samples over the domain of h to

approximate the integral. If nonuniform samples are used, or if the domain has non-unit

length, area, volume, etc., the probability density function accounts for the discrepancy.

For projecting a function f(θ, φ) into spherical harmonic coefficients, using a uniform

sampling over the sphere gives p(x) = 1
4π , as the surface area of a unit sphere is 4π.

Uniform samples over the surface of a sphere can be generated with two random variables

ξ1, ξ2 ∈ [0, 1] by [43]:

(θ, φ) =
(
2 arccos(

√
1 − ξ1), 2πξ2

)
(x, y, z) =

(
2
√

ξ1(1 − ξ1) cos(2πξ2), 2
√

ξ1(1 − ξ1) sin(2πξ2), 1 − 2ξ1

)
.

99

For uniform samples over the hemisphere p(x) = 1
2π and the two random variables ξ1 and

ξ2 map to the hemisphere via [115]:

(θ, φ) =
(
arccos(

√
1 − ξ1), 2πξ2

)
(x, y, z) =

(√
ξ1 cos(2πξ2),

√
ξ1 sin(2πξ2),

√
1 − ξ1

)
. .

Consider the two spherical harmonic projected function f(s) and g(s) of order n,

where f has known coefficients ai and g has unknown coefficients bi. Should the need

arise to compute coefficients ci of the product h(s) = f(s)g(s), a transfer matrix F can

be derived such that:

ci =
n2∑

j=1

Fijbj . (B.36)

The elements of this matrix can be computed

Fij =
∫

s∈S

a(s)Yi(s)Yj(s)ds =
n2∑

k=0

ak

∫
s∈S

Yi(s)Yj(s)Yk(s)ds. (B.37)

These elements can be computed beforehand via numerical integration, or analytically:

∫ 2π

0

∫ π

0
Y m1

l1
(θ, φ)Y m2

l2
(θ, φ)Y m3

l3
(θ, φ) sin θdθdφ

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
,

where
(

l1
m1

l2
m2

l3
m3

)
is a Winger 3j-symbol [33, 148].

This property is commonly used for nondiffuse BRDFs, where three spherical harmonic

functions are used: one for the BRDF, one for the incident illumination, and one for the

transfer function describing self-shadowing and interreflections. In this case, changing

either the viewpoint or the illumination changes the rendered illumination, so two un-

knowns exist. For a single unknown, the dot product from Equation B.33 is sufficient,

but for two unknowns a transfer matrix is necessary.

Most importantly for interactive global illumination approaches, spherical harmonics

are rotationally invariant. This means a rotation before projection or an equivalent

rotation after projection give identical results. Since projection requires Monte Carlo

integration for most illumination functions, rotation of spherical harmonic coefficients

proves significantly faster. Unfortunately, rotation of coefficients is not as simple as

the 3 × 3 rotation matrix on the sphere. Rotation of nth order spherical harmonics

100

coefficients requires a n2 ×n2 rotation matrix, though the matrix is sparse as coefficients

from different bands do not interact. A spherical harmonic rotation matrix thus takes

the following form:

RSH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 · · ·
0 R1

SH 0 0 0 0 0 · · ·
0 0 0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 R2

SH · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.38)

where Ri
SH are (2i+1)× (2i+1) matrices which rotate the spherical harmonics of the ith

band. Using the rotation RS on the sphere, matrix elements can be computed as follows:

RSHij =
∫

s∈S

Yi(RS(s))Yj(s)ds. (B.39)

B.5 Computing Spherical Harmonic
Rotation Matrices

For rotations that are decomposed into ZY Z Euler angles, the matrix in Equa-

tion B.38 can be computed analytically as follows. If RS = RS(α,β,γ) = ZS(γ)YS(β)ZS(α)

can be decomposed into a rotation of α around the z-axis, a rotation of β around the

y-axis, and a rotation of γ around the z-axis, then RS(α,β,γ) can be rewritten:

RS(α,β,γ) = ZS(γ)XS(−π
2
)ZS(β)XS(+ π

2
)ZS(α).

So it turns out only three matrices are necessary for an arbitrary rotation: one for a

general rotation about the z-axis and two constant matrices for rotation by ±π
2 about

the x-axis. Fortunately, spherical harmonic rotation about the z-axis has a simple matrix:

ZSH(α) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 · · ·
0 cos(α) 0 sin(α) 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 · · ·
0 − sin(α) 0 cos(α) 0 0 0 0 0 · · ·
0 0 0 0 cos(2α) 0 0 0 sin(2α) · · ·
0 0 0 0 0 cos(α) 0 sin(α) 0 · · ·
0 0 0 0 0 0 1 0 0 · · ·
0 0 0 0 0 − sin(α) 0 cos(α) 0 · · ·
0 0 0 0 − sin(2α) 0 0 0 cos(2α) · · ·
...

...
...

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

101

As the number of bands increases, the nth order coefficient rotation matrix Zn
SH(α) ex-

pands as expected, with terms of cos(α), cos(2α), . . . , cos(nα) and ± sin(α),± sin(2α), . . . ,

± sin(nα). The rotation around the x-axis by ±π
2 can be described using the following

matrix:

XSH(±π
2
) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 · · ·
0 0 ∓1 0 0 0 0 0 0 · · ·
0 ±1 0 0 0 0 0 0 0 · · ·
0 0 0 1 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 ∓1 0 · · ·
0 0 0 0 0 −1 0 0 0 · · ·
0 0 0 0 0 0 −1

2 0 −
√

3
2 · · ·

0 0 0 0 ±1 0 0 0 0 · · ·
0 0 0 0 0 0 −

√
3

2 0 1
2 · · ·

...
...

...
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

These matrices give a straightforward method for arbitrarily rotating spherical har-

monic coefficients; however, ZY Z Euler angle decompositions may not fit well into all

applications. Additionally, performing five matrix multiply operations costs significantly

more than a single matrix multiplication, even with matrices as sparse as ZSH(α) and

XSH(±π
2
). These multiplications can be performed symbolically, but the resulting matrix

RSH(α,β,γ) contains some very complex trigonometric equations, which may prove more

difficult to store and evaluate than simply multiplying the five axis-aligned rotation

matrices.

However, recent research from the computational chemistry community [58, 59] has

led to the development of recurrence relations for building general rotation matrices,

without relying on Euler angle decompositions. Assuming an ordinary 3 × 3 rotation

matrix R defined as:

R =

⎡
⎣ Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

⎤
⎦ ,

let
[
Rs,t

]
be defined for −1 ≤ s, t ≤ 1 as:

[
Rs,t

]
=

⎡
⎣ Ryy Ryz Ryx

Rzy Rzz Rzx

Rxy Rxz Rxx

⎤
⎦ =

⎡
⎣ R−1,−1 R−1,0 R−1,1

R0,−1 R0,0 R0,1

R1,−1 R1,0 R1,1

⎤
⎦ . (B.40)

Let Mi ≡ Ri
SH (from Equation B.38) for notational clarity. Then for an nth order

spherical harmonic (i.e., 0 ≤ i < n and −i ≤ s, t ≤ i):

M i
s,t = ui

s,tU
i
s,t + vi

s,tV
i
s,t + wi

s,tW
i
s,t. (B.41)

102

Here s and t are indices ranging over elements of the (2i+1) × (2i+1) rotation matrix

for the ith band of spherical harmonic coefficients. The coefficients u, v, w and functions

U, V, W, P appear in Tables B.1, B.2, and B.3 and define the recurrence relation. Note

these tables are from the original version of the Ivanic and Ruedenberg paper [58], which

contains erroneous equations but correct tables. The errata [59] fix the typos in the

relevant equations but introduce new ones into the table (for V i
s,t when s < 0). The table

in Green [43] contains a different typo for the same entry.

B.6 C++ Code to Compute the Rotation Matrix

This section contains a C++ class which computes the spherical harmonic rota-

tion matrix. The two functions visible to the rest of the program are the constructor

Table B.1. Definitions of numerical coefficients ui
s,t, vi

s,t, and wi
s,t.

Coefficient for |t| < i for |t| = i

ui
s,t:

√
(i+s)(i−s)
(i+t)(i−t)

√
(i+s)(i−s)
2i(2i−1)

vi
s,t:

1
2

√
(1+δs,0)(i+|s|−1)(i+|s|)

(i+t)(i−t) (1 − 2δs,0) 1
2

√
(1+δs,0)(i+|s|−1)(i+|s|)

2i(2i−1) (1 − 2δs,0)

wi
s,t: −1

2

√
(i−|s|−1)(i−|s|)

(i+t)(i−t) (1 − δs,0) −1
2

√
(i−|s|−1)(i−|s|)

2i(2i−1) (1 − δs,0)

Table B.2. Definitions of the functions U i
s,t, V i

s,t, and W i
s,t.

Function for s = 0 for s > 0 for s < 0

U i
s,t: 0P

i
0,t 0P

i
s,t 0P

i
s,t

V i
s,t: 1P

i
1,t + −1P

i−1,t 1P
i
s−1,t

√
1+δs,1 − 1P

i
s+1,t(1−δs,−1) +

−1P
i−s+1,t(1−δs,1) −1P

i−s+1,t

√
1+δs,−1

W i
s,t: (N/A, as wi

0,t = 0) 1P
i
s+1,t + −1P

i−s−1,t 1P
i
s−1,t + −1P

i−s+1,t

Table B.3. Definitions of the function rP
i
s,t.

Function for |t| < i for t = i for t = −i

rP
i
s,t: Rr,0M

i−1
s,t Rr,1M

i−1
s,i−1 − Rr,−1M

i−1
s,−i+1 Rr,1M

i−1
s,−i+1 + Rr,−1M

i−1
s,i−1

103

SHRotationMatrix() and the function applyMatrix(), which applies the rotation matrix

to a vector of spherical harmonic coefficients.

104

// SHRotationMatrix Class Definition File
// --------------------------------------

// Takes a rotation matrix of the form:
// (r[0], r[3], r[6])
// (r[1], r[4], r[7]),
// (r[2], r[5], r[8])
// and an order. Computes an order2 ×order2 matrix.
class SHRotationMatrix {
private:

int order;
double inMatrix[9], *outMatrix;

// Computes the order2 ×order2 matrix
void computeMatrix(void);

// Compute an 1D index for (col,row) in the matrix
int matIndex(int col, int row);

// Computed as described in Table B.1.
double u i st (int i, int s, int t);
double v i st (int i, int s, int t);
double w i st (int i, int s, int t);

// Computed as described in Table B.2.
double U i st (int i, int s, int t);
double V i st (int i, int s, int t);
double W i st (int i, int s, int t);

// Computed as described in Table B.3.
double P r i st (int r, int i, int s, int t);

// Index into the input matrix for −1 ≤ i, j ≤ 1, as per Eq. B.40
double R (int i, int j);

// Index into band l, element (a,b) of the result (−l ≤ a, b ≤ l)
double M(int l, int a, int b);

public:
// Constructor. Input: SH order & 3 × 3 transformation matrix
SHRotationMatrix(int order, double matrix[9]);
∼SHRotationMatrix();

// Applies the order2 ×order2 matrix to vector ’in’
void applyMatrix(double *in, double *out);

};

Figure B.1. Header file describing the SHRotationMatrix C++ class.

105

// Computes the ui
s,t coefficient, as per Table B.1

double SHRotationMatrix::u i st(int i, int s, int t)
{

return sqrt((i+s)*(i-s) / (abs(t)==i? 2*i*(2*i-1): (i+t)*(i-t)));
}

Figure B.2. Function definition for SHRotationMatrix::u i st().

// Computes the vi
s,t coefficient, as per Table B.1

double SHRotationMatrix::v i st(int i, int s, int t)
{

int delta = (s==0 ? 1 : 0);
double factor = 0.5 * (1 - 2*delta);
double numerator = (1+delta)*(i+abs(s)-1)*(i+abs(s));
double denominator = (abs(t)==i ? 2*i*(2*i-1) : (i+t)*(i-t));
return factor * sqrt(numerator / denominator);

}

Figure B.3. Function definition for SHRotationMatrix::v i st().

// Computes the wi
s,t coefficient, as per Table B.1

double SHRotationMatrix::w i st(int i, int s, int t)
{

int delta = (s==0 ? 1 : 0);
double factor = -0.5 * (1 - delta);
double numerator = (i-abs(s)-1)*(i-abs(s));
double denominator = (abs(t)==i ? 2*i*(2*i-1) : (i+t)*(i-t));
return factor * sqrt(numerator / denominator);

}

Figure B.4. Function definition for SHRotationMatrix::w i st().

// Computes the U i
s,t function, as per Table B.2

double SHRotationMatrix::U i st(int i, int s, int t)
{

return P r i st(0,i,s,t);
}

Figure B.5. Function definition for SHRotationMatrix::U i st().

106

// Computes the V i
s,t function, as per Table B.2

double SHRotationMatrix::V i st(int i, int s, int t)
{

int delta = (abs(s)==1 ? 1 : 0);
if (s == 0)

return P r i st(1,i,1,t) + P r i st(-1,i,-1,t);
if (s > 0)

return
sqrt(1+delta)*P r i st(1,i,s-1,t) - (1-delta)*P r i st(-1,i,-s+1,t);

return
(1-delta)*P r i st(1,i,s+1,t) + sqrt(1+delta)*P r i st(-1,i,-s-1,t);

}

Figure B.6. Function definition for SHRotationMatrix::V i st().

// Computes the W i
s,t function, as per Table B.2

double SHRotationMatrix::W i st(int i, int s, int t)
{

if (s==0) return 0;
if (s > 0) return P r i st(1,i,s+1,t) + P r i st(-1,i,-s-1,t);
return P r i st(1,i,s-1,t) - P r i st(-1,i,-s+1,t);

}

Figure B.7. Function definition for SHRotationMatrix::W i st().

// Computes the rP
i
s,t function, as per Table B.3

double SHRotationMatrix::P r i st(int r, int i, int s, int t)
{

if (abs(t) < i) return R(r,0)*M(i-1,s,t);
if (t == i) return R(r,1)*M(i-1,s,i-1) - R(r,-1)*M(i-1,s,-i+1);
return R(r,1)*M(i-1,s,-i+1) + R(r,-1)*M(i-1,s,i-1);

}

Figure B.8. Function definition for SHRotationMatrix::P r i st().

// Ri,j indexes into the input matrix for −1 ≤ i, j ≤ 1
// as per the definition of [Rs,t] (Eq. B.40)
double SHRotationMatrix::R(int i, int j)
{

int jp = ((j+2) % 3); // 0 ≤ jp < 3
int ip = ((i+2) % 3); // 0 ≤ ip < 3
return inMatrix[jp*3+ip]; // index into input matrix

}

Figure B.9. Function definition for SHRotationMatrix::R().

107

// Returns an element of the output matrix.
// l is the band of the matrix to reference 0 ≤ l < order
// a and b are elements in the band, in the range [-l..l]
double SHRotationMatrix::M(int l, int a, int b)
{

if (l<=0) return outMatrix[0];

// Find the center of band l (outMatrix[ctr,ctr])
int ctr = l*(l+1);
return outMatrix[matIndex(ctr + b, ctr + a)];

}

Figure B.10. Function definition for SHRotationMatrix::M().

// Find the index in the order2xorder2 output matrix
// for a given column and row
int SHRotationMatrix::matIndex(int col, int row)
{

return col*order*order+row;
}

Figure B.11. Function definition for SHRotationMatrix::matIndex().

// Setup the rotation matrix of a specified order given the equivalent
// 3 × 3 rotation transformation.
SHRotationMatrix::SHRotationMatrix(int order, double matrix[9]):

order(order)
{

// Copy the input matrix into local storage.
for (int i=0;i<9;i++)

inMatrix[i] = matrix[i];

// allocate memory for SH rotation matrix.
outMatrix = new double[order*order*order*order];

// actually compute the matrix.
computeMatrix();

}

Figure B.12. Definition of constructor SHRotationMatrix::SHRotationMatrix().

108

// Assuming we know the input matrix, compute the SH rotation matrix
void SHRotationMatrix::computeMatrix(void)
{

// initialize the matrix to 0’s
for (int i=0;i<order*order;i++)

for (int j=0;j<order*order;j++)
outMatrix[matIndex(i,j)] = 0;

// 0th band (1 × 1 matrix) is the identity
outMatrix[0] = 1;
if (order < 2) return;

// 1st band is a permutation of the 3D rotation matrix
for (int count=0, i=-1; i<=1; i++)

for (int j=-1; j<=1; j++)
outMatrix[matIndex((i+3)%3+1, (j+3)%3+1)] = inMatrix[count++];

// 2nd+ bands use a recurrence relation.
for (int l=2;l<order;l++)
{

int ctr = l*(l+1);
for (int s=-l;s<=l;s++)

for (int t=-l;t<=l;t++)
outMatrix[matIndex(ctr + t, ctr + s)] =

u i st(l, s, t) * U i st(l, s, t) +
v i st(l, s, t) * V i st(l, s, t) +
w i st(l, s, t) * W i st(l, s, t);

} }

Figure B.13. Function definition for SHRotationMatrix::computeMatrix().

109

// Applies the computed spherical harmonic rotation matrix
// in, out should contain order*order elements each.
// This does not do a full multiplication, rather only
// the (potentially) non-zero elements are multiplied.
void SHRotationMatrix::applyMatrix(double *in, double *out)
{

// first band (order 0) is a 1x1 identity rotation matrix
out[0] = in[0];

// set up data for multiplying 2nd band (order 1) coefs
int ord=1;
int minIdx=1;
int maxIdx=4;

// multiply the rest of the matrix
for (int idx=1; idx<order*order; idx++)
{

// multiply coefs from current band
out[idx]=0;
for (int j=minIdx;j<maxIdx;j++)

out[idx] += outMatrix[matIndex(j, idx)] * in[j];

// increase the band, reset indices.
if (idx>=maxIdx-1)
{

ord++;
minIdx=maxIdx;
maxIdx+=2*ord+1;

} } }

Figure B.14. Function definition for SHRotationMatrix::applyMatrix().

REFERENCES

[1] Maneesh Agrawala, Ravi Ramamoorthi, Alan Heirich, and Laurent Moll. Efficient
image-based methods for rendering soft shadows. In Proceedings of SIGGRAPH,
pages 375–384, 2000.

[2] Tomas Akenine-Möller and Ulf Assarsson. Approximate soft shadows on arbitrary
surfaces using penumbra wedges. In Proceedings of the Eurographics Rendering
Workshop, pages 309–318, 2002.

[3] Tomas Akenine-Möller and Eric Haines. Real-time Rendering. AK Peters, Mas-
sachusetts, second edition, 2002.

[4] Arthur Appel. The notion of quantitative invisibility and machine rendering of
solids. In Proceedings of the ACM National Conference, pages 387–393, 1967.

[5] George B. Arfken and Hans J. Weber. Mathematical Methods for Physicists.
Academic Press, 4th edition edition, 1995.

[6] James Arvo. Backward ray tracing. Developments in Ray Tracing, pages 259–263,
1986. ACM Siggraph ’86 Course Notes.

[7] James Arvo and David Kirk. Particle transport and image synthesis. In Proceedings
of SIGGRAPH, pages 63–66, 1990.

[8] Ian Ashdown. Radiosity: A Programmer’s Perspective. John Wiley & Sons, Inc.,
1995.

[9] Ulf Assarsson and Tomas Akenine-Möller. A geometry-based soft shadow volume
algorithm using graphics hardware. ACM Transactions on Graphics, 22(3):511–520,
July 2003.

[10] Kavita Bala, Julie Dorsey, and Seth Teller. Radiance interpolants for accelerated
bounded-error ray tracing. ACM Transactions on Graphics, 18(3):100–130, August
1999.

[11] James F. Blinn. Models of light reflection for computer synthesized pictures. In
Proceedings of SIGGRAPH, pages 192–198, 1977.

[12] Stefan Brabec and Hans-Peter Seidel. Single sample soft shadows using depth maps.
In Proceedings of Graphics Interface, pages 219–228, 2002.

[13] Willian E. Byerly. An Elementary Treatise on Fourier’s Series and Spherical, Cylin-
drical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical
Physics. Ginn and Company, 1893.

111

[14] Brian Cabral, Nelson Max, and Rebecca Springmeyer. Bidirectional reflection
functions from surface bump maps. In Proceedings of SIGGRAPH, pages 273–281,
1987.

[15] Brian Cabral, Marc Olano, and Philip Nemec. Reflection space image based
rendering. In Proceedings of SIGGRAPH, pages 165–170, 1999.

[16] Eric Chan and Fredo Durand. Rendering fake soft shadows with smoothies. In
Proceedings of the Eurographics Symposium on Rendering, pages 208–218, 2003.

[17] Subrahmanyan Chandrasekhar. Radiative Transfer. Oxford University Press, 1950.

[18] Min Chen and James Arvo. Theory and application of specular path perturbation.
ACM Transactions on Graphics, 19(4):246–278, October 2000.

[19] Shenchang Eric Chen. Incremental radiosity: An extension of progressive radiosity
to an interactive image synthesis system. In Proceedings of SIGGRAPH, pages
135–144, 1990.

[20] Shenchang Eric Chen, Holly Rushmeier, Gavin Miller, and Douglass Turner. A pro-
gressive multi-pass method for global illumination. In Proceedings of SIGGRAPH,
pages 165–174, 1991.

[21] Michael Cohen, Shenchang Eric Chen, John Wallace, and Donald Greenburg. A
progressive refinement approach to fast radiosity image generation. In Proceedings
of SIGGRAPH, pages 75–84, 1988.

[22] Michael Cohen and Donald Greenburg. The hemi-cube: A radiosity solution for
complex environments. In Proceedings of SIGGRAPH, pages 31–40, 1985.

[23] Robert Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing. In
Proceedings of SIGGRAPH, pages 137–145, 1984.

[24] Robert L. Cook and Kenneth E. Torrance. A reflectance model for computer
graphics. In Proceedings of SIGGRAPH, pages 307–316, 1981.

[25] Franklin Crow. Shadow algorithms for computer graphics. In Proceedings of
SIGGRAPH, pages 242–248, 1977.

[26] Paul E. Debevec and Jitendra Malik. Recovering high dynamic range radiance
maps from photographs. In Proceedings of SIGGRAPH, pages 369–378, 1997.

[27] David E Demarle, Steven Parker, Mark Hartner, Christiaan Gribble, and Charles
Hansen. Distributed interactive ray tracing for large volume visualization. In
Proceedings of the IEEE Symposium on Parallel and Large-Data Visualization and
Graphics, pages 87–94, 2003.

[28] Paul Diefenbach and Norman Badler. Multi-pass pipeline rendering: Realism
for dynamic environments. In Proceedings of the Symposium on Interactive 3D
Graphics, pages 59–70, 1997.

[29] George Drettakis and Eugene Fiume. A fast shadow algorithm for area light sources

112

using backprojection. In Proceedings of SIGGRAPH, pages 223–230, 1994.

[30] George Drettakis and François X. Sillion. Interactive update of global illumination
using a line-space hierarchy. In Proceedings of SIGGRAPH, pages 57–64, 1997.

[31] Philip Dutre and Yves Willems. Importance-driven monte carlo light tracing. In
Proceedings of the Eurographics Rendering Workshop, pages 188–197, 1994.

[32] Philip Dutre and Yves Willems. Potential-driven monte carlo particle tracing for
diffuse environments with adaptive probability functions. In Proceedings of the
Eurographics Rendering Workshop, pages 306–315, 1995.

[33] A. R. Edmonds. Angular Momentum in Quantum Mechanics. Princeton University
Press, 1957.

[34] Cass Everitt, Ashu Rege, and Cem Cabenoya. Hardware shadow mapping. Techni-
cal report, nVidia, http://developer.nvidia.com/object/hwshadowmap paper.html,
2001.

[35] Randima Fernando, Sebastian Fernandez, Kavita Bala, and Donald Greenberg.
Adaptive shadow maps. In Proceedings of SIGGRAPH, pages 387–390, 2001.

[36] David Forsyth, Chien Yang, and Kim Teo. Efficient radiosity in dynamic environ-
ments. In Proceedings of the Eurographics Rendering Workshop, pages 313–323,
1994.

[37] David George, Francois Sillion, and Donald Greenberg. Radiosity redistribution
for dynamic environments. IEEE Computer Graphics & Applications, 10(4):26–34,
July 1990.

[38] Cindy Goral, Kenneth Torrance, Donald Greenberg, and Bennett Battaile. Mod-
elling the interaction of light between diffuse surfaces. In Proceedings of SIG-
GRAPH, pages 213–222, 1984.

[39] Steven Gortler, Peter Schroder, Michael Cohen, and Pat Hanrahan. Wavelet
radiosity. In Proceedings of SIGGRAPH, pages 221–230, 1993.

[40] Henri Gouraud. Continuous shading of curved surfaces. IEEE Transactions on
Computers, 20(6):623, June 1971.

[41] Xavier Granier and George Drettakis. Incremental updates for rapid glossy global
illumination. Computer Graphics Forum, 20(3):268–277, 2001.

[42] Xavier Granier, George Drettakis, and Bruce Walter. Fast global illumination
including specular effects. In Proceedings of the Eurographics Rendering Workshop,
pages 47–59, 2000.

[43] Robin Green. Spherical harmonic lighting: The gritty details. In Archives of the
Game Developers Conference, March 2003.

[44] Gene Greger, Peter Shirley, Philip Hubbard, and Donald Greenberg. The irradiance
volume. IEEE Computer Graphics & Applications, 18(2):32–43, March-April 1998.

113

[45] Eric Haines. Soft planar shadows using plateaus. Journal of Graphics Tools,
6(1):19–27, 2001.

[46] Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarchical radiosity
algorithm. In Proceedings of SIGGRAPH, pages 197–206, 1991.

[47] David Hart, Philip Dutre, and Donald Greenberg. Direct illumination with lazy
visibility evaluation. In Proceedings of SIGGRAPH, pages 147–154, 1999.

[48] Paul Heckbert and Michael Herf. Simulating soft shadows with graphics hardware.
Technical Report CMU-CS-97-104, Carnegie Mellon University, January 1997.

[49] Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. In
Proceedings of SIGGRAPH, pages 145–154, 1990.

[50] Paul S. Heckbert. Discontinuity meshing for radiosity. In Proceedings of the
Eurographics Rendering Workshop, pages 203–216, 1992.

[51] Paul S. Heckbert. Simulating Global Illumination Using Adaptive Meshing. PhD
thesis, UC Berkeley, California, June 1999.

[52] Paul S. Heckbert and Pat Hanrahan. Beam tracing polygonal objects. In Proceed-
ings of SIGGRAPH, pages 119–127, 1984.

[53] Tim Heidmann. Real shadows, real time. Iris Universe, (18):23–31, November
1991.

[54] Wolfgang Heidrich, Stefan Brabec, and Hans-Peter Seidel. Soft shadow maps for
linear lights. In Proceedings of the Eurographics Rendering Workshop, pages 269–
280, 2000.

[55] Wolfgang Heidrich, Jan Kautz, Philipp Slusallek, and Hans-Peter Seidel. Canned
lightsources. In Proceedings of the Eurographics Rendering Workshop, pages 293–
300, 1998.

[56] Helen Hu, Amy Gooch, William Thompson, Brian Smits, J. Rieser, and Peter
Shirley. Visual cues for imminent object contact in realistic virtual environments.
In Proceedings of Visualization, pages 127–136, 2000.

[57] David Immel, Michael Cohen, and Donald Greenberg. A radiosity method for
non-diffuse environments. In Proceedings of SIGGRAPH, pages 133–142, 1986.

[58] Joseph Ivanic and Klaus Ruedenberg. Rotation matrices for real spherical har-
monics, direct determination by recursion. Journal of Physical Chemistry A,
100(15):6342–6347, 1996.

[59] Joseph Ivanic and Klaus Ruedenberg. Additions and corrections: Rotation matrices
for real spherical harmonics. Journal of Physical Chemistry A, 102(45):9099–9100,
1998.

[60] Kei Iwasaki, Yoshinori Dobashi, and Tomoyuki Nishita. A fast rendering method
for refractive and reflective caustics due to water surfaces. Computer Graphics

114

Forum, 22, 2003.

[61] Henrik Wann Jensen. Importance driven path tracing using the photon map. In
Proceedings of the Eurographics Rendering Workshop, pages 326–335, 1995.

[62] Henrik Wann Jensen. Rendering caustics on non-lambertian surfaces. In Proceed-
ings of Graphics Interface, pages 116–121, 1996.

[63] Henrik Wann Jensen and Niels Jørgen Christensen. Efficiently rendering shadows
using the photon map. In Proceedings of Compugraphics, December 1995.

[64] Henrik Wann Jensen and Niels Jørgen Christensen. Photon maps in bidirectional
monte carlo ray tracing of complex objects. Computers & Graphics, 19(2):215–224,
March 1995.

[65] Henrik Wann Jensen and Per H. Christensen. Efficient simulation of light trans-
port in scenes with participating media using photon maps. In Proceedings of
SIGGRAPH, pages 311–320, 1998.

[66] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. A
practical model for subsurface light transport. In Proceedings of SIGGRAPH, pages
511–518, 2001.

[67] James Kajiya. The rendering equation. In Proceedings of SIGGRAPH, pages 143–
150, 1986.

[68] James Kajiya and Brian Von Herzen. Ray tracing volume densities. In Proceedings
of SIGGRAPH, pages 165–174, 1984.

[69] Arie E. Kaufman. Volume visualization in medicine. In Handbook of Medical
Imaging, pages 713–730. Academic Press, 2000.

[70] Alexander Keller. Instant radiosity. In Proceedings of SIGGRAPH, pages 49–54,
1997.

[71] Daniel Kersten, David C. Knill, Pascal Mamassian, and Isabelle Bulthoff. Illusory
motion from shadows. Nature, 279(6560):31, 1996.

[72] Daniel Kersten, Pascal Mamassian, and David C. Knill. Moving cast shadows
induce apparent motion in depth. Perception, 26(2):171–192, 1997.

[73] Joe Kniss, Simon Premoze, Charles Hansen, Peter Shirley, and Allan McPherson.
A model for volume lighting and modeling. IEEE Transactions on Visualization
and Computer Graphics, 9(2):150–162, April 2003.

[74] Eric Lafortune and Yves Willems. Bi-directional path tracing. In Proceedings of
Compugraphics, pages 145–153, 1993.

[75] Michael S. Langer and Heinrich H. Bülthoff. Depth discrimination from shading
under diffuse lighting. Perception, 29:649–660, 2000.

[76] Barthold Lichtenbelt, Randy Crane, and Shaz Naqvi. Introduction to Volume

115

Rendering. Prentice Hall, 1st edition, 1998.

[77] Dani Lischinski, Filippo Tampieri, and Donald Greenberg. Discontinuity meshing
for accurate radiosity. IEEE Computer Graphics & Applications, 12(6):25–39,
November 1992.

[78] Dani Lischinski, Filippo Tampieri, and Donald Greenberg. Combining hierarchical
radiosity and discontinuity meshing. In Proceedings of SIGGRAPH, pages 199–208,
1993.

[79] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. In Proceedings of SIGGRAPH, pages 163–169,
1987.

[80] Philippe Loutrel. A solution to the hidden-line problem for computer-drawn
polyhedra. IEEE Transactions on Computers, C-19(3):205–213, March 1970.

[81] Cindee Madison, Daniel Kersten, William Thompson, Peter Shirley, and Brian
Smits. The use of subtle illumination cues for human judgement of spatial layout.
Technical Report Technical Report UUCS-99-001, University of Utah, January
1999.

[82] Thomas Malley. A shading method for computer generated images. Master’s thesis,
Computer Science Department, University of Utah, June 1988.

[83] Stephen R. Marschner and Richard J. Lobb. An evaluation of reconstruction filter
for volume rendering. In Proceedings of Visualization, pages 100–107, October 1994.

[84] Nelson Max. Optical models for direct volume rendering. IEEE Transactions on
Visualization and Computer Graphics, 1(2):99–108, 1995.

[85] Gregory M. Maxwell, Michael J. Bailey, and Victor W. Goldschmidt. Calculations
of the radiation configuration factor using ray casting. Computer-Aided Design,
18(7):371–379, September 1986.

[86] Michael McCool. Shadow volume reconstruction from depth maps. ACM Transac-
tions on Graphics, 19(1):1–26, January 2000.

[87] Gavin Miller. Efficient algorithms for local and global accessibility shading. In
Proceedings of SIGGRAPH, pages 319–326, 1994.

[88] Don Mitchell and Pat Hanrahan. Illumination from curved reflectors. In Proceed-
ings of SIGGRAPH, pages 283–291, 1992.

[89] National Bureau of Standards. Monte carlo method. In A. S. Housholder, editor,
Applied Mathematics Series 12, 1951.

[90] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. All-frequency shadows using non-
linear wavelet lighting approximation. ACM Transactions on Graphics, 22(3):376–
381, 2003.

[91] Fred E. Nicodemus, Joseph C. Richmond, Jack J. Hsia, Irving W. Ginsberg, and

116

Thomas Limperis. Geometrical considerations and nomenclature for reflectance.
Monograph 160. National Bureau of Standards, October 1977.

[92] Tomoyuki Nishita and Eihachiro Nakamae. Method of displaying optical effects
within water using accumulation buffer. In Proceedings of SIGGRAPH, pages 373–
381, 1994.

[93] J. F. Nye. Natural Focusing and Fine Structure of Light. Institute of Physics
Publishing, Bristol, 1999.

[94] Eyal Ofek and Ari Rappoport. Interactive reflections on curved objects. In
Proceedings of SIGGRAPH, pages 333–342, 1999.

[95] Marc Ouellette and Eugene Fiume. Approximating the locaton of integrand
discontinuities for penumbral illumination with linear light sources. In Proceedings
of the Eurographics Rendering Workshop, pages 213–224, 1999.

[96] Steven Parker, William Martin, Peter-Pike Sloan, Peter Shirley, Brian Smits, and
Charles Hansen. Interactive ray tracing. In Proceedings of the ACM Symposium on
Interactive 3D Graphics, pages 119–126, 1999.

[97] Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike Sloan, Charles Hansen,
and Peter Shirley. Interactive ray tracing for volume visualization. IEEE Transac-
tions on Visualization and Computer Graphics, 5(3):287–296, July 1999.

[98] Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, and Peter-Pike Sloan.
Interactive ray tracing for isosurface rendering. In Proceedings of Visualization,
pages 233–238, October 1998.

[99] Steven Parker, Peter Shirley, and Brian Smits. Single sample soft shadows. Tech-
nical Report Technical Report UUCS-98-019, University of Utah, October 1998.

[100] C. Alejandro Parraga, Tom Troscianko, and David J. Tolhurst. The human visual
system is optimised for processing the spatial information in natural visual images.
Current Biology, 10(1):35–38, January 2000.

[101] Sumanta Pattanaik and Sudhir Mudur. Adjoint equations and random walks for
illumination computation. ACM Transactions on Graphics, 14(1):77–102, January
1995.

[102] Bui-Thong Phong. Illumination for computer generated images. Communications
of the ACM, 18:311–317, 1975.

[103] John F. Pile. Color in interior design. McGraw-Hill, New York, 1997.

[104] John F. Pile. Interior design. Harry N. Abrams, Inc., New York, 3rd. edition, 2003.

[105] Timothy Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen, and Pat
Hanrahan. Photon mapping on programmable graphics hardware. In Proceedings
of the SIGGRAPH/Eurographics Conference on Graphics Hardware, pages 41–50,
2003.

117

[106] Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for irradiance
environment maps. In Proceedings of SIGGRAPH, pages 497–500, 2001.

[107] Ravi Ramamoorthi and Pat Hanrahan. A signal-processing framework for inverse
rendering. In Proceedings of SIGGRAPH, pages 117–128, 2001.

[108] Ravi Ramamoorthi and Pat Hanrahan. Frequency space environment map render-
ing. In Proceedings of SIGGRAPH, pages 517–526, 2002.

[109] William Reeves, David Salesin, and Robert Cook. Rendering antialiased shadows
with depth maps. In Proceedings of SIGGRAPH, pages 283–291, 1987.

[110] Erik Reinhard, Peter Shirley, and Tom Troscianko. Natural image statistics for
computer graphics. Technical Report UUCS-01-002, University of Utah, March
2001.

[111] Holly Rushmeier, Charles Patterson, and Aravindan Veerasamy. Geometric simpli-
fication for indirect illumination calculations. In Proceedings of Graphics Interface,
pages 227–236, 1993.

[112] Will Schroeder, Ken Martin, and William Lorensen. The Visualization Toolkit: An
Object-Oriented Approach to 3D Graphics. Prentice Hall, 3rd edition, 2003.

[113] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Haeberli. Fast
shadows and lighting effects using texture mapping. In Proceedings of SIGGRAPH,
pages 249–252, 1992.

[114] Peter Shirley. A ray tracing method for illumination calculation in diffuse-specular
scenes. In Proceedings of Graphics Interface, pages 205–212, 1990.

[115] Peter Shirley. Fundamentals of Computer Graphics. AK Peters, 2002.

[116] Silicon Graphics, Inc. OpenGL ARB Extension Registry. http://oss.sgi.com/
projects/ogl-sample/registry/.

[117] Francois Sillion, James Arvo, Stephen Westin, and Donald Greenberg. A global
illumination solution for general reflectance distributions. In Proceedings of SIG-
GRAPH, pages 187–196, 1991.

[118] Francois Sillion and Claude Puech. A general two-pass method integrating specular
and diffuse reflection. In Proceedings of SIGGRAPH, pages 335–344, 1989.

[119] Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. Clustered principal
components for precomputed radiance transfer. ACM Transactions on Graphics,
22(3):382–391, 2003.

[120] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance transfer
for real-time rendering in dynamic, low-frequency lighting environments. ACM
Transactions on Graphics, 21(3):527–536, 2002.

[121] Peter-Pike Sloan, Xingou Liu, Heung-Yeung Shum, and John Snyder. Bi-scale
radiance transfer. ACM Transactions on Graphics, 22(3):370–375, 2003.

118

[122] Brian Smits, James Arvo, and Donald Greenberg. A clustering algorithm for
radiosity in complex environments. In Proceedings of SIGGRAPH, pages 435–442,
1994.

[123] Brian Smits, James Arvo, and David Salesin. An importance-driven radiosity
algorithm. In Proceedings of SIGGRAPH, pages 273–282, 1992.

[124] Lisa M. Sobierajski and Arie E. Kaufman. Volumetric ray tracing. In Proceedings
of the Symposium on Volume Visualization, pages 11–18. ACM Press, 1994.

[125] Cyril Soler and Francois Sillion. Automatic calculation of soft shadow textures for
fast, high quality radiosity. In Proceedings of the Eurographics Rendering Workshop,
pages 199–210, 1998.

[126] Cyril Soler and Francois Sillion. Fast calculation of soft shadow texture using
convolution. In Proceedings of SIGGRAPH, pages 321–332, 1998.

[127] Jos Stam. Random caustics: Natural textures and wave theory revisited. In
SIGGRAPH Visual Proceedings, page 150. ACM Press, 1996.

[128] Jos Stam. Aperiodic texture mapping. Technical Report Research Report R046,
ERCIM, January 1997.

[129] Marc Stamminger and George Drettakis. Perspective shadow maps. In Proceedings
of SIGGRAPH, pages 557–562, 2002.

[130] Michael Stark and Richard Riesenfeld. Exact illumination in polygonal envi-
ronments using vertex tracing. In Proceedings of the Eurographics Rendering
Workshop, pages 149–160, 2000.

[131] A. James Stewart. Vicinity shading for enhanced perception of volumetric data. In
Proceedings of Visualization, pages 355–362, 2003.

[132] A. James Stewart and Sherif Ghali. Fast computation of shadow boundaries using
spatial coherence and backprojection. In Proceedings of SIGGRAPH, pages 231–
238, 1994.

[133] Parag Tole, Fabio Pellacini, Bruce Walter, and Donald Greenberg. Interactive
global illumination in dynamic scenes. In Proceedings of SIGGRAPH, pages 537–
546, 2002.

[134] Roy Troutman and Nelson L. Max. Radiosity algorithms using higher order finite
element methods. In Proceedings of SIGGRAPH, pages 209–212, 1993.

[135] Tushar Udeshi and Charles Hansen. Towards interactive, photorealistic rendering
of indoor scenes: A hybrid approach. In Proceedings of the Eurographics Rendering
Workshop, pages 63–76, 1999.

[136] Eric Veach and Leonidas J Guibas. Metropolis light transport. In Proceedings of
SIGGRAPH, pages 65–76, 1997.

[137] Ingo Wald, Carsten Benthin, and Philipp Slusallek. Interactive global illumination

119

in complex highly occluded environments. In Proceedings of the Eurographics
Symposium on Rendering, pages 74–81, 2003.

[138] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, and Philipp
Slusallek. Interactive global illumination using fast ray tracing. In Proceedings
of the Eurographics Rendering Workshop, pages 15–24, 2002.

[139] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. Interactive
rendering with coherent ray tracing. Computer Graphics Forum, 20(3):153–164,
2001.

[140] John Wallace, Michael Cohen, and Donald Greenberg. A two-pass solution to
the rendering equation: A synthesis of ray tracing and radiosity methods. In
Proceedings of SIGGRAPH, pages 311–320, 1987.

[141] John Wallace, Kells Elmquist, and Eric Haines. A ray tracing algorithm for
progressive radioisty. In Proceedings of SIGGRAPH, pages 335–344, 1989.

[142] Bruce Walter, George Drettakis, and Steven Parker. Interactive rendering using
the render cache. In Proceedings of the Eurographics Rendering Workshop, pages
19–30, June 1999.

[143] Michael Wand and Wolfgang Straßer. Real-time caustics. Computer Graphics
Forum, 22(3):611–620, 2003.

[144] Leonard Wanger. The effect of shadow quality on the perception of spatial
relationships in computer generated imagery. In Proceedings of the Symposium
on Interactive 3D Graphics, pages 39–42, 1992.

[145] Leonard Wanger, James Ferwerda, and Donald Greenberg. Perceiving spatial rela-
tionships in computer-generated images. IEEE Computer Graphics & Applications,
12(3):44–58, May 1992.

[146] Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A ray tracing
solution for diffuse interreflection. In Proceedings of SIGGRAPH, pages 85–92,
1988.

[147] Mark Watt. Light-water interaction using backward beam tracing. In Proceedings
of SIGGRAPH, pages 377–385, 1990.

[148] Eric W. Weisstein. CRC Concise Encyclopedia of Mathematics. CRC Press, 1999.

[149] Turner Whitted. An improved illumination model for shaded display. Communi-
cations of the ACM, 23(6):343–349, June 1980.

[150] Lance Williams. Casting curved shadows on curved surfaces. In Proceedings of
SIGGRAPH, pages 270–274, 1978.

[151] Andrew Woo, Pierre Poulin, and Alain Fournier. A survey of shadow algorithms.
IEEE Computer Graphics & Applications, 10(6):13–32, November 1990.

[152] Chris Wyman and Charles Hansen. Penumbra maps: Approximate soft shadows

120

in real-time. In Proceedings of the Eurographics Symposium on Rendering, pages
202–207, 2003.

[153] Chris Wyman, Charles Hansen, and Peter Shirley. Interactive raytraced caustics.
Technical Report Technical Report UUCS-03-009, University of Utah, April 2003.

[154] Harold R. Zatz. Galerkin radiosity: A higher order solution method for global
illumination. In Proceedings of SIGGRAPH, pages 213–220, August 1993.

[155] Sergej Zhukov, Andrej Iones, and Grigorij Kronin. An ambient light illumination
model. In Proceedings of the Eurographics Rendering Workshop, pages 45–56, 1998.

