
Flexible Consistency for Wide area Peer
Replication

Sai Susarla and John Carter�
sai, retrac � @cs.utah.edu

UUCS-04-017

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

October 22, 2004

Abstract

The lack of a flexible consistency management solution hinders P2P implementation of
applications involving updates, such as read-write file sharing, directory services, online
auctions and wide area collaboration. Managing mutable shared data in a P2P setting re-
quires a consistency solution that can operate efficiently over variable-quality failure-prone
networks, support pervasive replication for scaling, and give peers autonomy to tune con-
sistency to their sharing needs and resource constraints. Existing solutions lack one or more
of these features.

In this paper, we describe a new consistency model for P2P sharing of mutable data called
composable consistency, and outline its implementation in a wide area middleware file
service called Swarm1. Composable consistency lets applications compose consistency
semantics appropriate for their sharing needs by combining a small set of primitive options.
Swarm implements these options efficiently to support scalable, pervasive, failure-resilient,
wide-area replication behind a simple yet flexible interface. We present two applications
to demonstrate the expressive power and effectiveness of composable consistency: a wide
area file system that outperforms Coda in providing close-to-open consistency over WANs,
and a replicated BerkeleyDB database that reaps order-of-magnitude performance gains by
relaxing consistency for queries and updates.

1Swarm stands for Scalable Wide Area Replication Middleware.

1 Introduction

Organizing wide area applications in a peer-to-peer (P2P) fashion can improve availability,
failure resilience, and scalability compared to traditional client-server architectures. Many
effective P2P techniques have been developed to locate and share read-only content [14] or
low-write-sharing content [3, 11, 15]. Although P2P organization could benefit wide area
applications with mutable data such as online auctions, directory services, and collaborative
applications (e.g., Lotus Notes), their data characteristics and consistency needs are diverse
and inadequately supported by existing P2P middleware systems.

P2P sharing of mutable data raises the issues of replication and consistency management.
P2P systems pose unique challenges to replication algorithms. P2P clients tend to experi-
ence diverse network characteristics and vary in their resource availability and willingness
to handle load from other peers. The collection of clients tends to be large, but constantly
changing. A P2P consistency management system must therefore be able to support per-
vasive replication to scale with load, enable peers to individually balance consistency and
availability against performance and resource usage, and operate efficiently across non-
uniform failure-prone networks.

To understand the diversity of application characteristics and their consistency needs, we
surveyed a variety of wide-area data sharing applications ranging from personal file access
(with little data sharing) to widespread real-time collaboration (e.g., chat and games, with
fine-grain synchronization) [17]. The survey identified three broad classes of distributed
applications: (1) file access, (2) database and directory services, and (3) real-time collabo-
rative groupware.

We found that applications differ widely in the frequency and extent of read and write shar-
ing among replicas, the typical replication factor, their tolerance to stale data, semantic in-
terdependencies among updates, the likelihood of conflicts among concurrent updates, and
their amenability to automatic conflict resolution. Some applications need different con-
sistency semantics for reads and writes, e.g., an online auction service might need strong
consistency for writes to prevent selling the same item twice, but could tolerate provid-
ing stale data in response to queries to improve performance. Applications differ in the
degree to which they tolerate replica divergence, e.g., users working on a shared docu-
ment expect it to reflect the latest updates made by other users before each editing session
(close-to-open consistency), while the staleness of stock-quote updates should be bounded
by a time interval. Applications access files in different ways with different consistency
requirements, e.g., personal files are rarely shared while software and multimedia file are
widely read-shared. Other applications frequently write share data, e.g., distributed logs,
shared calendars, and version control systems. How concurrent updates can be handled

varies widely, e.g., it is relatively easy to combine concurrent appends (logging) or merge-
able writes (calendars), but more complex sharing and write conflict patterns often require
explicit serialization. For some applications, optimistic or eventual consistency (i.e., propa-
gating updates lazily) provides adequate semantics and high availability, but during periods
of close collaboration users need tighter synchronization guarantees such as close-to-open
(to view latest updates) or strong consistency (to prevent update conflicts).

Based on the results of our application study, we believe that managing mutable shared data
in a P2P setting requires a consistency solution that can operate efficiently over variable-
quality failure-prone networks, support pervasive replication for scaling, and give peers
autonomy to tune consistency to their sharing needs and resource constraints. Existing
solutions fail to provide one or more of these requirements. Several P2P systems support
file and database replication with updates by providing close-to-open or eventual consis-
tency [11, 3, 15, 13], which is inadequate for many applications. A number of previous
efforts [18, 7] have viewed consistency semantics as a continuous linear spectrum ranging
from strong consistency to best-effort eventual consistency, and provided ways to control
divergence of replica contents. While powerful, these systems need to be extended in sev-
eral ways to cover the full spectrum of observed application needs.

When we carefully examined the results of our survey, we observed that the consistency
needs of applications can be expressed in terms of a small number of design options, which
we classify into five mostly orthogonal dimensions:

� concurrency - the degree to which conflicting (read/write) accesses can be tolerated,� replica synchronization - the degree to which replica divergence can be tolerated, in-
cluding the types of inter-dependencies among updates that must be preserved when
synchronizing replicas,� failure handling - how data access should be handled when some replicas are un-
reachable or have poor connectivity,� update visibility - the time at which local modifications to replicated data become
‘stable’ and ready to be made visible globally, and� view isolation - the time at which remote updates must be made visible locally.

There are multiple reasonable options along each of these dimensions that existing systems
employ separately. Based on this classification, we developed a novel composable consis-
tency model that provides the options listed in Table 1. When these options are combined
in different ways, they yield a rich collection of consistency semantics for shared data that

Dimension Available Consistency Options
Concurrency Control Access mode concurrent (RD, WR) excl (RDLK, WRLK)

Replica Synchronization

Timeliness
manual time (staleness = 0.. � secs)

mod (unseen writes = 0.. ���
Strength hard soft

Semantic Deps.
- causal
- atomic

Update ordering none total serial
Failure Handling optimistic (ignore distant replicas w/ RTT � 0.. �) pessimistic
Update Visibility session per-access manual

View Isolation session per-access manual

Table 1: Consistency options provided by the Composable Consistency (CC) Model. Consistency
semantics are expressed for an access session by choosing one of the alternative options in each row,
which are mutually exclusive. Options in italics indicate reasonable defaults that provide close-
to-open semantics suitable for many applications. In our discussion, when we leave an option
unspecified, we assume its default value.

cover the needs of a broad variety of applications. Using composable consistency, a P2P
auction service could employ strong consistency for updates, while relaxing consistency
for queries to limit synchronization cost. An auction user can specify stronger consistency
requirements to ensure 100% accurate query results, although doing so increases overhead
and latency.

In this paper, we describe the composable consistency model and outline how we imple-
mented it in a wide area P2P middleware file service called Swarm. Swarm lets applications
express consistency requirements as a vector of options along these dimensions on a per-
access basis rather than only supporting a few packaged combinations. Doing so gives
applications more flexibility in balancing consistency, availability, and performance. In
addition, Swarm performs aggressive peer replication and tunes its replication behavior in
response to observed network and node availability conditions. As a result, Swarm more
effectively caches data near where it is accessed, thereby providing low latency data access,
under a broader range of data sharing scenarios than existing systems.

To determine the value of composable consistency in Swarm, we implemented both a wide
area P2P file system and a wrapper library that supports replication around the BerkeleyDB
database library. We show that Swarm’s composable consistency ensures close-to-open se-
mantics over a WAN and outperforms Coda’s client-server implementation by exploiting
‘nearby’ replicas during roaming file access. We also show that replicating BerkeleyDB us-

ing Swarm enables order-of-magnitude improvements in write performance and scalability
beyond master-slave replication by relaxing consistency in several ways. Swarm relieves
application writers of the burden of implementing their own replication and consistency
mechanisms. Since the focus of this paper is on evaluating composable consistency in a
wide area P2P replication environment, we limit our discussion of Swarm’s design to its
consistency implementation. A more complete description and evaluation of Swarm’s de-
sign, including its dynamic hierarchical replication and its scalability and failure resilience
properties, appears elsewhere [17].

In Section 2 we describe prior work on flexible consistency management and wide area
replication management. In Section 3 we describe the composable consistency model. We
briefly outline Swarm’s design in Section 4 before describing its consistency implemen-
tation in Section 5. We present our evaluation of its practicality in Section 6. Finally, in
Section 7 we conclude.

2 Related Work

Several solutions exist to manage replication among wide-area peers. Several P2P systems
were developed to share read-only data such as multimedia files (PAST [14], KaZaa) or
access to rarely write-shared personal files [15], but not frequent write-sharing. Numerous
consistency schemes have been developed individually to handle the data coherence needs
of specific services such as file systems, directory services [10], databases and persistent
object systems [9]. Distributed file systems such as NFS, Pangaea, Sprite, AFS, Coda and
Ficus target traditional file access with low write-sharing among multiple users. Ivy [11]
is a read/write P2P file system that supports close-to-open semantics based on P2P block
storage and logs. Composable consistency adopts a novel approach to support many of
their consistency semantics efficiently in a P2P setting.

Bayou [3] explored optimistic replication and update propagation for collaborative appli-
cations under ad-hoc connectivity. Our consistency implementation employs some of their
techniques in a wider context.

Fluid replication [2] provides multiple selectable consistency policies for static hierarchical
caching. In contrast, our approach offers primitive options that can be combined to yield a
variety of policies, offering more customizability for peer-to-peer replication. Many design
options [8, 7] that we identified for composable consistency are proposed separately by
prior systems. Our model forges them uniquely for flexibility.

Many previous efforts have explored a continuous consistency model [18, 7]. Of those,
the TACT toolkit [18] provides continuously tunable consistency along three dimensions
similar to those covered by our timeliness and concurrency control aspects. We provide
additional flexibility including the notion of sessions and explicit semantic dependencies to
cater to a wider variety of application needs as described in Section 3. TACT’s order error
offers continuous control over the number of update conflicts. In contrast, our concurrency
options provide a binary choice between zero and unlimited number of conflicts. We be-
lieve that for many real-world applications, a binary choice such as ours is adequate and
reduces bookkeeping overhead.

3 Composable Consistency Model

The composable consistency (CC) model is applicable to systems that employ the data-
shipping paradigm. Such applications are structured as multiple distributed components,
each of which holds a portion of application state and operates on other portions by locally
caching them as needed. The CC model assumes that applications access (i.e., read or
write) their data in sessions, and that consistency can be enforced at session boundaries or
before and after each read or write access.

In the CC model, an application expresses its consistency requirements for each session as
a vector of consistency options , as listed in Table 1. Each row of the table indicates several
mutually exclusive options available to control the aspect of consistency indicated in its first
column. Reasonable default options are noted in italics, which together enforce the close-
to-open consistency semantics provided by AFS [5] for coherent read-write file sharing. A
particular CC implementation can provide reasonable defaults, but allow an application to
override the defaults if needed. Table 2 lists the CC options for several consistency flavors.

Concurrency: CC provides two flavors of access modes to control the parallelism among
reads and writes. Concurrent modes (RD, WR) allow arbitrary interleaving of accesses
across replicas, similar to Unix file semantics. Exclusive modes (RDLK, WRLK) pro-
vide traditional concurrent-read-exclusive-write semantics [12]. When both flavors are em-
ployed on the same data simultaneously, RD mode sessions coexist with all other sessions,
i.e., RD operations can happen in parallel with exclusive sessions, while WR mode sessions
are serialized with respect to exclusive sessions, i.e., they occur before the RDLK/WRLK
session begins or are deferred until it ends.

Timeliness Guarantees: The degree to which replica contents are allowed to diverge (i.e.,
timeliness in Table 1) can be specified in terms of time, the number of missed updates,

or both. These options are analogous to the TACT toolkit’s staleness and numeric error
metrics [18]. The timeliness bounds can be hard, i.e., strictly enforced by stalling writes if
necessary (like TACT), or soft, i.e., enforced in a best-effort manner for high availability.
Two types of semantic dependencies can be directly expressed among multiple writes (to
the same or different data items), namely, causality and atomicity. These options together
with the session abstraction can be used to support the transactional model of computing.

Update Ordering Constraints: When updates are issued independently at multiple repli-
cas (e.g., by ‘WR’ mode sessions), our model allows them to be applied (1) with no par-
ticular constraint on their ordering at various replicas (called ‘none’), (2) in some arbitrary
but common order everywhere (called ‘total’), or (3) sequentially via serialization (called
‘serial’). The ordering options can be specified on a per-session basis. Unordered updates
provides high performance when updates are commutative, e.g., increments to a shared
counter or updates to different entries in a shared directory. Totally ordered updates can
be concurrent, but may need to be reapplied to ensure global ordering. Some updates that
require total order cannot be undone and reapplied, and thus must be globally serialized.
For example, when multiple clients concurrently issue the dequeue operation at different
replicas of a shared queue, they must not obtain the same item, although multiple items
can be enqueued concurrently and reordered later. Hence the dequeue operation requires
‘serial’ ordering, while enqueue requires ‘total’ ordering.

Failure Handling: When all replicas are not equally well-connected, different consistency
options can be imposed on different subsets of replicas based on their relative connectivity
by specifying a cut-off network quality. Consistency semantics are guaranteed at a replica
only relative to those replicas reachable via higher quality links. For instance, this enables
a directory service to provide strong consistency among clients within a campus, while
enforcing optimistic eventual consistency across campuses for higher availability.

Visibility and Isolation: Finally, a session can determine how long it stays isolated from
the updates of remote sessions, as well as when its own updates are ready to be made
visible to remote sessions. A session can choose to remain isolated entirely from remote
updates (‘session’, ensuring a snapshot view of data), allow them to be applied on local
copies immediately (‘per-access’, useful for log monitoring), or when explicitly requested
(‘manual’). Similarly, a session’s updates can be propagated as soon as they are issued (use-
ful for chat), when the session ends (useful for file updates), or when explicitly requested
(‘manual’).

Although CC’s options are largely orthogonal, they are not completely independent. For
example, the exclusive access modes imply session-grain visibility and isolation, a hard
most-current timeliness guarantee, and serial update ordering.

At first glance, providing a large number of options rather than a small set of hardwired
protocols might appear to impose an extra burden on application programmers. How-
ever, thanks to the orthogonality and composability of CC’s options, their semantics are
roughly additive and application programmers need not consider all combinations of op-
tions. Rather, we anticipate that implementations of CC will bundle popular combinations
of options as defaults (e.g., ‘Unix file semantics’, ‘CODA semantics’, or ‘best effort stream-
ing’), while allowing individual applications to refine their consistency mechanisms when
required. In those circumstances, programmers can choose individual options along inter-
esting dimensions while retaining the other options from the default protocol.

4 Swarm

Swarm is a distributed file store organized as a collection of per servers (called Swarm
servers) that provide coherent wide area file access at a variable granularity. Applications
store their shared state in Swarm files and operate on their state via nearby Swarm servers.

Files in Swarm are persistent variable-length flat byte arrays named by globally unique 128-
bit numbers called SWIDs. Swarm exports a file system-like session-oriented interface that
supports traditional read/write operations on file blocks as well as operational updates on
files (explained below). A file block (also called a page, default 4KB) is the smallest unit of
data sharing and consistency in Swarm. Swarm servers locate files by their SWIDs, cache
them as a side-effect of local access, and maintain consistency according to the per-file
consistency options (as described in Section 3). Each Swarm server uses a portion of its
local persistent store for permanent (‘home’) copies of some files and uses the remaining
space to cache remotely homed files. Swarm servers discover each other as a side-effect of
locating files by their SWIDs. Each Swarm server monitors the connection quality (latency,
bandwidth, connectivity) to other Swarm servers with which it has communicated in the
recent past, and uses this information to form an efficient dynamic hierarchical overlay
network of replicas of each file.

Swarm exports the traditional session-oriented file interface to its client applications via a
Swarm client library linked into each application process. The interface allows applications
to create and destroy files, open a file session with specified consistency options, read and
write file blocks, and close a session. A session is Swarm’s unit of concurrency control and
isolation. A Swarm server also exports a native file system interface to Swarm files via the
local operating system’s VFS layer, ala CodaFS [6]. The wrapper provides a hierarchical
file name space by implementing directories within Swarm files.

Swarm allows files to be updated in two ways: (i) by directly overwriting the previous
contents on a per file block basis (called absolute or physical updates) or (ii) by register-
ing a semantic update procedure (e.g., “add(name) to directory”) and then invoking the
update() interface to get Swarm to perform the operation on each replica (called oper-
ational updates). Before invoking an operational update, the application first must link a
plugin to each Swarm server running an application component. The plugin is used both
to apply update procedures and to perform application-specific conflict resolution. When
operational updates are used, Swarm replicates entire files as a single consistency unit.

Using Swarm: To use Swarm, applications link to a Swarm client library that invokes op-
erations on a nearby Swarm server in response to client operations (e.g., creating a file,
opening an access session, or performing a read or write). When applications open a file,
they can specify a set of consistency options. As described below, the local Swarm server
interacts with other Swarm servers to acquire and maintain a locally cached copy of the
file with the appropriate consistency. Figure 1 illustrates a database service and a direc-
tory service (both derived from the BerkeleyDB embedded database library [16]) using
Swarm to implement wide area proxy caching. The ‘DB’ represents the unmodified Berke-
leyDB database service oblivious to replication, the ‘AS’ represents the auction or direc-
tory service-specific logic, and the ’FS’ provides local storage. Our evaluation in Section 6
shows the benefit of such replication.

Replication: The Swarm servers caching a particular file dynamically organize themselves
into an overlay replica hierarchy. All communication between replicas happens via this
hierarchy. Figure 2 shows a Swarm network of six servers with hierarchies for two files.
One or more servers act as custodians, which maintain permanent copies of the file. Having
multiple custodians enables fault-tolerant file lookup. One custodian, typically the server
that created the file, is designated the root custodian or home node, and coordinates the
file’s replication and consistency management, as described below. When the root fails,
another custodian is elected as root by a majority vote.

The focus of this paper is Swarm’s consistency maintenance, so we briefly describe how
files are replicated in Swarm, and refer the reader elsewhere [17] for further details on how
Swarm creates cycle-free replica hierarchies in the face of node churn, optimizes the replica
hiearchy based on observed network characteristics, and provides fault resilience.

Swarm caches files based on local access by clients. Figure 3 illustrates how the hierarchy
is formed for file F2 as nodes successively cache it locally. Node distances in the figure
are roughly indicative of their network distances (roundtrip times). When a Swarm server
R wants to cache a file locally (to serve a local access), a Swarm server first uses the file’s
SWID to locate its custodians, e.g., via an external location service, like Pastry [14] or via
a simple mechanism like hardwiring the IP address into the SWID, an approach we employ

Swarm

...

RPCs

Swarm

Proxy

Campus 3

Clients

...
ProtocolSwarm

AS

FS

Home Campus

cluster

...

Campus 2

DB

Internet

DB

Clients

AS

cluster

FS

Server

Clients

Figure 1: An enterprise application employing a Swarm-based proxy server. Clients in campus 2
access the local proxy server, while those in campus 3 invoke either server.

Figure 2: File replication in a Swarm network. Files F1..F3 are replicated at Swarm servers N1..N6.
Permanent copies are shown in darker shade. F1 and F2 are homed at N1. F3 has two custodians:
N4 and N5. Replica hierarchies are shown for F2 and F3 rooted at N5 and N4 respectively. Arrows
indicate parent links.

Figure 3: Replication of file F2. (a) N1 and N3 cache F2 from its home N5. (b) N2 and N4 cache
it from N5; N1 reconnects to closer replica N3. (c) Both N2 and N4 reconnect to N3 as it is closer
than N5. (d) Finally, N2 reconnects to N1 as it is closer than N3.

in our prototype. Swarm keeps track of these custodians, and then requests one of them (say
P) to be its parent replica and provide a file copy, preferring those that can be reached via
high quality (low-latency) links. Unless P is serving ”too many” child replicas, it accepts R
as its child, transfers the file contents, and initiates consistency maintenance (as explained
in Section 5). P also sends the identities of its children to R, along with an indication if it has
already reached its configured fanout limit. R augments its lookup cache with the supplied
information. If P was overloaded, R remembers to avoid asking P for that file in the near
future, otherwise R sets P as its parent replica. R repeats this parent election process until
it has a valid file copy and a parent replica (the root custodian is its own parent). Even
when a replica has a valid parent, it monitors its network quality to known replicas and
reconnects to a closer replica, if found. This process forms a dynamic hierarchical replica
network rooted at the root custodian like Blaze’s file caching scheme [1], but avoids hops
over slow network links when possible, like Pangaea [15]. When a replica loses contact
with its parent, it reelects its parent in a similar manner to reconnect to the hierarchy. To
guard against the root’s temporary failure, the identities of the root’s direct children are
propagated to all replicas in the background, so reachable replicas can re-group into a tree
until the root recovers.

5 Implementing Composable Consistency

To enforce composable consistency, each Swarm server has a consistency module (CC)
that is invoked when clients open or close a file or when clients perform reads or updates
within a session. Clients can indicate the desired consistency for file data accessed during a
session. The CC module performs checks, interacting with peers when necessary, to ensure
that the local file copy meets client requirements. Similarly, when a client issues updates,
the CC module to take actions (i.e., propagating updates) to enforce consistency guarantees
given by peer servers to their clients.

To succintly track concurrency control and replica synchronization guarantees (i.e., time-
liness) given to client sessions, the CC module internally represents them by a construct
called the privilege vector (PV), described below. The CC module at a site can give a
client access to a local replica without contacting its peers if the replica’s PV indicates
that the local replica’s consistency is guaranteed to be at least as strong as the required
by the client (e.g., if the PV indicates that the local copy is suitable for concurrent write
access with 100ms staleness and the client can tolerate 200ms staleness). Peer CC mod-
ules exchange messages to learn of each other’s PVs, obtain stronger PVs, ensure that their
PVs are compatible, and push enough updates to preserve each other’s PV properties. Al-
though a Swarm server is responsible for detecting inaccessible peers and repairing replica

hierarchies, its CC module must continue to maintain consistency guarantees in spite of
reorganization.

The rest of this section describes how the CC module tracks PVs and interacts with its peers
to enforce CC options.

Privilege Vectors: The CC module internally represents concurrency control and replica
synchronization (timeliness and strength) guarantees using a privilege vector (PV). Asso-
ciated with each replica of data is a current privilege vector (currentPV) that indicates the
highest access mode and the tightest staleness and mod limit guarantees that can be given
to local sessions without violating similar guarantees made at remote replicas.

A PV consists of four components that are independently enforced by different consistency
mechanisms: an access mode, a hard time limit (HT), a hard mod limit (HM) and a soft
time+mod limit (STM.[t,m]). By default, a file’s root custodian starts with the highest PV
([WRLK, *, *, *] where * is a wildcard), whereas a new replica starts with the lowest PV
([RD, � , � , �]).

A replica obtains the PV required to grant local sessions by recursively issuing RPCs to
its neighbors in the replica hierarchy. For each neighbor N, it remembers the relative PV
granted to N (N.PVout) and obtained from N (N.PVin). The replica’s currentPV is the
lowest of the PVs it obtained from its neighbors. Since each replica only keeps track of the
PVs of its neighbors, the PV state maintained at a replica is proportional to its fanout and
not to the total number of replicas.

Core Consistency Protocol: The bulk of the CC module’s functionality can be summa-
rized in terms of two node-local operations:

� Pull(PV): Obtain the consistency guarantees represented by the PV from remote
replicas.� Push(neighbor N): Propagate outstanding updates to a neighbor replica N.

To implement these operations, Swarm’s core consistency protocol employs two kinds of
messages, namely, get and put, that are the inter-node counterparts of the above opera-
tions.

If a client initiates a session that requires stronger consistency guarantees than the local
replica has (e.g., the client requests the file in WRLK mode but the local replica is read-
only) or if the client requests a manual synch, the consistency module performs a pull

operation by issuing get messages to its neighbors, specifying the requested degree of
consistency. The neighbors reply with put messages, which update the file’s PV, and
potentially its contents. For example, if the client requests the file in WRLK mode, the
local consistency module waits until it is given exclusive write access to the file. To ensure
fairness to client requests, concurrent pull operations for a particular file on a node are
performed in FIFO order. A node issues get requests in parallel to its neighbors in the
hierarchy, so pull latency grows logarithmically with the total number of replicas provided
the hierarchy is kept dense by Swarm.

In contrast, a push operation is performed when there are updates available at a replica from
either local clients or pushed from remote replicas that need to be passed along to other
nodes in keeping with their consistency requirements. After the updates are applied locally,
in keeping with the isolation options of local sessions, and are ready for propagation, in
keeping with the originating session’s visibility setting, the local consistency module sends
put messages to its neighbors. The mod bounds and time bounds of remote replicas are
maintained by propagating updates in accordance with their dependencies and ordering
constraints. For example, if a node has guaranteed that it will help a neighboring node
enforce a timeliness bound of 100ms, its consistency module may defer push’ing local
updates to the neighbor until such time as deferring the push any longer will violate that
guarantee, but no longer.

A Swarm server’s CC protocol handler responds to a get message from a neighbor by first
invoking a pull operation on the local CC module to obtain the requested PV locally. It
then replies to the neighbor via a put message, transferring the requested privilege along
with any pending updates, and updates the PV of its local replica to be compatible with the
neighbor’s new PV. By granting a PV, a replica promises to call back its neighbor before
allowing accesses in its portion of the hierarchy that violate the granted PV’s consistency
guarantee. The recursive nature of the pull operation requires that the replica network be
acyclic, since cycles in the network cause deadlocks. To avoid deadlock when parent and
child replicas simultaneously issuing gets to each other, we allow a parent’s pull request
to bypass a child’s get request to its parent.

When a putmessage arrives, the protocol handler blocks for ongoing updates to finish and
local sessions with session-grained isolation to end. It then applies the incoming updates
atomically, updates the file’s PV, and makes a push request to the consistency module to
trigger further update propagation (if necessary).

Leases: To reclaim PVs from unresponsive neighbors, a replica always grants non-trivial
PVs higher than [wr, � , � , �] to its children as leases (time-limited privileges). The root
node grants 60-second leases; other nodes grant slightly smaller leases than their parent
lease to give them sufficient time to respond to lease revocation. A parent replica can

unilaterally revoke PVs from its children (and break its callback promise) after their finite
lease expires, which lets it recover from a node holding a lease becoming unavailable.
Child replicas that accept updates using a leased privilege must propagate them to their
parent within the lease period, or risk update conflicts and inconsistencies. Leases are
periodically refreshed via a simple mechanism whereby a node pings other nodes that have
issued it a lease for any data (four times per lease period in our current implementation).
Each successful ping response implicitly refreshes all leases issued by the pinged node that
are held by the pinging node. If a parent is unresponsive, the node informs its own children
that they cannot renew their lease.

When a child replica loses contact with its parent while holding a lease, it reconnects to the
replica hierarchy and issues a special ‘lease recovery’ pull operation. Unlike a normal pull,
lease recovery prompts an ancestor of the unresponsive old parent to immediately renew the
lease, without waiting for the inaccessible node’s lease to expire. This “quick reconnect”
is legal because the recovering node has holds a valid lease on the data and thus has the
“right” to have its lease recognized by its new parent. This mechanism enables replicas to
maintain consistency guarantees in the face of node failures and a dynamically changing
replica hierarchy.

Enforcing Replica Divergence Bounds: To enforce a hard time bound (HT), a replica
R issues a pull to neighbors that are potential writers at most once every HT interval. A
replica enforces a soft time bound (STM.t) by imposing a minimum push frequency (at
least once per STM.t) on each of its neighbors. To enforce a modification bound of M
unseen updates globally (HM and STM.m), a replica splits the bound into smaller bounds
that are imposed on each of its neighbors that are potential writers. These neighbors may
recursively split the bound to their children, which divides the responsibility of tracking
updates across the replica hierarchy. A replica pushes updates whenever the number of
queued updates reaches its local bound. If the mod bound is hard, the replica waits until
the updates are applied and acknowledged by receivers before it allows subsequent updates.

Update Propagation: Swarm propagates updates (modified file blocks or operational up-
dates) via put messages. Each Swarm server stores operational updates in FIFO order in
a persistent update log. For the purpose of propagation, each update from a client session
is tagged by its origin replica and a node-local version number to identify it globally. To
ensure reliable update delivery, a replica keeps client updates in its log in the tentative state
and propagates them via its parent until a custodian acknowledges the update, switches the
update to the saved state, handles further propagation. When the origin replica sees that the
update is now saved, it removes the update from its local log.

To identify what updates to propagate and ensure exactly-once delivery, Swarm maintains a
version vector (VV) at each replica that indicates the latest update incorporated locally orig-

inating at every other replica. When two replicas synchronize, they exchange their VVs to
identify missing updates. In general, the VV size is proportional to the total number of
replicas, which could be very large (thousands), but since Swarm maintains replica trees
and thus there is only one path between any two replicas in a stable tree topology, we can
use compact neighbor-relative version numbers to weed out duplicate updates between al-
ready connected replicas. We exchange full version vectors only when a replica reconnects
to a new parent, which occurs infrequently.

Ordering Concurrent Updates: When applying incoming remote updates, a replica checks
if independent updates unknown to the sender were made elsewhere, indicating a potential
conflict. Conflicts are possible when clients employ concurrent mode write (WR) sessions.
For ‘serially’ ordered updates, Swarm forwards them to the root custodian to be applied
sequentially. For ‘unordered’ updates, Swarm applies updates in their arrival order, which
might vary from one replica to another. For ‘totally’ ordered updates, Swarm relies on a
conflict resolution routine to impose a common global order at all replicas. This routine
must apply the same update ordering criterion at all replicas to ensure a convergent final
outcome. Swarm provides default resolution routines that reorder updates based on their
origination timestamp (timestamp order) or by their arrival order at the root custodian (cen-
tralized commit order. The former approach requires Swarm servers to loosely synchronize
their clocks via protocols such as NTP. The latter approach is similar to Bayou [3] and uses
version vectors.

To enforce semantic ordering constraints (e.g., atomic or causal), Swarm tags each update
with the ordering constraint of the issuing session. It uses the local update log to deter-
mine in what order it must propagate or apply updates to satisfy these ordering guarantees.
Atomically grouped updates are always propagated and applied together.

6 Evaluation

In Section 6.1, we show how Swarm’s CC implementation of close-to-open semantics ex-
ploits ‘nearby replicas’ (similar to Pangaea [15]) to outperform Coda’s client-server imple-
mentation in a sequential file sharing (roaming) scenario. In Section 6.2 we demonstrate
how the performance and scalability of a replicated BerkeleyDB database varies under five
consistency mechanisms that range from ‘strong’ (appropriate for a conventional database)
to ‘time-based’ (appropriate for typical directory services). Swarm offloaded the hard prob-
lems of replication and consistency management from both applications, thereby simplify-
ing their implementation while providing them with a rich set of consistency choices.

100Mbps LAN

����		
		

��
��

����������������

Internet

Corp. LAN

Home Node

ISP1

Turkey
Univ. LAN

U2U1 T1 T2

I1 I2

USA Europe

C1
C2

F2F1

France

100ms
Slow link

Workstation Router

10ms

40ms

30
ms

Link b/w: 1Mbps

4ms

20ms (RTT)

Figure 4: Network topology for Swarmfs roaming experiment.

For all experiments, we used the Emulab Network Testbed [4] to emulate WAN topologies
among clustered PCs. The PCs have 850Mhz Pentium-III CPUs with 512MB of RAM and
run Redhat Linux 7.2. Swarm servers run on each PC as user-level processes and store files
in a single directory in the local file system, using the SWID as the filename. The Swarm
replica fanout was configured to a low value of 4 to induce a multi-level hierarchy.

6.1 Swarmfs: A Flexible Distributed File System

We evaluate a Swarm-based file system (Swarmfs) on a synthetic roaming benchmark
across an emulated non-uniform WAN network shown in Figure 4. In this benchmark,
we model collaborators at a series of locations accessing shared files, one location at a
time. This type of ‘sequential file sharing’ is representative of mobile file access or work-
flow applications where collaborators take turns updating shared documents or files. We
compare Swarmfs to Coda employing both weak (coda-w) and strong connectivity modes
(coda-s). Like Pangaea, and unlike Coda, Swarm provides low-latency by treating replicas
as peers for consistency enforcement. Unlike Pangaea, Swarmfs guarantees close-to-open
consistency. To support close collaboration or near-simultaneous file access, users require
close-to-open consistency semantics even under weak connectivity.

The topology modeled consists of five widely distributed campuses, each with two ma-
chines on a 100Mbps LAN. The node U1 (marked ‘home node’) initially stores the Tcl-8.4

Roaming User - Compile Latency

0

50

100

150

200

250

300

U
1

U
2

I1
, 2

4m
s I 2

C1,
50

ms C
2

T1,
16

0m
s T

2

F1,
13

0m
s F

2

LAN-node#, RTT to Home (U1)

se
co

nd
s swarm

coda-s
coda-w

Figure 5: Roaming File Access: Swarmfs pulls source files from nearby replicas. Strong-mode
Coda correctly compiles all files, but exhibits poor performance. Weak-mode Coda performs well,
but generates incorrect results on the three nodes farthest from the server (U1).

source files, 163 files with a total size of 6.7MB. We run Swarmfs servers and Coda clients
on all nodes. The Coda server runs on U1.

In our synthetic benchmark, clients at various nodes sequentially access files. each client
modifies one source file, compiles the Tcl-8.4 source tree, and then deletes all object files.
These operations represent isolated updates, intensive file-based computation, and creating
and deleting a large number of temporary files. Clients on each node in each campus (in the
order University (U) � ISP1 (I) � Corporate (C) � Turkey (T) � France (F)), perform
the edit-compile-cleanup operation one after another.

Figure 5 shows the compilation times on each node. Since Swarm creates efficient replica

hierarchies and acquires files from nearby replicas (e.g., from another node on the same
LAN, or, in the case of France, from Turkey), it outperforms Coda’s client-server imple-
mentation, which always pulls files from server U1.

In weak connectivity mode (coda-w), Coda guarantees only eventual consistency, which
causes incorrect behavior starting at node T2. In this case, coda-w’s trickle reintegration
causes the client on T1 to eagerly push huge object files to U1, thereby clogging its network
link and delaying notification of subsequent file deletions. By the time T2 sees T1’s file
deletion operations, it has already started its compile and used stale object files. Coda’s
strong connectivity mode provides close-to-open semantics but incurs double the latency of
Swarmfs because of write-throughs to the server (U1). Both these problems occur because
Coda servers never pull updates from clients, but rather clients must push updates to the
server. Swarm avoids this by employing the same pull mechanism uniformly at all replicas.

6.2 SwarmDB: Replicated BerkeleyDB

Popular databases (e.g., mySQL, Oracle, and BerkeleyDB) predominantly employ master-
slave replication (if any) across the wide area due to its simplicity; read-only replicas are
deployed near clients to scale query performance, but updates are applied at a central master
site to ensure serializability. For applications that can handle concurrent updates (e.g.,
many directory services), master-slave replication is overly restrictive and does not scale or
exploit regional locality. By using Swarm to implement database replication, we can choose
on a per-client basis how much consistency is required. High throughput can be achieved
when the consistency requirements are weaker, as in a directory service [10], while the
same code base can be used to provide a strongly consistent database when required.

We augmented the BerkeleyDB embedded database library [16] with replication support
as a wrapper library called SwarmDB. A typical SwarmDB-based application is shown in
Figure 1. SwarmDB stores a BerkeleyDB database in its native format in a Swarm file
and intercepts BerkeleyDB update operations to invoke them as operational updates on the
local Swarm server via a SwarmDB plugin. SwarmDB-based application instances access
the database via Swarm servers spread across a WAN that cache the database locally.

We measure SwarmDB’s read and write throughput under a full-speed update-intensive
workload when employing the five distinct flavors of consistency semantics shown in Ta-
ble 2. We compare the performance of the five flavors of SwarmDB against BerkeleyDB’s
client-server (RPC) implementation. The consistency flavors (listed from strongest to
weakest) are: (1) locking writes and optimistic reads, where writes are serialized via locks
before being propagated, (2) master-slave writes and optimistic reads, where all writes

Consistency Semantics CC options
locking writes WRLK

master-slave writes WR, serial
close-to-open rd, wr RD/WR, time=0, hard
time-bounded rd, wr time=10, hard

optimistic/eventual rd, wr RD/WR, time=0, soft

Table 2: Consistency flavors employed for Replicated BerkeleyDB and the CC options to achieve
them. The unspecified options are set to [RD/WR, time=0, mod= � , soft, no semantic deps, total
order, pessimistic, session visibility & isolation].

are serially ordered at the root of the replica hierarchy before propagation, (3) close-to-
open consistency, (4) time-bounded staleness, where data is synched before access if more
than a threshold time has passed since the last synch, and (5) optimistic writes and reads,
where writes are performed locally before being propagated to other replicas. Our synthetic
benchmark creates and populates a BerkeleyDB database with 1000 key-value pairs inside
a Swarm file. The database size does not affect performance, except during startup,since
we employ operational updates, where Swarm replicates the entire database file as a single
consistency unit and propagates operations instead of changes.

We run the benchmark on 2 to 48 nodes. Nodes are each connected by a 1Mbps, 10-msec
delay WAN link to a backbone router, which implies a 40ms roundtrip between any two
nodes. Each server executes 10,000 random operations at full-speed, i.e., no think time.
The operation mix consists of 5% adds, 5% deletes, 20% updates, 30% lookups, and 40%
cursor-based scans. Reads (lookups and cursor-based scans) are performed directly on the
database file, while writes (adds, deletes, and updates) are sent to the local Swarm server
by the SwarmDB library. Each operation opens a Swarm session on the database file in the
appropriate mode, performs the operation, and closes the session.

Figures 6 and 7 show the average throughput observed per replica for reads and writes. In
addition to the SwarmDB results, we present baseline performance when directly operating
on a database file stored in the local file system (local), when invoking RPCs to a colocated
berkeleyDB server (rpclocal), and when accessing a local Swarm-based database file with
no sharing (Swarm local). Swarm local represents the best throughput possible using Swar-
mDB on top of our Swarm prototype. The high cost of IPC between the client and server
account for the performance degradation of rpclocal and Swarm local compared to local.

Figure 6 shows that read throughput scales well when we request soft (push-based) or
time-based consistency guarantees, but not when we request hard (firm pull-based) guar-
antees, as expected. Due to the update-intensive nature of the workload, there is almost

1

10

100

1000

10000

100000

2 4 8 16 32 40 48

Th
ro

ug
hp

ut
 (r

ea
ds

/s
ec

)

Replicas

SwarmDB Read throughput per-replica

local

rpclocal
Swarm local

optimistic rd, wr
20msec-bounded
10msec-bounded
close-to-open
rpc

Figure 6: SwarmDB Per-replica Read Throughput

1

10

100

1000

10000

100000

2 4 8 16 32 40 48

Th
ro

ug
hp

ut
 (w

rit
es

/s
ec

)

Replicas

 SwarmDB Write throughput per-replica

local

rpclocal
Swarm local

optimistic wr
20msec-bounded
10msec-bounded

close-to-open
locking wr

rpc
master-slave wr

Figure 7: SwarmDB Per-replica Write Throughput

always a write in progress somewhere in the system. Thus the strict pull-based schemes
are constantly pulling updates across WAN links, suffering the same high latency that the
RPC-based solution incurs. As a result, close-to-open and strong consistency do not scale
beyond 16 replicas, given the high degree of write-sharing. Eventual consistency scales
well to large replica sets even when pushing updates eagerly, because Swarm enables the
DB plugin to remove self-canceling updates. Tolerating even a small amount of staleness
(10ms) significantly improves read and write performance over close-to-open consistency,
because the cost of synchronization over the wide area is very high, and amortizing it over
multiple operations has substantial latency benefit.

In summary, different consistency options provide vastly different semantics and perfor-
mance characteristics for the same workload. Composable consistency enables an applica-
tion to choose the right semantics based on its specific need at hand.

7 Conclusions

In this paper we proposed a new way to structure consistency management for P2P shar-
ing of mutable data, called composable consistency. It splits consistency management into
design choices along several orthogonal dimensions and lets applications express their con-
sistency requirements as a vector of these choices on a per-access basis. The design choices
are orthogonal and can be combined in various ways to yield a rich collection of semantics,
while enabling an efficient implementation. We outlined an implementation of the model in
a pervasive peer replication environment spanning non-uniform networks. Our evaluation
showed how composable consistency is both expressive and practical.

References

[1] M. Blaze. Caching in Large Scale Distributed File Systems. PhD thesis, Princeton University,
1993.

[2] L. Cox and B. Noble. Fast reconciliations in Fluid Replication. In Proc. 21st Intl. Conference
on Distributed Conputing Systems, Apr. 2001.

[3] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B. Welch. The Bayou
architecture: Support for data sharing among mobile users. In Proceedings of the Workshop
on Mobile Computing Systems and Applications, Dec. 1994.

[4] Emulab. http://www.emulab.net/, 2001.

[5] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and
M. West. Scale and performance in a distributed file system. ACM Transactions on Com-
puter Systems, 6(1):51–82, Feb. 1988.

[6] J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. In Proc.
13th Symposium on Operating Systems Principles, pages 213–225, Oct. 1991.

[7] N. Krishnakumar and A. Bernstein. Bounded ignorance: A technique for increasing concur-
rency in a replicated system. ACM Transactions on Data Base Systems, 19(4), Dec. 1994.

[8] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using lazy
replication. ACM Transactions on Computer Systems, 10(4), 1992.

[9] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The Objectstore database system. Com-
munications of the ACM, Oct. 1991.

[10] Microsoft Corp. Active directory (in windows 2000 server resource kit). Microsoft Press,
2000.

[11] A. Muthitacharoen, B. Chen, and D. Mazieres. Ivy: A read/write peer-to-peer file system. In
Proc. 5th Symposium on Operating System Design and Implementation, Dec. 2002.

[12] M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite network file system. ACM
Transactions on Computer Systems, 6(1):134–154, 1988.

[13] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G. Popek. Resolving file conflicts in the
Ficus file system. In Proceedings of the Summer Usenix Conference, 1994.

[14] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale, per-
sistent peer-to-peer storage utility. In Proc. 18th Symposium on Operating Systems Principles,
2001.

[15] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming aggressive replication in
the Pangaea wide-area file system. In Proc. 5th Symposium on Operating System Design and
Implementation, pages 15–30, 2002.

[16] Sleepycat Software. The BerkeleyDB database. http://sleepycat.com/, 2000.

[17] S. Susarla and J. Carter. Flexible consistency for wide area peer replication. Technical Report
UUCS-04-016, University of Utah School of Computer Science, Oct. 2004.

[18] H. Yu and A. Vahdat. Design and evaluation of a continuous consistency model for replicated
services. In Proc. 4th Symposium on Operating System Design and Implementation, Oct. 2000.

