
Preliminary Investigation of Active
Memory Operations

Lixin Zhang, Zhen Fang, John B. Carter,
Mike Parker

UUCS-04-009

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

June 1, 2004

Abstract
We are rapidly approaching a time when large-scale shared memory supercomputers will have

remote memory latencies measured in the thousands of cycles and cross-section bandwidth will
be a limiting performance factor. For these machines to scale, mechanisms that minimize inter-
processor communication will be essential. We propose one such mechanism, active memory,
which allows operations to be sent to and executed on the home memory controller of particular
data items. Performing the operations near where the data resides, rather than moving it across
the network, operating on it, and moving it back, eliminates significant network traffic, introduces
opportunities for additional parallelism, and hides high remote memory latencies. Active memory
provides many of the benefits of PIMs without the need for non-standard DRAMs, and enables sig-
nificantly better application scaling than conventional shared memory synchronization and range
operations.

In this paper we investigate an active memory design that supports three classes of memory-
centric operations that benefit common parallel constructs: atomic scalar, range, and reduction
operations. We present architectural and programming models for active memory and compare its
performance against a baseline conventional shared memory system implementation and a variety
of optimized memory architectures. We find that active memory easily outperforms the conven-
tional shared memory and other architectures by factors of over 10x on a collection of parallel
constructs.



1 Introduction

There is an increasing demand for high performance scalable distributed shared-memory (DSM)
systems from both government agencies and industrial users. DSM systems distribute physical
memory across the nodes in the machine and implement coherence protocols to provide the illusion
of shared memory. The predominant scalable DSM architecture is directory-based CC-NUMA
(cache-coherence non-uniform memory access), such as employed in the SGI OriginTMline [20].
In such architectures, each block of memory is associated with a fixed home node, which maintains
a directory structure to track the state of all locally-homed data. When a process accesses data that
is not in a local cache, the local DSM hardware sends a message to the data’s home node to request
a copy. Depending on the block’s state and the type of request (read or write), the home node
may need to send messages to additional nodes to service the request and maintain coherence.
The round trip network latency of large-scale DSM machines will soon be thousands of processor
cycles, as processor speeds increase while wall time network latency improves very little due to
speed of light effects. In addition, cross-section bandwidth will be a limiting factor in the scalability
of large-scale (100+ node) DSM systems. The unavoidable conclusion is that eliminating remote
coherence traffic will be essential for DSM systems to scale effectively.

Caching is the standard mechanism for eliminating remote traffic and improving local memory
performance. A serious limit to the scalability of typical CC-NUMA DSM architectures is that
the amount of remote data that a node can replicate locally is limited to the size of its caches. In
addition, coherence typically is maintained at the block-level (e.g., 128 bytes), so entire blocks
are moved across the network or invalidated, even when the processor needs or modifies only a
single word from the block. The appalling truth is that the sustained performance of large DSM
supercomputers for many applications is less than 5% of peak performance, due largely to memory
system performance, and this trend is expected to worsen[17]. This problem is particularly serious
for data-intensive, highly parallel scientific and commercial applications. The work presented here
represents an effort to alleviate memory system bottlenecks for these types of applications.

We propose to add an Active Memory Unit (AMU) capable of performing a select set of simple
operations to DSM memory controllers. AMUs let processors operate on remote data at the data’s
home node, rather than loading it into a local cache, operating on it, and potentially flushing it
back to the home node. We call AMU-supported operations Active Memory Operations (AMO),
because they make the conventional “passive” memory controller more “active”. The goal of
AMOs is to reduce the number of cache misses, reduce cache pollution, hide the high latency
of remote memory accesses, and reduce network traffic, thereby improving DSM performance.
AMOs are particularly effective for operations with low temporal locality (i.e., little reuse), where
caching provides little or no benefit.

Performing data operations in the memory controller provides a number of benefits. For remote
memory accesses, data does not need to be moved across the network to the requesting node and,
in the case of writes, moved back to the home node after modification. For local memory accesses,
data does not need to be moved to/from the local processor caches via the system bus. Most
AMO request/response messages are significantly smaller than a cache line, which reduces network
bandwidth requirements. Finally, AMUs can implement atomic memory operations efficiently
since they are co-located with the home directory of the data on which the operations are being
performed. Compared to active messages [26], AMOs do not interfere with useful work being
done by the processor co-located with the data, and have much lower invocation overhead than the



interrupt required to invoke an active message handler.
In the rest of the paper, we present architectural and programming models for a simple active

memory unit and compare its performance against conventional shared memory and active mes-
sages. Our simple AMU supports three classes of operations: scalar (e.g., fetch-and-add),
range (e.g., memset), and reduction (e.g., max) operations. We evaluate six benchmarks using an
execution-driven simulator and find that active memory outperforms conventional shared memory
and active messages by large margins for these benchmarks (ranging from 1.8X to over 80X).

2 Background

Avoiding remote communication has been a major focus of message passing programmers for
years. Sending computation to data, as opposed to pulling data to computation, is a common
technique for eliminating messages. Active Messages are an effective way to send computation
to data [26]. An active message includes the address of a user-level handler to be executed upon
message arrival, with the message body as its argument. This mechanism enables message passing
programmers to move computation to data fairly efficiently. However, the receiving processor is
interrupted to handle an incoming active message, which causes it to stop what it is doing, flush
its instruction pipeline, and switch to the message handler. Moreover, the message handler must
load instructions and data into the local caches, potentially evicting useful data or instructions in
the process. These side effects of invoking an active message can interfere with ongoing local
computation. While active messages are very effective at reducing communication traffic, using
the node’s primary processor to execute handlers incurs non-trivial handler startup overhead and
interferes with useful work being done on that processor.

In recent years, several researchers have proposed adding intelligence to the memory controller
to overcome the “Memory Wall” [28, 23]. For example, the Impulse memory controller [28] uses
an extra level of physical address remapping to increase or create spatial locality for stride and
random accesses. Solihin et al. [23] add a general-purpose processor core to a memory controller
to direct prefetching into the L2 cache.

Processor-in-memory (PIM) systems incorporate processing on modified DRAM chips to ex-
ploit the very high memory bandwidth and relatively low latency available inside the DRAM pack-
age [6, 14, 15, 24]. PIMs are useful in a variety of domains, e.g., systems dedicated to supporting
dense streaming applications or embedded systems where all the required data resides within a sin-
gle DRAM chip. However, once the data needed to perform a computation crosses a chip boundary,
these systems effectively become a specialized form of distributed memory multiprocessors, with
all of the attendant complexities. Much research remains to determine the extent to which PIMs
can be integrated into a general-purpose computer environment. Also, the performance of PIM
architectures is hindered by the fact that DRAM processes are slower than logic processes. In
contrast, AMOs achieve many of the performance benefits of PIMs without their attendant com-
plexity and cost. Systems that offload remote computation to AMUs, rather than PIMs, can use
commodity DRAMs, with their higher yields, higher density, and lower per-byte costs.

The SGI Origin 2000 [10] and Cray T3E [19] implement a set of memory-side atomic opera-
tions (MAOs) in the memory controller that are triggered by writes to special IO addresses. MAOs
are non-coherent and rely on software to maintain coherence. They are used primarily to sup-
port efficient thread synchronization. However, basic MAO-based spinlocks typically involve un-
cached loads to spin on synchronization variables, so each spin request reloads data from the home



node. To avoid this high overhead, some researchers suggest spinning on a separate cacheable
variable [13]. However, with this design, when the previous lock holder frees the lock, it must
send an invalidation request to every processor spinning on the lock, which must then reload the
cacheable data, perform an uncached read on the MAO-based lock, and if unsuccessful resume
spinning. The net result is that MAO-based locks outperform conventional atomic locks, but still
require non-trivial amounts of communication.

The NYU Ultracomputer [5] implements a variety of atomic instructions in the memory con-
troller. It uses a combining network that attempts to combine loads and stores for the same memory
location within the interconnect. The hardware cost for queueing circuitry at each node is high and
there is a performance penalty for references that do not exploit combining.

Off-loading the task of synchronization from the main processor to network processors is an
approach taken by several recent clusters [16, 25]. For example, the QuadricsTMQsNet intercon-
nect [16] used by many current large clusters supports both pure hardware barriers and network
processor-based hybrid barriers.

Garzaran et al. [4] propose to enhance directory controllers with execution units for parallel
reduction operations. Their work focuses mainly on the merge phase for small to medium sized
data sets, while AMO reduction operations are used primarily for the partial reduction phase of
large data sets. The techniques are complementary and both demonstrate for the value of offloading
select operations to the memory system.

3 Active Memory Operations

In this section, we present the hardware organization of an AMU (Section 3.1), a description of
how AMOs can be invoked and used by software (Section 3.2), and a description of the operations
supported by our current AMU design (Section 3.3).

����� ���	��
���������������������������� !�

Figure 1 presents a block diagram of the major components of a single node of our AMU-
enhanced DSM architecture, which is modeled on the SGI Origin 3000 architecture [20]. A cross-
bar connects processors to the network backplane, from which they can access remote memory,
local memory, and IO. In our simulation timing models, we assume that the processor(s), crossbar,
and memory controller are all on the same die, as will be typical in near-future system designs.

To support AMOs, each MMC is extended to include a small number (4 to 8) AMU control and
data registers. The AMU registers are external to the processor and are akin to IO control registers.
To invoke an AMO, the local processor performs a 64-bit IO-space write to an AMU address regis-
ter and then a second IO-space write to the corresponding AMU control register. These two writes
fully encode the information required to perform an AMO. The second write implicitly initiates
the AMO. The AMU data register is also used to store and return values associated with the AMO.
The processor initiating the AMO can use IO-space reads to a DONE bit in the control register to
poll whether the operation has completed. This IO-register-based interface for initiating remote
memory operations is similar to that employed by the Cray T3E to implement E-registers[19].
AMO performance could be further improved if the processor ISA were extended to include AMO
instructions, but this is not necessary to exploit the active memory idea.



MFU2 MFU3MFU0 MFU1

AMU
 issue
queue

Return
values

CPU
core

To/from
directory
controller

  AMU

XBAR

F/
E

Interconnect

registers

AMU cache

Figure 1. Organization of the Active Memory Unit

The decoupled (asynchronous) AMO model enables AMOs to be overlapped with other useful
work, thereby hiding the high roundtrip message latency. The operating system is responsible for
allocating AMU registers to individual programs, and saving/restoring register state as necessary to
virtualize the AMU registers. A program is responsible for managing its AMU registers to ensure
that the results of previous AMOs are not overwritten before they are consumed.

When a processor initiates an AMO, the local AMU examines the target virtual address (or ad-
dress range), translates it to a global physical address, and sends an AMO message to the AMU
on that address’s home node. When the AMO message arrives at that node, it is placed in an
in-order AMU instruction queue awaiting dispatch to one of a collection of identical active mem-
ory function units (MFUs). Address translation is performed via an external TLB located on the
MMC, along the lines of the external TLBs supported by the Cray T3E[19] or the Impulse memory
controller[28].

Each MFU contains control logic and an ALU unit that can perform the 32- and 64-bit logical,
integer, and floating point operations as described in Section 3.2. To implement scalar AMOs,
the MFU loads a coherent word of data, performs the requested operation, writes the result back
to memory, and (optionally) returns a result to the requesting processor. For range and reduction
AMOs, the MFU streams a contiguous range of coherent data through an ALU pipeline, writes the
result back to memory (for range AMOs), and (optionally) returns a scalar result to the requesting
processor. As described in Section 3.3, AMO range operations are restricted to ranges that fall
entirely within a single memory controller’s local memory.

To overlap computation with potentially high latency DRAM accesses, each MFU can track the
state of multiple outstanding memory references, either from a single range/reduction AMO or
multiple scalar AMOs. This support is enabled by a small queue and associated state machine in
each MFU. The optimal number of MFUs per AMU and outstanding memory operations per MFU
are open questions, and likely highly dependent on the performance characteristics of a particular



DSM architecture. For our experiments, each AMU has four MFUs and each MFU can service
four outstanding memory requests at a time.

For certain uses, AMOs exhibit very high locality between independent requests, e.g., fetch-
and-adds exhibit high temporal locality when used to implement scalable synchronization. To
improve the performance of these operations, there is a tiny 32-entry, four-way set associative
cache in the AMU. This AMU cache is banked, with as many banks as there are MFUs. The AMU
cache stores intermediate result values.

AMUs generate coherent memory requests that are sent to the directory controller, which checks
to see if the copy of the data in local memory can be used directly (e.g., it is a read operation and the
local data is coherent or a write operation and there are no sharers). The directory controller itself
uses a multi-banked directory cache to cache directory state. If necessary, the directory controller
performs the necessary operations to make the data coherent (e.g., issue invalidate or flushback
requests to remote sharers).

Finally, some active memory operations return a scalar value to the requesting processor, so
there is a return data path back from the AMU to the crossbar.

The hardware implementation of the AMU consist of 4 MFUs and a 32-line cache. Each MFU
contains a 64-bit integer adder, a 64-bit floating-point adder, a small state machine, a 64-bit pop-
count circuit, and handful of MUXes and registers. In a 90nm process, the entire AMU consumes
approximately 0.4mm

�
, less than 0.3% of the total die area of a high-performance microproces-

sor with an integrated memory controller. This small chip overhead seems worthwhile given the
substantial performance benefits.

����� ��� � ����	� �

Since an AMO can operate on a single scalar value or a range of values, it may take thousands
or tens of thousands of cycles to complete. To avoid processor stalls, AMO operation issue and
completion are decoupled. AMO operations are initiated using I/O writes to user-accessible AMO
registers in the local memory controller. The status of outstanding AMO operations can be checked
using I/O space reads. When an AMO operation issues, the triggering I/O write clears the F/E bit
for the specified destination AMU register and then issues the AMO to the appropriate AMU.
When the result returns, it is placed in the specified AMU register and the corresponding F/E bit
is set. The initiating process can test the AMU register’s F/E bit to determine when the data is
available for consumption. AMU registers are like IO registers in many respects.

Because AMOs are decoupled operations, destination AMU registers must remain available even
if the issuing process has been context switched off the processor. This requirement is similar to the
need to pin pages that are the target DMA operations for the duration of the DMA. To provide this
functionality and ensure security, AMU registers are virtualized. In our current design, there are
eight architecturally visible AMU registers. A hardware table maps these virtual AMU registers
to a larger number of physical AMU registers (e.g., thirty-two). When a process issues its first
AMO operation, the processor traps to the operating system. In response, the OS selects a block
of unallocated physical AMU registers and maps these physical AMU registers into the process’s
address space. If there are no free physical AMU registers, the OS can choose to “swap out” a
block of physical AMU registers for any other process for which there is not an outstanding AMO.
Swapping entails saving the register values to the swapped out process’s control block; they will
need to be swapped back in via an analogous operation when that process is rescheduled. With this



design, the target AMU register for any outstanding AMO will always be available when the data
returns, and a modest number of physical AMU registers will suffice to support a large number of
concurrent processes.

��� � �������  �� � � 
 � � � �������� !� �

In general, the active memory unit supports three types of operations: scalar operations that
process data elements at specified memory locations, range operations that process data elements
within contiguous physical memory areas, and reduction operations that operate on contiguous
ranges of addresses.

Scalar operations perform atomic arithmetic, logic, or floating-point operations on individual
words of data. The current design supports an atomic write/swap operation, and arithmetic oper-
ations that add, subtract, multiply, etc., a constant to an integer or floating-point value stored at
the specified memory address. The AMU control register encoding includes a bit to indicate if the
resulting value should be returned and (if so) the target physical AMU register where the result
should be stored on the requesting processor.

To support scalable barriers, we provide a special increment operation that increments the
target memory location and returns the old value to the requesting processor. What makes our
AMO increment operation special is the inclusion of a “test” value, which is compared against
the result of the increment. If the incremented value matches the test value, e.g., as would be
the case in a barrier operation if the test value contained the total number of processors expected
to reach the barrier, the AMU sends an update command along with the new value to the local
directory controller. The directory controller then sends the latest value to every node that has a
copy of the data. 1

Spinlocks are often used to ensure exclusive access to critical data. AMOs can be used to im-
plement efficient spinlocks using atomic fetch and op operations. Unlike MAO-based spinlocks,
AMO-based spinlocks inherently involve local spinning (on AMU registers) and the AMO im-
plementation allows lock signaling to be implemented efficiently via the above-described update
mechanism.

AMOs are far more efficient for synchronization than load-linked/store-conditional (LL/SC)
instructions that are available on most modern systems [3, 8, 11]. LL instructions load a block of
data into cache. Subsequent SC instructions attempt to write to the same block, but succeed only
if there was no interceding write to the block since the previous LL. To achieve atomicity, library
routines typically retry the LL/SC pair repeatedly until the SC succeeds.

Unfortunately, in large multiprocessor systems, there is often high contention for synchroniza-
tion variables, which results in significant coherence traffic and high latency. The problem gets
worse as the number of processors contending for a barrier variable increases, so high-performance
barrier implementations typically employ barrier trees [27, 18], where only a small number of
nodes (e.g., 16-32) contest for a given barrier variable at a time. Many optimized spinlock algo-
rithms have been proposed [12]. These algorithms typically introduce local variables and complex
data structures to alleviate hot spots. Even these efficient synchronization implementations suffer
from frequent interference and remote memory latencies. AMU-based synchronization centralizes
the atomic operations in the lock’s home node, which eliminates interference. If the target of the

1Efficient update is enabled by the fact that our system supports a fine-grained update protocol, details of which
are beyond the scope of this paper.



AMO hits in the AMU cache, the operation takes only two cycles to complete, independent of
the number of nodes contending for the synchronization variable. We discuss the performance
implications of this design in detail in Section 5.

Range operations operate on ranges of contiguous addresses. To eliminate the need for cross-
node communication as part of an AMO, our current design requires ranges to be entirely resident
on a single node. We are exploring mechanisms to eliminate this restriction should we determine
that there are sufficient application needs for it (e.g., to perform an arbitrary vector-vector add or
memcpy). Range operations perform the same scalar operation on every element in the range, e.g.,
vector-scalar add, vector-scalar mult, or memset.

Reduction operations perform a reduction operation on a contiguous range of addresses. Like
range operations, the range on which the reduction is performed must be fully contained in a
single memory controller. The supported operations include computing the sum (sum), finding
the maximum (max) or minimum (min) value, counting the number of elements matching with
a given key (count), and counting the number of bit 1’s (popcount) in the specified memory
area. These operations can also provide a stride as an argument to instruct the AMO to examine
data separated by a constant stride.

Reduction operations are important in many scientific codes and commercial workloads. Exam-
ples include telecommunication logs, sensor data, financial tickers, and code breaking. Reductions
over extremely large ranges can be parallelized by performing a series of partial reductions on
smaller ranges, e.g., ones that fall entirely within a single memory controller, the results of which
are themselves reduced to generate the final reduction result. Our experimental results show that
AMOs can significantly lower the time required to do partial reductions, thereby improving overall
performance.

We provide a set of library functions to give programmers access to all active memory oper-
ations. We are investigating ways to enable compiler automation. Native compiler support for
AMOs are not currently available, so we manually insert AMOs into the benchmark programs
using simple macros for each AMO.

4 Simulation Environment

We use an execution-driven simulator, UVSIM, in our performance study. Our simulator models
a hypothetical next-generation Origin 3000 supercomputer, including a directory-based coherence
protocol [21]. Each simulated node contains two MIPS next-generation microprocessors con-
nected to a high bandwidth bus. Also connected to the bus is a future-generation hub [22] that
integrates the processor interface, memory controller, directory controller, network interface, and
IO interface. Each node contains a DRAM backend with a maximum of 16GB of physical memory.
We simulate a micro-kernel that supports most common Unix system calls, and directly execute
statically linked 64-bit MIPS-IV executables. Our simulator supports the OpenMP runtime envi-
ronment, and all of the parallel benchmarks discussed in this paper are OpenMP programs.

Table 1 lists the major parameters of the simulated system. The L1 cache is virtually indexed
and physically tagged. The L2 cache is physically indexed and physically tagged. The DRAM
backend has 16 20-bit channels connected to DDR DRAMs, which enables us to read an 80-bit
burst every two cycles. Of each 80-bit burst, 64 bits are data. The remaining 16 bits are a mix of
ECC bits and partial directory state.



Parameter Value
Processor 4-issue, 48-entry active list, 2GHz
Node 2 processors w/ shared hub and DRAM
L1 I-cache 2-way, 32KB, 64B lines, 1-cycle lat.
L1 D-cache 2-way, 32KB, 32B lines, 2-cycle lat.
L2 cache 4-way, 2MB, 128B lines, 10-cycle lat.
System bus 16B CPU to system, 8B system to CPU

max 16 outstanding references, 1GHZ
DRAM 16 16-bit-data DDR channels
Hub clock 500 MHz
Memory latency 60 processor cycles
Network latency 100 processor cycles per hop

Table 1. System configuration.

Benchmark Description
barrier multiprocessor barrier operation
spinlock multiprocessor spinlock operation
gups random global updates
memset fill a range with a constant value
max find the maximum value of a range
popcount count the 1 bits in a range

Table 2. Benchmarks

The simulated interconnect subsystem is based on SGI’s NUMALink-4. The interconnect is
built using a fat-tree structure, where each non-leaf router has eight children. The minimum
network packet is 32 bytes. We do not model contention within the routers, but do model port
contention on the hub network interfaces.

We have extended the simulator to support active messages and processor-side atomic instruc-
tions (like the semaphore instructions available on IntelTMItanium2 [7]). AMOs and active mes-
sages share the same programming model and are initiated the same way; the only difference is
the way each is handled by the receiving node. The overhead of active messages on the recipient
processor is accurately modeled, but we ignore the operating system overhead of active messages
on the initiating processor. The remote processor is interrupted when an active message arrives,
which causes it to flush the instruction pipeline and start executing the active message handler.
When the handler exits, the interrupted process is resumed.

We have validated the core of our simulator by configuring its parameters to match those of an
SGI Origin 3000, running a large mix of benchmark programs on both a real Origin 3000 and the
simulator, and comparing performance statistics (e.g., run time, cache hit rates, etc.). All simulator-
generated statistics are within 15% of the corresponding numbers generated by the real machine,
most within 5%.

Table 2 lists the six benchmarks that we use during our performance evaluation. The benchmarks
are compiled using the MIPSpro Compiler 7.3 with an optimization level of “-O2”.



Nodes Speedup over baseline
Atomic ActMsg MAO AMO

2 1.03 0.73 1.29 1.93
4 1.13 1.57 4.55 8.68
8 1.17 1.40 5.53 12.06
16 1.06 1.28 4.50 14.16
32 1.19 1.62 5.46 27.34
64 1.21 1.74 7.51 37.43
128 1.18 1.83 11.70 54.82

Table 3. Barrier performance, 2 processors per node.

Nodes Cycles per processor
OpenMP Atomic ActMsg MAO AMO

2 176 171 242 137 91
4 473 418 301 103 54
8 961 818 685 173 79
16 1028 967 802 228 72
32 1679 1409 1034 307 61
64 1941 1610 1114 258 51
128 2261 1915 1233 193 42

Table 4. Number of cycles per process for one barrier.

5 Simulation Results

We compare AMOs against conventional shared memory instructions (e.g., loads, stores, and
LL/SCs), active messages (ActMsg), processor-side atomic instructions (Atomic), and memory-
side atomic operations (MAOs) from the SGI Origin 2000, where applicable. It is difficult to
derive useful analytical estimates for the time complexity of even relatively simple operations like
barriers and spinlocks on modern shared memory systems with complex cache hierarchies and
coherence protocols. Thus, we evaluate the performance of the various benchmarks via execution-
driven simulation. We treat the conventional shared memory implementations as our performance
baseline.

� ��� � �	������� �

Our barrier benchmark is the barrier synchronization function in the OpenMP library. The
original OpenMP barrier implementation on the Origin 2000 uses LL/SC instructions. We created
variants that used Atomic, active messages, MAOs, and AMOs. Table 3 presents the results of
running these various barrier implementations on 4 to 256 processors (2 to 128 nodes). The first
column contains the numbers of nodes being synchronized. Columns 2 through 5 present the
speedups of the various barrier implementations compared to the baseline LL/SC implementation.
Active messages, MAOs, and AMOs all achieve noticeable performance gains over the baseline.
AMO-based barriers achieve the best performance speedup for all processor counts, ranging from
a 1.9X speedup on a two-node system to 54.8X on a 128-node system.

In the baseline LL/SC-based barrier implementation, each processor loads a barrier count into its



local cache using an LL instruction before incrementing it using an SC instruction. If more than one
processor attempts to update the count concurrently, only one will succeed, while the others will
have to retry. After each successful increment, the barrier variable will move to another processor,
and then to another processor, and so on. As the system grows, the average latency to move the
barrier variable from one processor to another increases, as does the amount of contention. As a
result, barrier synchronization time increases superlinearly as the number of nodes increases for
the baseline LL/SC-based implementation. This effect can be seen particularly clearly in Table 4,
which shows the per-processor barrier synchronization cycles for each implementation.

Using atomic instructions eliminates the failed LL/SC attempts. However, a flurry of invalida-
tion messages followed by the data must still be transferred over the network in response to each
increment, so the benefit of using atomic instructions is marginal.

The ActMsg barrier implementation sends an active message for every increment operation.
The overhead of invoking the message handler dwarfs the time required to run the handler itself.
Nevertheless, the benefit of eliminating remote memory accesses outweighs the high invocation
overhead, which results in the active message barrier implementation outperforming the base-
line version for all systems with more than two nodes. For the two-node system, the amount of
contention for the barrier variable is negligible and the invocation overhead of the handler is not
amortized. In addition, the high latency of invoking active messages leads to a significant number
of timeouts and message retransmissions.

MAO-based barriers send a command to the home memory controller for every increment oper-
ation. Instead of naively using uncached loads to spin on the barrier variable, which generates huge
network traffic, we spin on a local cacheable variable, an optimization similar to what is proposed
by Nikolopoulos [13].

The AMO version eliminates the extra network traffic and serialized roundtrip delays, and
achieves much higher performance. When each processor arrives at the barrier, it initiates an AMO
increment operation and then spins on a local AMO register. When the barrier count indicates
that every process has arrived at the barrier, the AMU sends a return value to each requesting
processor, which informs the spinning thread that it may continue.

When the first increment operation arrives at a barrier variable’s home memory controller,
the barrier count is loaded into the AMU cache. All subsequent AMOs on this variable will find
the data in the AMU cache and thus require only two cycles to process. Typically, the time to
perform an AMO-based barrier roughly equals (

���������	��

), where

���
is an overhead close to the

round-trip latency of the longest network path in the system,
��

is a fixed value related to the time of
performing an increment operation and sending an update request, and



is the number of nodes.

The expression implies that AMO-based barriers scale as processor counts increase, which can be
seen in Table 4. The per-processor latency of AMO-based barriers is almost constant. In fact, it
drops off slightly as the number of processors increases because the fixed overhead is amortized
over more nodes.

Running a process on each available processor forces the ActMsg-based barrier implementation
to interrupt a processor doing useful work whenever an active message arrives. Since all ActMsgs
will be sent to the same node for processing, this could be a significant bottleneck.



Nodes Speedup over baseline
Atomic ActMsg MAO AMO

2 0.96 0.62 0.88 1.80
4 1.02 1.69 1.48 5.95
8 1.02 1.86 2.20 9.43
16 1.05 2.18 3.67 16.98
32 1.09 2.24 5.71 29.60
64 1.05 2.20 8.40 40.37
128 1.08 2.16 13.92 81.83

Table 5. Barrier performance assuming a dedicated ActMsg handler processor per node.

acquire_ticket_lock( ) {

}

 
  spin_until(my_ticket == now_serving);

  int my_ticket = fetch_and_add(&next_ticket, 1);

release_ticket_lock( ) {
  now_serving = now_serving + 1;
}

Figure 2. Ticket lock pseudocode.

To determine whether the performance bottleneck of the ActMsg-based barrier implementation
was processor occupancy, we ran a second set of experiments in which we dedicated one pro-
cessor per node to handle active message requests. The other barrier implementations (baseline,
Atomic, MAO and AMO) use one processor per node, leaving the other node completely idle. The
results of these experiments are shown in Table 5. Comparing the results presented in Table 5
with those presented in Table 3, we can see that not interrupting the busy processor improves the
speedup of active messages by up to 38%, but ActMsg-based barrier performance still lags far
behind AMO-based barriers. This result indicates that the low invocation overhead and smaller
bandwidth requirements of dedicated hardware AMOs are important for fully exploiting the po-
tential value of offloading barrier operations to the node where the barrier variable resides. For
the configurations that we test, AMO-based barriers outperform even the expensive pure hardware
barriers present in several of current high-end interconnects (e.g., the QuadricsTMQsNet used by
the ASCI Q supercomputer [16]).

� ��� � � ��� �  ����

Different spin lock algorithms require different atomic primitives. We do not consider every
proposed spinlock implementation, but instead focus on two representative algorithms: ticket
locks [12] and Anderson’s array-based queue locks [1].

Ticket locks employ a simple algorithm that grants locks in FIFO order. Figure 2 presents a
typical implementation that uses two global variables, a sequencer (next ticket) and a counter
(now serving). The performance of LL/SC-based ticket locks degrades rapidly as the number
of participating processors increases due to races on the sequencer, and thus SC failures and retries,
and the slow propagation of new counter values caused by invalidate-reload storms.

Array-based queue locks [1] use an array of flags and a counter that serves as an index into



CPUs LL/SC Atomic ActMsg MAO AMO
ticket array ticket array ticket array ticket array ticket array

4 1.00 0.41 0.91 0.52 1.12 0.50 1.01 0.41 2.09 1.24
8 1.00 0.46 0.86 0.54 1.70 0.46 1.05 0.50 2.35 1.74
16 1.00 0.50 0.97 0.56 2.27 0.53 1.10 0.50 2.32 2.27
32 1.00 0.55 0.99 0.63 2.37 0.53 1.07 0.51 2.38 1.95
64 1.00 1.66 0.87 1.69 0.67 1.47 0.67 1.51 6.39 5.01
128 1.00 2.80 1.14 2.68 0.89 2.44 0.79 2.52 11.00 10.99
256 1.00 3.55 1.24 3.44 1.00 3.01 0.85 2.99 13.58 11.35

Table 6. Speedup of various spinlocks compared to LL/SC-based spinlocks.

the array. Every process spins on a locally cached copy of its own array entry (flag). To signal a
waiting process, the process releasing a lock sets the corresponding array entry, which invalidates
the cached copy from the next process’s cache. The next process then suffers a cache miss and
loads the new value via a remote fetch. Even though selectively signaling one processor at a time
noticeably improves performance in large systems, contention for the sequencer remains a hot spot.

For AMO-based spinlocks, we replace atomic fetch and add primitives with corresponding
AMO operations. Further, waiting processes spin on an AMO register rather than a shared variable
so that we can exploit the ability of AMOs to perform PUTs.

Table 6 presents the speedups of different ticket locks and array-based queuing locks compared
to the LL/SC-based ticket lock. For traditional mechanisms, ticket locks outperform array locks
when less than 32 processors (on 16 nodes) are involved. Array locks outperform ticket locks for
larger systems, which illustrates the effectiveness of array locks at alleviating hot spots in large
systems.

Our results show that AMOs greatly improve the performance of both types of locks and negate
the difference between ticket locks and array locks. In particular, on 256 processors, AMO-based
ticket locks outperform LL/SC-based ticket locks by a factor of 13.58 and LL/SC-based array locks
by a factor of 3.8. In contrast, the other optimized lock implementations (using processor-side
atomic operations, active messages, and MAOs) perform almost identically to their LL/SC-based
counterparts, if not slightly worse. This advantage persisted even when we ran the benchmark
on only one processor per two-processor node, leaving the second processor free to service active
message requests without interrupting the main processor. Active message performance did not im-
prove when a second processor per node was dedicated to message handling because performance
was limited more by the higher overhead of invoking an active message handler and by network
bandwidth on/off the home node than by processor occupancy. AMO-based ticket locks consume
significantly less network and remote node occupancy than the other mechanisms studied.

� � � � � � �

The gups (a.k.a., the table toy) [9] microbenchmark performs random updates to a large array.
It measures the number of GUPS (Global Updates Per Second) that a system can perform.

for (i = 0; i < accesses; i++)



A[idx[i]] += v;

}

Gups is the principal benchmark of interest for the National Security Agency, and is important in
many other high performance computing applications. We use a 256-megabyte array, which is tiny
compared to a “real” NSA workload. We choose this array size because it can be simulated in a
reasonable amount of time, yet is large enough to put significant pressure on the memory system
and demonstrate the effectiveness of AMOs. A larger array results in higher cache miss rates for
the baseline version, but has no effect on the AMO version. We believe that the performance
improvement that AMO will be able to achieve on real workloads is no less than what is presented
in this paper.

In Gups, the array idx[] contains random values, so the loop exhibits no regularity in its access
stream to A[]. Conventional microprocessors perform poorly on this loop when the array A[] is
large. Vector machines like the Cray XMP [2] and T3E [19] can run this loop efficiently using
scatter-gather memory operations that efficiently load non-contiguous data into vector registers.
However, scatter-gather is allowed only if there are no duplicated values in idx[], which is not
the case for some input sets, e.g., ones that model histogram calculations. For example, if both
idx[1] and idx[3] equal 1 and a vector machine gathers A[idx[0]] to A[idx[3]] into a
single vector register, A[1] will be incremented only once while it should have been incremented
twice. To ensure correctness in such cases, the increment must be performed atomically. To the
best of our knowledge, no existing machines handle a large number of random atomic operations
efficiently.

Number of Nodes

0

20

40

60

80

100

C
P

U
 t
im

e
 

busy 
stalled for local mem 
stalled for remote mem 

2

11% 

23% 

66% 

4

9%

10%

81%

8

10%
3%

87%

16

10%
3%

87%

32

10%
2%

88%

64

12%
< 1%

88%

Figure 3. Breakdown of execution time.

The simulated system employs aggressive superpaging to avoid TLB misses. The TLBs in
each node are designed to handle peta-byte memory space and therefore can easily handle 256MB
datasets. Thus, TLB behavior has no significant impact on performance. Cache behavior is the
limiting performance factor. In the baseline version of gups, almost every access to the array
A[] suffers a cache miss and the CPU stalls frequently waiting for memory. Figure 3 shows that
the CPU is stalled on memory accesses the majority of the time. As the number of active nodes
increases, A[] is spread across more processors and thus the number of remote misses increases.
With four processors, remote memory stall cycles account for 66% of execution time, while 88%
of execution time is spent waiting for remote memory accesses on 128 processors.



Number of Nodes

0

5

10

15

S
pe

ed
up

 o
ve

r 
ba

se
lin

e 

ActMsg
AMO 

2.06 

7.76 

2

3.64 

9.82  

4

5.80  

14.97 

8

6.71  

16.82 

16

7.87 

17.32  

32

9.28  

 17.44 

64

Figure 4. GUPS Performance

Gups performance can be optimized using either active messages or AMOs. For our experi-
ments, we assume there are no duplicate values in idx[], so normal additions, instead of atomic
additions, are performed. Using atomic additions would make the baseline version of Gups slower,
but would have no effect on the AMO version, which would further increase AMO speedup. The
performance results are shown in Figure 4. For ActMsg-based gups, we reserve one processor
per node to handle active messages, providing a kind of best case performance for active messages.
For baseline and AMOs, the second processor per node sits idle.

ActMsg-based gups outperforms the baseline version by as little as a factor of 2.06 on the
two-node system and by as much as a factor of 9.28 on the 64-node system. The speedup of the
AMO-version is about twice of that the ActMsg-based version, ranging from 7.76 to 17.44.

nodes 2 4 8 16 32 64
baseline 1358 2096 2519 2739 2931 3071
ActMsg 302 402 577 643 688 744
AMO 262 393 459 494 516 558

Table 7. Total number of network packets (in thousands).

The main reason that both mechanisms are so effective is that they eliminate substantial amounts
of network traffic. Table 7 shows the number of network packets sent for each test case. On
average, active messages reduce network traffic by 4.3X, while AMOs reduce network traffic by
5.5X. Another factor that causes AMOs to outperform active messages is that each AMU can
handle four AMOs simultaneously while a processor can handle only one active message at a time.

� ��� � ����� � ����
�� � 
 � ������ !� � � � ���	� �� �� �

We use three microbenchmarks to evaluate the effectiveness of AMO range and reduction oper-
ations: memset, max, and popcount. The memset benchmark comes from the standard C library. It
counts the number of bit 1’s in a 16MB memory area. We exploit the potential of adding a special-
ized popcount circuit to the AMU. 2 We assume a computation latency of 128 processor cycles for
doing a popcount of 128 bytes in an MFU. The baseline version of this benchmark uses a 64KB

2Though there are ISAs that include a popcount instruction (e.g., SPARC), we are not aware of any existing
processor that actually supports the instruction. And even if they do, the system bus will not be able to deliver data
from memory to the processor-side popcount circuit in a timely fashion.



memset max popcount
speedup 2.78 5.67 16.69

Table 8. Speedups of range and reduction active memory operations.

jump table to optimize the naive bit-shift implementation. A 64KB table is small enough to fit in
the L2 cache, yet allows us to count the number of 1 bits in a two-byte region using a single table
access.

For these tests, we show single node performance. Techniques like partitioning and dynamic
scheduling have been used extensively to perform efficient parallel range operations on supercom-
puters. For instance, reduction operations supported by the MPI library create tree structures to
first perform partial reductions locally in the leaf nodes and then merge partial results in the parent
nodes. Because AMOs are always executed at the home node, in a parallelized version, we will
automatically achieve the goal of performing range operations on the nodes where the data resides
without complex partitioning algorithms.

Table 8 shows the speedups of AMOs on these benchmarks.
We disassembled the baseline version of these benchmarks and found that the compiler inserted

nearly-optimal software prefetch instructions. As a result, the baseline versions see very few cache
misses. However, because the processor can process data faster than the system bus can transfer it,
the system bus becomes a performance bottleneck. The AMO version of these benchmarks issues
one AMO for each page, thus the system bus bandwidth is no longer a bottleneck. Instead, AMOs
exploit the high bandwidth within the memory controller and speed up memset by a factor of 2.78
and max by a factor of 5.67.

The popcount benchmark shows the potential benefit of providing support for specialized opera-
tions at the memory controller. The AMO-based popcount outperforms the optimized (table-based)
baseline version by a factor of 16.69. This large performance improvement motivates the inclu-
sion of a popcount circuit, or other specialized circuit, at the MC for select operations if there is
sufficient demand.

6 Conclusions and Future Work

As the relative penalty of remote memory accesses increases, eliminating remote memory ac-
cesses and hiding their latency have become critical to achieve a high performance in large scale
DSM systems. In this paper, we propose to ship computation to the home memory controller of se-
lect data as a means of doing so. Such active memory operations (AMOs) can significantly reduce
network traffic and hide the latency of accesses to data with insufficient reuse to warrant moving it
across the network or system bus. Like active messages, AMOs are efficient at overlapping com-
munication with computation. Unlike active messages, AMOs do not need to interrupt the remote
processor.

We have demonstrated the potential of the active memory unit for some important operations.
Our simulation results show that AMOs significantly increase the scalability of applications like



synchronization and GUPs that do not scale well on conventional shared memory systems. AMOs
also greatly improve single node performance of range and reduction operations.

These encouraging results motivate us to continue this line of research. We are extending AMOs
to a richer set of functions. One extension we are considering is support for vector-vector oper-
ations, which are often seen in scientific and engineering applications. We plan to compares the
potential benefits of AMO-based vector operations compared to or in conjunction with dedicated
per-node vector units.

One limitation of our current AMO design is that it supports only a small set of operations.
Another direction of future work that we plan to pursue is investigating the value of replacing
MFUs with simple in-order processor cores, like an MIPS R4000. The relatively poor performance
of the various ActMsg-based benchmarks compared to their AMO-based counterparts provides a
strong indication that the overhead of initiating an AMO operation on such a general purpose
processor must be minimized. As transistor density increases, a number of these cores can easily
fit in an AMU. Such a design would significantly complicate the programming model, but provide
richer opportunities for performance improvement.

Acknowledgments

The authors would like to thank Silicon Graphics Inc. (SGI) for the technical documentation
used to configure our simulation models, and in particular, for the valuable technical feedback
provided by Marty Deneroff, Steve Miller, and Steve Reinhardt. We would also like to thank the
Defense Advanced Research Projects Agency (DARPA) and National Security Agency (NSA) for
their support. The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements of SGI, DARPA,
NSA, or the U.S. Government.

References

[1] T. Anderson. The performance of spin lock alternatives for shared-memory multiprocessors. IEEE Trans. on
Parallel and Distributed Systems, 1(1):6–16, Jan. 1990.

[2] T. Cheung and J. Smith. A simulation study of the Cray X-MP memory system. IEEE Trans. on Computers,
C-35(7):613–622, July 1986.

[3] Compaq Computer Corporation. Alpha architecture handbook, version 4, Feb. 1998.

[4] M. Garzaran, M. Prvulovic, Y. Zhang, A. Jula, H. Yu, L. Rauchwerger, and J. Torrellas. Architectural support for
parallel reductions in scalable shared-memory multiprocessors. In Proc. of the 2001 International Conference
on Parallel Architectures and Compilation Techniques, pp. 243–254, Sept. 2001.

[5] A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe, L. Rudolph, and M. Snir. The NYU multicomputer -
designing a MIMD shared-memory parallel machine. IEEE TOPLAS, 5(2):164–189, Apr. 1983.

[6] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss, J. Granacki, J. Brockman, A. Srivastava,
W. Athas, and V. Freeh. Mapping irregular appilcations to DIVA, a PIM-based data-intensive architecture. In
SC’99, Nov. 1999.

[7] Intel Corp. Intel Itanium 2 processor reference manual. http://www.intel.com/design/itanium2/manuals/25111001.pdf.



[8] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice-Hall, 1992.

[9] D. Koester and J. Kepner. HPCS Assessment Framework and Benchmarks. MITRE and MIT Lincoln Laboratory,
Mar. 2003.

[10] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA highly scalable server. In ISCA97, pp. 241–251, June
1997.

[11] C. May, E. Silha, R. Simpson, and H. Warren. The PowerPC Architecture: A Specification for a New Family of
Processors, 2nd edition. Morgan Kaufmann, May 1994.

[12] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on shared-memory multipro-
cessors. ACM Trans. on Computer Systems, 9(1):21–65, Feb. 1991.

[13] D. S. Nikolopoulos and T. A. Papatheodorou. The architecture and operating system implications on the per-
formance of synchronization on ccNUMA multiprocessors. International Journal of Parallel Programming,
29(3):249–282, June 2001.

[14] M. Oskin, F. Chong, and T. Sherwood. Active pages: A model of computation for intelligent memory. In Proc.
of the 25th ISCA, pp. 192–203, June 1998.

[15] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keaton, C. Kozyrakis, R. Thomas, and K. Yelick. A case
for Intelligent RAM: IRAM. IEEE Micro, 17(2), Apr. 1997.

[16] F. Petrini, J. Fernandez, E. Frachtenberg, and S. Coll. Scalable collective communication on the ASCI Q ma-
chine. In Hot Interconnects 12, Aug. 2003.

[17] R. Graybill. High productivity computing systems. http://www.darpa.mil/DARPATech2002/presentations/ipto pdf/speeches/GRAYBILL.pdf,
2002.

[18] M. Scott and J. Mellor-Crummey. Fast, contention-free combining tree barriers for shared memory multiproces-
sors. International Journal of Parallel Programming, 22(4), 1994.

[19] S. Scott. Synchronization and communication in the T3E multiprocessor. In Proc. of the 7th ASPLOS, Oct. 1996.

[20] Silicon Graphics, Inc. SGITMOriginTM3000 Series TR, Jan. 2001.

[21] Silicon Graphics, Inc. SN2-MIPS Communication Protocol Specification, Revision 0.12, Nov. 2001.

[22] Silicon Graphics, Inc. Orbit Functional Specification, Vol. 1, Revision 0.1, Apr. 2002.

[23] Y. Solihin, J. Lee, and J. Torrellas. Using a user-level memory thread for correlation prefetching. In Proc. of the
29th ISCA, pp. 171–182, May 2002.

[24] T. Sunaga, P. M. Kogge, et al. A processor in memory chip for massively parallel embedded applications. IEEE
Journal of Solid State Circuits, pp. 1556–1559, Oct. 1996.

[25] V. Tipparaju, J. Nieplocha, and D. Panda. Fast collective operations using shared and remote memory access
protocols on clusters. In Proc. of the International Parallel and Distributed Processing Symposium, page 84a,
Apr. 2003.

[26] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active messages: A mechanism for integrated commu-
nication and computation. In Proc. of the 19th ISCA, pp. 256–266, May 1992.

[27] P. Yew, N. Tzeng, and D. Lawrie. Distributing hot-spot addressing in large-scale multiprocessors. IEEE Trans.
on Computers, C-36(4):388–395, Apr. 1987.

[28] L. Zhang, Z. Fang, M. Parker, B. Mathew, L. Schaelicke, J. Carter, W. Hsieh, and S. McKee. The Impulse
memory controller. IEEE Trans. on Computers, 50(11):1117–1132, Nov. 2001.


