An Introduction to the Sundance
and AutoSlog Systems

Ellen Riloff and William Phillips

UUCS-04-015

School of Computing
University of Utah
Salt Lake City, UT 84112 USA

November 8, 2004

Abstract

This document describes the Sundance natural language processing system that has been devel-
oped at the University of Utah, as well as the AutoSlog and AutoSlog-TS extraction pattern learners
that have been implemented on top of Sundance. Sundance is a shallow parser that also includes
clause handling capabilities and an information extraction engine. AutoSlog and AutoSlog-TS are
learning algorithms that can be used to generate extraction patterns automatically. This report in-
cludes: (1) a high-level overview of Sundance’s design and capabilities, (2) a detailed description
of the steps that Sundance performs when analyzing sentences, (3) a discussion of the capabilities
of the AutoSlog and AutoSlog-TS learning algorithms, and (4) guidance on how to install, use,
and customize the Sundance and AutoSlog systems for new users and applications.

Contents
1 Introduction
2 An Overview of Sundance

3 The Sundance Parser
3.1 Pre-Processing e
3.2 Sentence Segmentation
3.3 Dictionary Lookup
3.4 Morphological Analysis.
3.5 Part-of-Speech Tagging (or a lack thereof)
3.6 Syntactic Segmentation L
3.7 Entity Recognition
3.8 Clause Segmentation
3.9 Syntactic Role Assignment
3.10 (Attempts at) Relative Pronoun Resolution
3.11 SubjectiInference
3.12 Sundance in Action: Example Sentences and Parse Output

4 Information Extraction with Sundance and AutoSlog
4.1 Sundance’s Information Extraction Engine L.
4.2 AUOSIOg e
4.3 AUoSIOg-TS e
4.4 Defining New Case Frame Templates for AutoSlog and AutoSlog-TS

5 How to Use Sundance and AutoSlog

5.1 Installing Sundanceand AutoSlog oo
5.2 Using Sundance as a Stand-Alone Application
5.3 UsingSundanceasan APl
5.4 Using AutoSlog and AutoSlog-TS as Stand-Alone Applications

541 Running AutoSlog

5.4.2 Running AutoSlog-TS

5.4.3 Using New Case Frame Templates
5.5 Setting up a Specialized Domain
5.6 Summary . .o . e

6 Acknowledgments

7 Appendix A: The Source and Data Files

1 Introduction

For several years now, the natural language processing group at the University of Utah has been
developing an in-house natural language processing (NLP) system called Sundance. Sundance was
originally developed to provide basic sentence processing and information extraction capabilities
for the NLP research efforts at Utah. We never intended to make it publicly available — in fact,
it never occurred to us that anyone else would want to use it. However, over the years we’ve
had numerous requests for Sundance and have come to appreciate that it may be of value to other
research groups as well. So, we have (rather belatedly) written this report to provide an overview
of Sundance for people who wish to use it.

Sundance was designed to be a comprehensive shallow parser that performs partial parsing as
well as some additional sentence processing needed for information extraction. As a result, Sun-
dance does substantially more than a typical shallow parser, but it still adheres to the shallow
parsing paradigm (i.e., there is no attempt to generate full parse trees or handle deeply nested
structures). Shallow parsing is less ambitious than full parsing, but it is generally faster and more
robust. Shallow parsers have been widely used for information extraction systems because they
provide the speed and robustness needed to process large volumes of (sometimes ungrammatical)
text and because partial parsing seems to be largely adequate for such tasks (Grishman, 1995).

In addition to parsing, Sundance also has the ability to activate and instantiate case frames for
information extraction. Throughout this document, we will describe Sundance as having two sepa-
rate functions: parsing and information extraction. This report also describes the AutoSlog and
AutoSlog-TS systems, which are extraction pattern learning algorithms that have been imple-
mented on top of Sundance and are included in the Sundance distribution package. Below, we
summarize our NLP systems:

The Sundance Parser: Sundance performs a variety of syntactic functions, including sentence
segmentation, morphological analysis, part-of-speech disambiguation, syntactic chunking,
named entity recognition, syntactic role assignment (subject, direct object, and indirect ob-
ject), clause segmentation, and subject inference.

The Sundance Information Extraction Engine: Sundance can activate case frame structures and
instantiate them with information from a sentence. The case frames can be simple single-slot
extraction patterns or more complex frame structures with multiple slots, thematic roles, and
selectional restrictions.

The AutoSlog Extraction Pattern Generator: AutoSlog (Riloff, 1993; Riloff, 1996a) is a su-
pervised learning algorithm for extraction pattern generation. As input, AutoSlog requires an
annotated training corpus or (in our implementation) a list of nouns representing items that are
targeted for extraction. The extraction patterns that AutoSlog learns are simple case frames
that have just a single slot and no selectional restrictions. Thematic roles and selectional
restrictions can be easily added by hand.

The AutoSlog-TS Extraction Pattern Generator: AutoSlog-TS (Riloff, 1996b) is a weakly su-
pervised learning algorithm for extraction pattern generation. As input, AutoSlog-TS requires

one set of relevant texts and one set of irrelevant texts. The learner applies AutoSlog’s heuris-
tics exhaustively to generate every extraction pattern that appears in the corpus. It then com-
putes statistics and ranks the extraction patterns based upon their strength of association with
the relevant texts.

We have written this document to serve both as a general reference that explains how Sundance
and AutoSlog work and as a technical manual that explains how to use them. In Section 2, we begin
by providing a high-level overview of Sundance’s design. In Section 3, we step through the var-
ious processes involved in Sundance’s parsing mechanism. In Section 4, we describe Sundance’s
information extraction capabilities and explain how the AutoSlog and AutoSlog-TS learning algo-
rithms can be used to generate extraction patterns. Section 5 gives instructions on how to install
and use the Sundance and AutoSlog systems, and it provides some guidance on how Sundance and
AutoSlog can be customized for new domains. The current version of Sundance at the time of this
writing is v4.2.

2 An Overview of Sundance

Sundance?! is a shallow parser that was specifically designed to support information extraction.
Sundance is organized as a multi-layered architecture that includes three levels of sentence anal-
ysis: basic syntactic analysis, clause handling, and information extraction. Figure 1 shows the
subprocesses involved at each level. The syntactic analysis functions perform low-level syntactic
processing, including sentence segmentation, morphological analysis, part-of-speech disambigua-
tion, syntactic chunking, and named entity recognition. The clause handling functions support
clause recognition, syntactic role assignment, relative pronoun resolution, and subject inference.
The information extraction functions perform case frame activation and instantiation.

Basic Syntactic Analysis
Pre—Processing Clause Handling

g?g:ﬁ)nnc aerSelz_gomOErJtatlon Clause Segmentation Information Extraction
Y P — | Syntactic Role Assignment | = | .o Frame Activation

Morphological Analysis : ;

. Relative Pronoun Resolution iati
Part—of-Speech Tagging Subject Inference and Instantiation
Syntactic Segmentation

Named Entity Recognition

Figure 1. Sundance’s sentence analysis processes

The motivation for Sundance’s layered design is the idea of propagating constraints and prefer-
ences from the lowest level of analysis to the highest. Intuitively, Sundance makes the relatively
easy decisions first and then uses those decisions to constrain the possibilities for the more dif-
ficult decisions.? Sundance does not use an explicit grammar, but instead relies on heuristics
that represent syntactic (and sometimes semantic) constraints and preferences. The heuristics are
domain-independent but are specific to the English language.

As Figure 1 shows, Sundance has more capabilities than most shallow parsers. Sundance is
similar in spirit to CASS (Abney, 1990b; Abney, 1990a), which is also a partial parser that uses an
incremental “easy-first” parsing strategy. However, Sundance does more linguistic analysis than
CASS. As input, CASS takes a sentence that has already been assigned correct part-of-speech
tags and has been bracketed for non-recursive NPs using Church’s POS tagger (Church, 1989).
In contrast, Sundance does its own part-of-speech disambiguation and NP bracketing, as well as
clause segmentation, syntactic role assignment for subjects, direct objects, and indirect objects,
relative pronoun resolution, and subject inference. Fidditch (Hindle, 1994) also goes beyond syn-
tactic segmentation and identifies subjects and objects, resolves relative pronouns, and performs
subject inference. But like CASS, Fidditch relies on a separate POS tagger to disambiguate parts-
of-speech before its parsing begins, and it does not include information extraction capabilities.

Sundance is an (admittedly forced) acronym for “Sentence UNDerstanding ANd Concept Extraction”.

2This pipelined architecture also allows Sundance to perform variable-depth language processing by applying only
the layers that are necessary for a task. For example, if an application only requires NP chunking, then only the
syntactic analysis functions up to and including syntactic segmentation need to be performed. In principle, this design

allows Sundance to run faster for applications that don’t need all of its capabilities. In practice, however, Sundance is
fast enough that we have never needed to turn off any of its subprocesses.

5

FASTUS (Appelt et al., 1993) is a partial parser that was also designed for information extraction.
FASTUS uses cascaded finite-state machines to perform syntactic segmentation, but does not do
as much clause-level analysis as Sundance. In contrast to Sundance’s case frame representation,
FASTUS uses “pseudo-syntax” to recognize regular expression extraction patterns consisting of
syntactic segments.

Sundance is a complete NLP system that does everything from low-level morphological anal-
ysis to syntactic segmentation and clause-level handling as well as case frame instantiation for
information extraction. In our research, Sundance has proved to be very robust when faced with
ungrammatical or ill-formed input. For example, we have used Sundance extensively to process
web pages (Furnkranz et al., 1998; Riloff and Jones, 1999), which often contain sentence fragments
and text snippets that are not grammatically well-formed. Sundance attempts to parse whatever it
receives and produces a shallow parse. Although it is not perfect, of course, in most cases it seems
to do a reasonably good job of producing a plausible syntactic analysis. In the next section, we
explain in detail the various steps that Sundance goes through when processing sentences.

3 The Sundance Parser

The purpose of this section is to describe Sundance’s parsing mechanism in detail so that users
can get a sense for what Sundance can do, what it can not do, and what its output looks like.
Throughout this section, we also indicate which steps use external dictionaries or lists that can be
easily modified for new applications.

3.1 Pre-Processing

Sundance begins by pushing each text through a pre-processor that tokenizes and normalizes the
text. When appropriate, trailing punctuation marks are separated from adjacent words and re-
placed by special punctuation symbols (e.g., “,” becomes “>COMMA”). Numbers are normalized
by putting a special && symbol in front of them. Some written numbers are also converted to
their numeric form (e.g., “three” becomes “&&3”). Possessives are normalized by removing the
apostrophe and replacing it with an @ sign both in front of the word and in the position where the
apostrophe was (e.g., “Fred’s” becomes “@Fred@s”).

Next, a phrasal lexicon is consulted to recognize phrases that should be treated as a single lexical
item. For example, when the phrase “as well as” appears in a text, the three words are slammed
together with underscores to become a single lexical item: “as_well_as”. This helps to simplify
parsing in cases where the lexicalized phrase can be assigned a single part-of-speech tag® (e.g.,
“as_well_as” is defined in Sundance’s dictionary as a CONJUNCTION).

The phrasal lexicon is also used to expand contractions. To handle contractions, the phrasal
lexicon expands a single word (“can’t”) into multiple known words (“can not”). This is in contrast
to most other situations where the phrasal lexicon merges multiple words into a single lexicalized
term. Using the phrasal lexicon to expand contractions obviates the need to define contractions
explicitly in the dictionary. The phrasal lexicon can be easily augmented or modified without
having to recompile Sundance. (see Section 7).

3.2 Sentence Segmentation

Given a document, Sundance first separates the text into sentences. Question marks, exclamation
points, and semi-colons are fairly reliable end-of-sentence indicators by themselves, so Sundance
simply separates sentences when one of these tokens is found.* Periods, however, are highly
ambiguous. Abbreviations that end with a period may or may not indicate that the end of a sentence
has been reached. For example, the word “U.S.” sometimes appears at the end of a sentence and
sometimes in the middle. To determine sentence boundaries when a period is found, Sundance
uses end-of-sentence (EOS) heuristics.

First, Sundance maintains a list of common abbreviations called non-EOS words. Sundance’s
initial assumption is that these abbreviations do not represent the end of a sentence. However,
this assumption can be overridden by subsequent heuristics that look at the word following the
abbreviation. Sundance also maintains a list called EOS followers that consists of words that

3This also allows lexicalized phrases to be assigned semantic tags in the dictionary. For example, the phrase
“Fort_Worth” can be labeled as a LOCATION in the dictionary, even though the words “fort” and “worth” independently
should not have a LOCATION semantic tag.

4Sundance treats semi-colons as end-of-sentence markers because, in our experience, they usually separate word
sequences that can be parsed as relatively independent sentence structures.

7

commonly begin a sentence, especially when the word begins with a capitalized letter (e.g., “The”).
If the word following the abbreviation is in the EOS followers list, then Sundance infers that the
abbreviation is in fact the end of the sentence. For example, if “U.S.” is followed by a capitalized
article such as “The”, then Sundance assumes “U.S.” is the end of the sentence. The lists of non-
EOS words and EOS followers can be easily augmented or modified without having to recompile
Sundance.

3.3 Dictionary Lookup

Sundance relies on manually defined dictionaries to get the basic syntactic and (optionally) se-
mantic properties of a word. The dictionaries are not case-sensitive, so a capitalized entry will be
considered to be the same word as a lower case entry. Each word in the dictionary is defined with
all possible parts-of-speech that it can take. By default, all words are assumed to be in their root
form in the dictionary. A morphological analyzer (described in Section 3.4) is used to automati-
cally derive the morphological variants of words in the dictionary. Irregular morphological variants
must be explicitly defined in the dictionary and their root forms must be specified.

Sundance uses a small set of approximately 20 part-of-speech tags. 1f a word can have more than
one part-of-speech, then each possible part-of-speech should be entered on a separate line of the
dictionary. By default, nouns are assumed to be singular and verbs are assumed to be in their base
(root) form. Plural nouns can be defined using a “plural” specifier following the part-of-speech tag.
Verb tenses can be defined with one of the following tense specifiers: (past, present, participle).
The tense specifier should immediately follow the word’s part-of-speech tag. A verb’s root can be
indicated by appending it to the word with a colon as a separator. For example, the verb swam
is defined as the past tense of the verb swim with this dictionary entry: SWAM:SWIM VERB
PAST. If no root is specified, then the word is assumed to be in a root form already. For example,
the word “swim” would be defined like so: SWIM VERB.

A word can also be assigned a semantic class, if desired. Sundance uses a general-purpose
semantic hierarchy by default, but specialized semantic hierarchies can be easily created for new
domains (see Section 5.5). Each word in the dictionary can be assigned a semantic class from this
hierarchy by adding the semantic class to the end of the word’s dictionary entry. For example,
the following dictionary entry will define the word “Friday” as belonging to the semantic class
TIME: FRIDAY NOUN TIME. Semantic class labels are sometimes used by Sundance during
parsing (e.g., TIME expressions are handled specially), but they are primarily used as selectional
restrictions in case frames during information extraction. The dictionaries and semantic hierarchy
can be easily augmented or modified without having to recompile Sundance.

3.4 Morphological Analysis

Given a word, Sundance first looks up the word in its dictionaries. If the word is present, then
all parts-of-speech defined for it are gathered and considered during parsing. If a word is not
found, then Sundance invokes a rule-based morphological analyzer to try to derive it. If successful,
the morphological analyzer returns all parts-of-speech that are possible for the word, along with
the root for each possible derivation. If morphology is unsuccessful, then the word is assigned
an unknown part-of-speech tag. The morphological analysis rules can be easily augmented or
modified without having to recompile Sundance.

8

3.5 Part-of-Speech Tagging (or a lack thereof)

A somewhat unusual aspect of Sundance is that it does not have an explicit part-of-speech tagger
and it really doesn’t consider part-of-speech tagging to be a distinct task. Initially, a word is as-
signed all parts-of-speech defined for it in Sundance’s dictionaries, or all parts-of-speech assigned
to it by the morphological analyzer. Many words are assigned multiple part-of-speech tags. Then
Sundance goes about its business of syntactic segmentation, disambiguating part-of-speech tags
along the way. Consequently, part-of-speech disambiguation is intermingled with parsing.

Given multiple part-of-speech tags for a word, Sundance uses heuristics to decide which tag(s)
are most likely to be correct given the surrounding context. Some parsing heuristics remove inap-
propriate tags, while others select a particular tag from the set. Once Sundance determines what
syntactic constituent a word belongs to, then it is satisfied and does not try to disambiguate part-of-
speech assignments any further. Consequently, Sundance will often leave multiple part-of-speech
tags assigned to a word. This is especially common with words that can be used as an adjective or
a noun, such as “light”. If Sundance determines that “light”” belongs inside an NP (as in “a light
fixture™), then it creates the NP but does not attempt to determine whether “light” is functioning
as an adjective or a noun in that NP. Both part-of-speech tags remain assigned to the word.

One side effect of this design decision, coupled with some careless programming, is that some-
times multiple part-of-speech tags are left assigned to a word even though it is clear which one
Sundance decided is correct. For example, in the sentence “The table is light”, Sundance properly
parses “light”” as an adjectival phrase. However, both the adjective and noun tags remain assigned
to it. Similarly, in the sentence “I have a light”, Sundance properly parses “a light” as a noun
phrase, but both the adjective and noun tags remain assigned to it. This behavior stems from our
emphasis on parsing rather than part-of-speech tagging per se. This behavior is also apparent with
unknown words, which are initially assigned an unknown POS tag but eventually may be parsed
as (say) a noun phrase or a verb phrase. In these cases, Sundance has implicitly decided that this
word is (say) a noun or a verb, but the part-of-speech tag will still be listed as unknown. We hope
to remedy this in future versions of Sundance, but in the meantime we advise Sundance users to
focus on the syntactic constituents assigned to a word rather than the part-of-speech tags them-
selves. There are also some internal Sundance functions that can be used to determine how a word
was recognized by Sundance (e.g., the “get_head_noun” function will return the head noun of an
NP, regardless of what part-of-speech tags are listed in its tag set).

Another important aspect of Sundance’s design is that the parsing heuristics have free rein to
override the part-of-speech tags assigned to a word in the dictionary or by morphology. This is
done very conservatively, for obvious reasons. But if a word simply must belong to a certain
part-of-speech class given the words around it, then the parsing heuristics will force it to have
that POS tag. For example, suppose the word ““shoot™ is defined only as a verb in the dictionary.
Given the sentence “The shoot was good.”, Sundance will infer that *““shoot™ cannot be a verb in
this sentence because it immediately follows an article, “the”. Sundance will then override the
dictionary, inferring that “the shoot™ must be an NP and therefore ““shoot™ must be a noun. We
have found this behavior to be highly reliable in Sundance and it often helps to compensate for
omissions in the dictionary and with the parsing of slang expressions.

In the parse output, there are four labels that reveal how part-of-speech tags were assigned to

a word. LEX means that the part-of-speech tags were found in the dictionary. MOR means that
the part-of-speech tags were derived via morphological analysis. INF-LEX means that the part-of-
speech tags were assigned by grammatical inference heuristics. For example, the previous example
where “shoot” is inferred to be a noun is due to a grammatical inference heuristic. INF-MOR
means that the part-of-speech tags were assigned by morphological inference heuristics. These
heuristics simply look for common suffixes that are virtually a dead give-away to a word’s part-of-
speech. For example, Sundance infers that unknown words ending in “tion” are nouns, which is
almost always the case. The morphological inference heuristics kick in only as a last resort after
true morphological analysis has failed. Both the INF-LEX and INF-MOR heuristics can override
the dictionary and the morphological analyzer, and can also infer POS tags for unknown words.

3.6 Syntactic Segmentation

Sundance’s syntactic segmentation phase recognizes noun phrases (NPs), prepositional phrases
(PPs), verb phrases (VPs), and adjectival phrases (ADJPs). Sundance performs multiple passes
over each sentence, beginning with the most reliable segmenters (NP and PP chunking) and using
their output to constrain the possibilities for the remaining segmenters (VP and ADJP chunking).
The motivation behind this approach is best illustrated with an example. Consider the following
sentence:

(S1) The foo blorched a wumpy baz.

This sentence is nonsensical semantically, yet in our experience, people have no trouble parsing
it. People seem to assign a grammatical structure to this sentence by recognizing grammatical
constraints and morphological clues. People probably apply some of the following heuristics. (1)
foo and wumpy must be part of a noun phrase because they are preceded by an article. Therefore
they are probably adjectives or nouns. (2) blorched is a verb because it ends in “ed”, and also per-
haps because of its position in the sentence (i.e., it is in the middle of the sentence and surrounded
by noun phrases). (3) wumpy is probably an adjective because it ends in “y” and is sandwiched
between an article and a possible noun. (4) baz is probably a noun because it is preceded by a
likely adjective and ends the sentence. All of these heuristics could be wrong, but together they
support one another to produce a compelling picture of the sentence structure. If this sentence
seems contrived, consider a more realistic sentence that we will use to demonstrate how Sundance
incrementally parses a sentence:

(S2) The armed man shot the bear with a gun.
After part-of-speech assignments from the dictionary, S2 looks like this:

The armed man shot the bear with a gun
art adj/verb noun/verb adj/noun/verb art noun/verb prep art noun/verb

First, Sundance begins with NP segmentation. Sundance gathers up words that are likely to form
simple (base) noun phrases. NP segmentation uses relatively conservative heuristics because its
commitments limit the options available to the subsequent segmenters. For example, one heuristic
creates an NP when it sees an article. First, it grabs the word following the article and adds it to the
NP. The NP is then extended to include any subsequent words following it that have part-of-speech

10

tags that are consistent with being inside an NP. A variety of heuristics look at the part-of-speech
tags assigned to the surrounding words and try to infer whether the word belongs in the NP or not.
If the word remains questionable, the NP segmenter will not put the word into the NP, leaving it
available for subsequent segmenters to use.

The NP segmenter implicitly performs part-of-speech disambiguation as a side effect of NP
chunking. For example, S2 is shown below after NP segmentation. The words “armed”, “man”,
“bear”, and “gun” have all been disambiguated.

NP[The armed man] shot NP[the bear] with NP[a gun]
art adj noun adj/noun/verb artnoun prep art noun

Immediately before and after NP segmentation, Sundance performs entity recognition, which
tries to match lexico-syntactic patterns corresponding to named entities. For example, a date rec-
ognizer pattern might look for a month token followed by a number, a comma, and another number
(e.g., “April 4, 1997”). The entity recognition rules can create new NPs (e.g., the April 4 date) or
can assign an entity label to an existing NP (e.g., an NP might be relabeled as a NP-LOCATION).
The next section describes Sundance’s entity recognition module in more detail.

The next step of syntactic analysis is prepositional phrase (PP) segmentation, which creates PP
structures. In most cases, the PP segmenter simply looks for a preposition followed by an NP.
After PP segmentation, S2 looks like:

NP[The armed man] shot NP[the bear] PP[with NP[a gun]]
art adj noun adj/noun/verb art noun prep art noun

Sundance then performs VP segmentation, which creates verb phrase (\VVP) structures. Each VP
is labeled as one of five types: active, active_infinitive, passive, passive_infinitive, or infinitive.
The active and passive labels correspond to simple active voice and passive voice constructions.
The active_infinitive and passive_infinitive labels correspond to a main verb (active or passive,
respectively) immediately followed by an infinitive construction (e.g., “persuaded to invite” or
“was persuaded to invite”). The infinitive label corresponds to simple infinitives (e.g., “to invite”).

The VP segmenter is more aggressive than the earlier segmenters because it assumes that words
that are still unassigned are not likely to belong to NPs or PPs. For example, one heuristic creates
an infinitive VP when it sees the word “to” followed by a base verb. This heuristic would be
reckless if the PP segmenter had not already grabbed instances of “to” that belong in prepositional
phrases. S2 now looks like this:

NP[The armed man] VP-active[shot] NP[the bear] PP[with NP[a gun]]
art adj noun verb art noun prep artnoun

Finally, the adjectival phrase (ADJP) segmenter looks for adjectival phrase constructions and
puts them into ADJP structures. Once all of the syntactic segmenters have finished, a final “clean-
up” phase looks for orphaned words that have not yet been assigned to any constituent. Sundance
uses heuristics to push an orphaned word into an existing constituent, create a new constituent for
it, or in some cases it will let it remain as an orphaned word.

To be fair, S2 is not a difficult sentence for most NLP systems to parse. But we believe that
Sundance’s approach to syntactic segmentation is natural and robust. One of Sundance’s strengths

11

is that it creates syntactic segments in a bottom-up fashion, so it will usually generate a reasonable
parse even when the input contains many unknown words or is ungrammatical. We have used
Sundance extensively to process text on web pages, which are notoriously ungrammatical, and it
has performed quite well.>

3.7 Entity Recognition

Sundance provides a special capability to label words or expressions as a semantic type by defining
patterns. We created this pattern recognizer with named entity recognition in mind, but it is fairly
general in nature and could be used for other purposes as well.

Sundance’s Recognizer Patterns must be manually defined by the user.® They can specify
combinations of words and/or constituents that represent a special type of entity. Each pattern can
check for lexical, syntactic, and semantic properties associated with words or constituents.

Each pattern is defined as a rule where the left-hand side specifies a sequence of predicates that
must match the input, and the right-hand side specifies the type of entity that will be created. Each
predicate has constraints associated with it that must be satisfied for the rule to be successfully
matched. The set of possible entity types can be found in the enumerated list “PatternType” in
the file “src/tags.h”. For example, that list contains the types “PATTERN_COMPANY” and “PAT-
TERN_TIME”, which means that the right-hand side of a rule could create entities of the type
“NP-COMPANY” or “NP-TIME”. The created entity must always be some type of NP. In the-
ory, this mechanism is quite general and could apply to all constituent types, but in practice the
current implementation has been inserted into Sundance before PP segmentation. Consequently,
the current implementation only allows individual words, punctuation marks, and noun phrase
constituents to be part of recognizer rules.

Figure 2 shows the set of predicates and associated constraints that can be used in the left-hand
side of rules. The predicates can match either a noun phrase (NP), a punctuation mark (PUNC), or
an individual word (WORD). The <NP> predicate simply matches any noun phrase. The <NP-
HEAD> predicate matches any NP whose head noun satisfies the specified constraints. The <NP-
ANYWORD> predicate matches an NP containing any word that satisfies the specified constraints.
The <NP-ALLWORDS> predicate matches any NP such that all of its constituent words satisfy
the specified constraints. The <PUNC> predicate matches any punctuation mark that satisfies the
given constraints, and the <WORD> predicate matches any word that is not part of an NP and
satisfies the given constraints.

There are four types of constraints: case (case=), lexical (word=), part-of-speech (tag=), and
semantic (sem=). A case constraint looks at the capitalization of a word and has three possible
values: ALL_UPPER (all letters must be upper case), ALL_LOWER (all letters must be lower case),
and CAPITALIZED (the first letter must be capitalized). A lexical constraint requires an exact
word match. A part-of-speech constraint requires that the word’s tag set must contain the specified
part-of-speech. A semantic constraint requires that the word belong to the given semantic class.

S0f course, this does not imply that Sundance produces grammatically perfect output for ungrammatical or ill-
formed text. Given such text, however, it seems to do a reasonably good job at producing output that matches the input
fairly well.

6Some recognizer patterns may already be defined in the Sundance distribution that you receive. But any additional
patterns that you want must be added manually.

12

<NP>

<NP-HEAD:case=casevalue>
<NP-HEAD:sem=semanticfeature>
<NP-HEAD:tag=partofspeech>
<NP-HEAD:word=wordvalue>
<NP-ANYWORD:case=casevalue>
<NP-ANYWORD:sem=semanticfeature>
<NP-ANYWORD:tag=partofspeech>
<NP-ANYWORD:word=wordvalue>
<NP-ALLWORDS:case=casevalue>
<NP-ALLWORDS:sem=semanticfeature>
<NP-ALLWORDS:tag=partofspeech>
<NP-ALLWORDS:word=wordvalue>
<PUNC:word=punctuationtype>
<WORD:case=casevalue>
<WORD:sem=semanticfeature>
<WORD:tag=partofspeech>
<WORD:word=wordvalue>

Figure 2: Predicates and syntax for entity recognition rules

Figure 3 shows some rules and sample expressions that would be recognized by those rules.

Multiple predicates can also be used in a pattern via a conjunction operator (&) or a disjunction
operator (|). For example, the following rule will label an NP as a PERSON if any word in the NP
has the semantic class TITLE and all words in the NP are capitalized. This would recognize names
such as “Dr. Pepper” and “Mr. John Smith”.

<NP-ANYWORD:sem=TITLE&ALLWORDS:case=Capitalized> = NP-PERSON

As another example, the rule below contains both a conjunction and a disjunction, which allows
it to recognize a wide variety of organization names. This rule recognizes a phrase as an organi-
zation if it consists of (1) an NP whose head noun is capitalized and belongs to the semantic class
ORGANIZATION, (2) that NP is followed by the preposition “for” or “of”, and (3) the preposition
is followed by another NP. This pattern will recognize organization names such as “The National
Library of Medicine” and “the Association for Computing Machinery”.

<NP-HEAD:sem=0rganization&HEAD:case=Capitalized>
<WORD:word=for| WORD:word=o0f>

<NP>

= NP-ORGANIZATION

If more than one rule matches the same context, then the longer rule is given precedence over
the shorter rule. If multiple rules of the same length apply, then the rule that is listed first in the
entity recognition rules file is chosen.’

"By default, this is data/recognizer_patterns.txt.

13

Pattern: <WORD:tag=NUMBER> <WORD:word=p.m.> — NP-TIME
Example: 3 p.m.

Pattern: <WORD:sem=MONTH> <WORD:tag=NUMBER> — NP-TIME
Example: January 4

Pattern: <WORD:sem=MONTH> <WORD:tag=NUMBER> <PUNC:word=COMMA >
<WORD:tag=NUMBER> — NP-TIME
Example: January 4, 2001

Pattern: <NP-HEAD:word=Corp.> — NP-COMPANY
Example: International Business Machines Corp.

Pattern: <NP-ALLWORDS:case=Capitalized> <PUNC:word=COMMA >
<NP-HEAD:sem=LOCATION> — NP-LOCATION
Example: Salt Lake City, Utah

Figure 3: Sample recognizer rules and example phrases they would match

3.8 Clause Segmentation

Sundance divides each sentence into separate clauses based on the presence of relative pronouns
and multiple verb phrases. Sundance scans each sentence from left to right looking for relative
pronouns and VVPs. When a new relative pronoun is found, a new clause is started. Similarly, when
multiple active or passive VPs are found, a new clause is started for each one. Simple infinitives
by themselves will not spawn the creation of a new clause. For example, the following sentence
will be segmented into three clauses, as shown below:

John paid the man who played the piano and sang songs to entertain people at his party.

Clause #1: John paid the man
Clause #2: who played the piano and
Clause #3: sang songs to entertain people at his party.

3.9 Syntactic Role Assignment

The next step is syntactic role assignment. Sundance assigns three types of syntactic roles to noun
phrases: subject (subj), direct object (dobj), and indirect object (iobj). Subjects must precede their
VP, while direct objects and indirect objects must follow their VP. The indirect object label is
assigned only when two NPs immediately follow a VP (in which case the first NP is assumed to
be the indirect object and the second NP is assumed to be the direct object). The syntactic role
assignments for the previous example sentence are shown here:

14

John paid the man who played the piano and sang songs to entertain people at his party.

Clause #1: (JOhTL)SUBJ pald (th@ man)DOBJ
Clause #2: who played (the piano) pop; and
Clause #3: sang (songs) pop. to entertain (people) pop, at his party.

As the example shows, a clause can have multiple direct objects if it contains more than one VP.
As we explained in Section 3.8, a clause can have only one primary VP (active or passive), but
it can have multiple simple infinitive VPs and each infinitive VP can have its own direct object.
However, each clause will have at most one subject.

3.10 (Attempts at) Relative Pronoun Resolution

When Sundance finds a clause that does not yet have a subject but contains a relative pronoun in
the subject position (i.e., before the verb), then it attempts to resolve the pronoun. The current im-
plementation only tries to resolve some relative pronouns (e.g., “who” and “that”). Sundance uses
simple heuristics to choose an antecedent from the previous clause. Relative pronoun resolution is
a difficult problem and Sundance’s heuristics frequently make mistakes. But our hope is that it is
right more often than it is wrong. Eventually, we hope to replace the simple heuristics with a more
sophisticated pronoun resolution algorithm.

For the previous sentence, Sundance will (1) identify the NP “the man” as the antecedent for
the relative pronoun “who”, (2) replace “who” with the “the man”, (3) and label “the man” as the
subject of the second clause. The result at this point is shown below.

John paid the man who played the piano and sang songs to entertain people at his party.

Clause #1: (John)gUBJ pald (the TTLCLTL)DOBJ
Clause #2: (the man)syps played (the piano)pops and
Clause #3: sang (songs) popy to entertain (people) popy at his party.

3.11 Subject Inference

When Sundance discovers a clause that does not have a subject, it assumes that one of the NPs in the
previous clause is the subject of the current clause. For example, in the previous sentence Clause
#3 still does not have a subject. So Sundance infers that one of the NPs from the previous clause
must be the subject of the current clause and copies it over. The final syntactic role assignments for
this sentence are shown below. As with relative pronoun resolution, the subject inference heuristics
are far from perfect and Sundance often make mistakes. We hope to improve its performance in
future releases.

John paid the man who played the piano and sang songs to entertain people at his party.
Clause #1: (John)gUBJ pald (the TTLCLTL)DOBJ

Clause #2: (the man)sy s played (the piano)pops and
Clause #3: (the man)sy s sang (songs) pops to entertain (people) po s at his party.

15

3.12 Sundance in Action: Example Sentences and Parse Output

In this section, we will show some examples of Sundance’s parsing behavior to familiarize the
reader with Sundance’s output format. The sentences in this section were taken from The Lorax
(Geisel, 1971). Dr. Seuss books can be challenging for NLP systems because they often contain
made up words. Consequently, sentences from The Lorax will serve to illustrate how Sundance
can infer the correct part-of-speech and syntactic segmentation for words that it has never seen
before.

Figure 4 shows Sundance’s output for a simple sentence. This sentence is parsed as a typical
Subject/VVP/Direct_Object structure. Two things worth noting are that (1) the contraction “won’t” is
expanded by the phrasal lexicon into the words “will not”, and (2) the word “Once-ler” is correctly
inferred to be the head of an NP because it immediately follows an article.

Original : You won’t see the Once-ler.
PreProc : You WILL NOT see the Once-ler >PERIOD <EOS
CLAUSE:
NP SEGMENT (SUBJ):
[You (LEX)(PN(HUMAN))]
VP SEGMENT (ACTIVE_VERB):
[WILL (LEX)(AUX)]
[NOT (LEX)(ADV)]
[see (LEX)(V BASE)]
NP SEGMENT (DOBJ):
[the (LEX)(ART)]
[Once-ler (INF-LEX)(ADJ) (N)]
[>PERIOD (LEX)(PUNC)]
[<EOS (?)]

Figure 4: A simple sentence from The Lorax

Figure 5 shows a line from The Lorax that is not a complete sentence but is an isolated noun
phrase followed by an exclamation mark. Since Sundance is a partial parser, it can handle text
fragments like this just fine. Although it does label “The Truffula Trees™ as the subject, even
though there is no verb in the sentence for it to be the subject of!

Figure 6 shows Sundance’s parse output for a longer sentence. Sundance divides this sentence
into two clauses and correctly handles three novel words: ““Lerkim”, “miff-muffered™, and “moof”.
Sundance isn’t sure what to do with the two words *““cold”” and *“out™, so they are not put into any
syntactic structure and are left as isolated words. This example also shows that Sundance performs
PP-attachment for prepositional phrases that contain the preposition ““of”” because these PPs virtu-
ally always attach to the immediately preceding constituent.2 PP-attachment is not performed on
any other types of PPs.

8lronically, in this example the PP really shouldn’t be attached to “his own clothes’. But in the vast majority of
cases, attaching “of” PPs to the preceding constituent will be correct.

16

Original : The Truffula Trees!
PreProc : The Truffula Trees >EXCLAMATION <EOS
CLAUSE:
NP SEGMENT (SUBJ):
[The (LEX)(ART)]
[Truffula (INF-LEX)(ADJ) (N)]
[Trees (root: tree) (LEX)(N PLURAL)]
[>EXCLAMATION (LEX)(PUNC)]
[<EOS (?)]

Figure 5: An isolated noun phrase from The Lorax

4 Information Extraction with Sundance and AutoSlog

Ultimately, our goal when developing Sundance was to use it for information extraction. Conse-
quently, Sundance is more than just a parser. It also includes an information extraction engine that
uses case frame structures to extract information from sentences.

Information extraction (IE) is a natural language processing task that involves identifying and
extracting domain-specific information from text. For example, an IE system could be built to ex-
tract facts about corporate acquisitions from Wall Street Journal articles. The system might extract
the names of the people and companies involved in the acquisition, the date of the acquisition, and
the amount paid for the acquired company.

Most IE systems use domain-specific patterns or case frames to recognize relevant information
in text. Some systems use extraction patterns that can be recognized with simple pattern matching
or regular expressions and do not require any linguistic processing (e.qg., first-order logic rules (Fre-
itag, 1998) or wrappers (Kushmerick et al., 1997)), but many IE systems use extraction patterns
that require syntactic processing (e.g., (Kim and Moldovan, 1993; Huffman, 1996; Riloff, 1996b;
Riloff and Jones, 1999; Soderland et al., 1995)).

Sundance’s case frame structures can be defined manually, which allows users to create struc-
tures with very specific syntactic and semantic constraints. Defining case frames by hand is tedious
and time-consuming, however. As an alternative, we have also developed and implemented two
learning algorithms, AutoSlog and AutoSlog-TS, that can generate simple case frame structures
(a.k.a., extraction patterns) automatically.

In this section, we describe Sundance’s IE capabilities as well as the AutoSlog and AutoSlog-
TS learning algorithms. Section 4.1 explains how Sundance performs information extraction by
instantiating case frame structures. Section 4.2 describes the AutoSlog learning algorithm that
can generate extraction patterns given a list of targeted nouns and a training corpus. Section 4.3
presents the AutoSlog-TS learning algorithm, which is a derivative of AutoSlog that can generate
extraction patterns using only unannotated “relevant” and “irrelevant” texts as input. Finally, Sec-
tion 4.4 explains how the case frame templates used by AutoSlog and AutoSlog-TS are defined
and how new templates can be created.

17

Original : He lurks in his Lerkim, cold under the roof, where he makes his own clothes
out of miff-muffered moof.
PreProc : He lurks in his Lerkim >COMMA cold under the roof >COMMA where he
makes his own clothes out of miff-muffered moof >PERIOD <EOS
CLAUSE:
NP SEGMENT (SUBJ):
[He (LEX)(PN SINGULAR(HUMAN))]
VP SEGMENT (ACTIVE_VERB):
[lurks (root: lurk) (MOR)(V PRESENT)]
PP SEGMENT (PREP):
[in (LEX)(PREP)]
NP SEGMENT:
[his (LEX)(ADJ)]
[Lerkim (INF-LEX)(ADJ) (N)]
[>COMMA (LEX)(PUNC)]
[cold (LEX)(ADJ)]
PP SEGMENT (PREP):
[under (LEX)(PREP)]
NP SEGMENT:
[the (LEX)(ART)]
[roof (LEX)(N SINGULAR)]
[>COMMA (LEX)(PUNC)]
CLAUSE:
[where (LEX)(C_M)]
NP SEGMENT (SUBJ):
[he (LEX)(PN SINGULAR(HUMAN))]
VP SEGMENT (ACTIVE_VERB):
[makes (root: make) (MOR)(V PRESENT)]
NP SEGMENT (DOBJ):
[his (LEX)(ADJ)]
[own (LEX)(ADJ)]
[clothes (LEX)(N SINGULAR)]
[out (LEX)]
Following PP attaches to: his own clothes
PP SEGMENT (PREP):
[of (LEX)(PREP)]
NP SEGMENT:
[miff-muffered (INF-LEX)(ADJ)]
[moof (?)(UNK)]
[>PERIOD (LEX)(PUNC)]
[<EOS (?)]

Figure 6: A longer sentence from The Lorax

18

4.1 Sundance’s Information Extraction Engine

Sundance can perform information extraction (IE) using structures called case frames. Unlike
many IE systems that use superficial patterns based on surface-level features and regular expres-
sions, Sundance’s case frames rely heavily on the syntactic analysis and (optionally) semantic
labels provided by Sundance.® In later sections when we discuss AutoSlog and AutoSlog-TS, we
will use the term extraction pattern to describe the structures that perform information extraction.
In our implementation, an extraction pattern is represented as a single-slot case frame. In gen-
eral, however, case frame structures can include multiple slots and can be arbitrarily complex. So
we will use the term extraction pattern to refer to single-slot case frames, usually in the context
of AutoSlog and AutoSlog-TS, but it is worth noting that extraction patterns and case frames are
basically the same thing to Sundance.

Each case frame can contain five things: (1) a name, (2) an anchor designation, (3) a set of
activation functions and their arguments, (4) optionally, a type that assigns a category to the case
frame, and (5) optionally, a set of slots to perform information extraction.’® Figure 7 shows the
syntax for case frame definitions.

CF:

Name: [string]

Anchor: [constituent_variable]([word])

Type: [string] (optional)

Act_Fcns: [list of activation functions and their arguments]
Slot: [synrole] <- [slotname] <- [semclasses] (optional)

Slot: [synrole] <- [slotname] <- [semclasses] (optional)

Figure 7: Case Frame Syntax

The Name designator assigns a name to the case frame, which can be any string. The name is
only for ease of reference and is not used internally by Sundance.

Before we describe the rest of a case frame definition, let’s introduce the notion of a constituent
variable. A constituent variable is written as [constituent type][#], where a constituent type is
a type of syntactic constituent such as an NP or VP. The number is simply an identifier for the
variable. For example, VP1 is a variable representing a verb phrase constituent and VP2 is a
variable representing a different verb phrase constituent.

As shown in Figure 7, each case frame has an Anchor designator that specifies a constituent
variable and a word. Intuitively, this means that the case frame is looking for a syntactic constituent
of that type with the designated word as its head. When a sentence is parsed that contains a

%In principle, other parsers could be used as well, but the current implementation is based on Sundance.

1OWe made slot definitions optional so that case frames can be used for applications that need to recognize a pattern
but do not need to perform IE. Case frames were really designed for information extraction, however, and slots must
always be defined for IE.

19

constituent matching the anchor specification, then the case frame is considered for activation.
(The activation functions, which we will describe shortly, must be satisfied before the case frame
will actually be activated.) For example, if the anchor designator is VP1(kidnapped) then the case
frame will be considered for activation when the word “kidnapped” is found as the head of a
verb phrase (VP). Similarly, if the anchor designator is NP1(mayor) then the case frame will be
considered for activation when the word “mayor” is found as the head of a noun phrase (NP). The
primary purpose of the anchor is to dictate how the slot extractions are done; we will return to this
issue when we discuss the slot definitions.

The Type designator can be used to specify a category associated with the case frame. We typ-
ically use the type designator to define an event that is associated with expressions that the case
frame will match. For example, case frames that are activated by expressions such as “was killed”,
“was assassinated”, and “slain” might be assigned the type MURDER so that all extractions asso-
ciated with those case frames will be understood to be facts about murder events.

The activation functions, Act_Fcns, are tests that must be satisfied for the case frame to be-
come fully active. Typically, the activation functions used by Sundance look for general types of
syntactic constructions. For example, one activation function matches VPs in the active voice (ac-
tive_verb_broad_p), another activation function matches VPs in the passive voice (passive verb_broad p),
and a different activation function matches NPs with a specific head noun (noun_phrase_broad_p).

For each activation function, one or more constituent variables must be specified as arguments.
In most cases, the constituent variable is also given a word as an argument to define the lexico-
syntactic pattern that the case frame is looking for. For example, passive_verb_broad_p(VP1(detonated))
means that the case frame will be activated whenever a passive voice VP with the head word “det-
onated” is found. Similarly, active verb_broad p(VP1(detonated)) means that the case frame will
be activated whenever an active voice VP with the head word “detonated” is found.

In some cases, a case frame will have more than one activation function. All of the activation
functions must be satisfied for the case frame to be activated. For example, consider a case frame
that should be activated when it sees the expression: faced trial. This case frame would require two
activation functions. The first function would be active_verb_narrow_p(VP1(FACED))*!, which
looks for an active voice VP that has the verb “faced” as its head. The second function would be
has_dobj_following_r(VP1(FACED) NP1(TRIAL)), which looks at the direct object following the
VP containing “faced” and checks to see if its head is the word “trial”. If both of those functions
are satisfied, then the case frame will be activated.

It is important to remember that the case frames rely on Sundance’s syntactic analysis so they
will match any sentence that has the desired syntactic constituents even if the specified words
are not adjacent. For example, the words “faced” and “trial” do not have to be adjacent for the
previously mentioned case frame to fire, as long as “trial” is the direct object of “faced”. This case
frame would be activated by sentences such as: ““Saddam faced a long and lengthy trial’> and “The
mobster faced in a month a racketeering trial”.

When a case frame becomes active, it extracts information from the current clause (i.e., the
clause in which it was activated) by consulting its slots. We say that a case frame is instantiated

"The active_verb_narrow_p function only recognizes simple active voice VPs. In contrast, the active_verb_broad_p
function recognizes both simple active voice VPs as well as VPs that contain an active voice verb followed by an
infinitive, such as “wanted to see”.

20

when its slots are filled. Each slot must define a syntactic role (synrole) from which information
will be extracted. Currently, the possible values for a synrole are: subj [subject], dobj [direct
object], iobj [indirect object], and PP(prep) [prepositional phrase], where prep can be any prepo-
sition. These syntactic roles are relative to the constituent that is specified as the case frame’s
anchor. For example, if the anchor is defined as VP1(kidnapped), then the case frame will only
extract subjects, direct objects, indirect objects, and prepositional phrases that are associated with
the VP containing the word “kidnapped”. When the anchor is a noun phrase, such as NP1(trial),
then typically only prepositional phrases are defined as slots. These PPs must attach to the NP
containing the word “trial” in order to be extracted.

Optionally, a name can be assigned to each slot (slothame) to label the type of object that it will
extract. In most cases, we use slotnames that correspond to thematic roles. For example, when the
verb “kidnapped” appears in the active voice, we might want to label its subject as the agent or
perpetrator of the kidnapping. When the verb “kidnapped” appears in the passive voice, we might
want to label its subject as the theme or victim of the kidnapping.

Selectional restrictions can also be defined by assigning semantic constraints to a slot. If se-
mantic classes are associated with a slot, information will be extracted by that slot only if it
matches those semantic categories. If only one semantic class is listed, then an item must be-
long to that class to be extracted. If multiple semantic classes are desired, they can be listed
either as a disjunction (an item must match at least one of the semantic classes) or as a conjunc-
tion (an item must match all of the semantic classes). Disjunctions are represented by separating
the semantic classes by a comma and white space (e.g, “AIRCRAFT, AUTO”) and conjunctions
are represented by joining the semantic classes with a A symbol without any white space be-
tween them (e.g, “AIRCRAFTAWEAPON”). A disjunction of conjunctions is also possible (e.g.,
“AIRCRAFTAWEAPON, SHIPAWEAPON, MISSILE”).

An Example Case Frame

Figure 8 shows an example case frame designed to extract information about vehicle crashes.
This case frame will be activated when it sees the verb “crashed” in the active voice. When it is
activated, it will create a case frame of type Vehicle_Crash, indicating that a crash event has been
identified in the text. Then it will try to fill the slots. To fill the first slot, Sundance grabs the subject
of the verb “crashed” and checks to see if it has the semantic class AIRCRAFT or AUTO.? If so,
then Sundance uses the subject to fill the slot and labels it as a \ehicle extraction.

To fill the second and third slots, Sundance grabs prepositional phrases with the preposition “in”
that attach to the verb “crashed”. If the PP has the semantic class LOCATION, then it is put into
the second slot and labeled as a Place. If the PP has the semantic class TIME, then it is put into
the third slot and labeled as a Date. If the PP doesn’t belong to either the LOCATION or the TIME
semantic class, then it isn’t extracted at all. Figure 9 shows the IE output produced from a sample
sentence using the case frame defined in Figure 8.

2The current implementation can check (1) the semantic classes of the head of the constituent and (2) classes
assigned by the entity recognizer.

21

CF:

Name: example_caseframe

Anchor: VP1(CRASHED)

Type: Vehicle_Crash

Act_Fcns: active verb_broad_p(VP1(CRASHED))

Slot: subj <- Vehicle <- AIRCRAFT, AUTO
Slot: PP(in) <- Place <- LOCATION
Slot: PP(in) <- Date <- TIME

Figure 8: Sample Case Frame Definition

The plane crashed in Utah in January in a blaze of fire.

CaseFrame: example_caseframe
Type: Vehicle_Crash

Trigger(s): (CRASHED)
Extractions:

\ehicle = “The plane” [AIRCRAFT]
Place = “Utah” [LOCATION]

Date = “January” [TIME]

Figure 9: An Instantiated Case Frame

22

4.2 AutoSlog

AutoSlog (Riloff, 1993; Riloff, 1996a) is a program that can be used to automatically generate
extraction patterns (i.e., simple case frames) for a domain. The original AutoSlog system was
developed long ago and based on a different parser, but we have reimplemented AutoSlog on top
of Sundance. AutoSlog is a supervised learning algorithm that takes items targeted for extraction
as input and generates a set of case frames to extract those items. A derivative of AutoSlog, called
AutoSlog-TS, is a more weakly supervised learning algorithm that generates extraction patterns
using only “relevant” and “irrelevant” texts as input. AutoSlog-TS will be described in more detail
in the next section. However, AutoSlog-TS shares much in common with AutoSlog, so readers
who are interested in AutoSlog-TS should read this section as well as the next one.

AutoSlog was designed to generate extraction patterns for a domain given an annotated corpus
of texts in which the NPs targeted for extraction have been labeled. For example, a training corpus
for a terrorism domain might contain annotations corresponding to the victims and perpetrators
of terrorist attacks. AutoSlog originally focused only on noun phrase extraction, but our new
implementation allows other syntactic constituents to be extracted as well (see Section 4.4).

For the sake of simplicity, our implementation of AutoSlog does not actually use an annotated
corpus. Instead, a user gives AutoSlog a set of unannotated texts and a list of nouns that should be
extracted. AutoSlog then finds every NP in the corpus whose head matches a noun in the list. Those
NPs are assumed to be targeted for extraction (we will refer to these as the targeted constituents).
One advantage of this approach is that there is no need for a manually annotated corpus as input.
Instead, a user just needs to supply a list of nouns representing items of interest in the corpus
(e.g., the names of victims and perpetrators in the corpus). There are several disadvantages of this
approach, however. Every occurrence of a targeted noun will be extracted, so AutoSlog can not
distinguish between instances that occur in a relevant context (e.g., references to a specific person
in a terrorist event description) and those that occur in an irrelevant context (e.g., references to
that same person in a story that has nothing to do with terrorism). Also, AutoSlog will extract all
NPs with the targeted head noun, which may include noun phrases that do not match the intended
item because of different modifiers. For example, if a targeted noun is “Clinton”, then references
to Bill Clinton, Hillary Clinton, and Chelsea Clinton will all be targeted for extraction. Despite
these issues, we felt that the simplicity of requiring just a noun list as input was more practical than
requiring manually annotated texts with a specific annotation format.

Given a targeted constituent and a sentence, AutoSlog uses syntactic templates to heuristically
identify an expression in the sentence that describes the conceptual role that the constituent plays.
Figure 10 shows the set of syntactic templates originally developed for AutoSlog (Riloff, 1993;
Riloff, 1996a). The left-hand column shows the syntactic templates and the right-hand column
shows examples of extraction patterns learned from those templates. The templates are divided
into three types, depending upon whether the targeted constituent is a subject (subj), direct object
(dobj), or prepositional phrase (obj-prep). If the targeted constituent is a subject, for example, then
only the subject heuristics apply.

All of the heuristics are applied to a sentence and the ones that match will generate patterns
based on the specific words in the sentence. For example, consider the following sentence:

Luke Johnson was killed in Iraq by insurgents.

23

If Luke Johnson was a targeted constituent, then AutoSlog would generate the pattern ““<subj>
was killed” because Luke Johnson is the subject of the clause and template #1 is the only subject
template that matches the clause. Template #1 will then be matched against the sentence and
instantiated with the verb “killed”. The learned pattern will extract subjects of the verb “killed”
whenever it appears in the passive voice.

Syntactic Template Sample Learned Pattern
1. <subj> passive_verb <subj> was acquired
2. <subj> active_verb <subj> sold

3. <subj> active_verb dobj | <subj> saw profit

4. <subj> verb infinitive <Subj> wanted to sell
5. <subj> auxbe noun <subj> is CEO

6. <subj> auxhave noun <subj> has debt

7. active_verb <dobj> sold <dobj>

8. infinitive <dobj> to sell <dobj>

9. verb infinitive <dobj> agreed to buy <dobj>
10. noun auxbe <dobj> CEO is <dobj>

11. noun auxhave <dobj> | buyer has <dobj>

12. infinitive prep <np> to sell for <np>

13. active_verb prep <np> | will sell for <np>

14. passive_verb prep <np> | was sold for <np>
15. noun prep <np> owned by <np>

Figure 10: AutoSlog’s original syntactic templates and sample patterns

Similarly, if insurgents was a targeted constituent, AutoSlog would generate the pattern “was
killed by <np>"" because insurgents is in a PP and template #14 matches the sentence. The learned
pattern will extract all NPs that occur as the object of the preposition “by” and attach to passive
forms of the verb “killed”. Note that the words “killed” and “by” do not have to be adjacent.

AutoSlog’s heuristics are not perfect, so some of the patterns that AutoSlog generates are not
desirable. Consequently, a human must manually review the resulting extraction patterns and
decide which ones to keep. The user may also wish to label each slot with a thematic or conceptual
role indicating what type of item will be extracted. For example, the NP extracted by the pattern
*“<subj> was killed”” will be a victim, so the pattern could be re-written as “<victim> was killed™.
Similarly, the pattern *““was killed by <np>" will extract perpetrators, so the pattern could be re-
written as “was killed by <perpetrator>".13

Figure 11 shows a sample sentence and the extraction patterns that AutoSlog would produce if
all of the NPs in the sentence were targeted for extraction. The NPs are underlined. The left-hand
side shows the actual case frames structures that AutoSlog generates. The right-hand side shows an
intuitive (short-hand) description of the learned extraction patterns. Notice that there are seven NPs
in the sentence, but only six case frames are learned. This is because none of AutoSlog’s syntactic

13These are all shorthand notations. In actuality, each extraction pattern is a case frame structure and a slotname
would be assigned corresponding to victim or perpetrator.

24

templates match the context surrounding the NP “one”, so no case frames are learned to extract it.
Also notice that there are two patterns that were created to extract the subject of “injuring”, even
though “injuring” has no explicit subject in the sentence. During parsing, the subject inference
rules kicked in and inferred that “take-off” is the implicit subject of “injuring”, so the patterns
were created in response to the subject NP “take-off”. Figure 12 shows how Sundance would
subsequently use the learned case frames to extract information from the same sentence.

4.3 AutoSlog-TS

AutoSlog-TS™ is a derivative of AutoSlog that uses the same syntactic heuristics to learn extraction
patterns, but AutoSlog-TS does not require annotated training data or a list of targeted nouns as
input. Instead, AutoSlog-TS learns from two sets of unannotated texts: one collection of texts that
are relevant to the topic of interest, and one collection of texts that are irrelevant to the topic of
interest. For example, a user who wants to learn extraction patterns for a terrorism domain should
provide one set of texts that describe terrorist events and one set of texts that do not describe
terrorist events.’® In a nutshell, AutoSlog-TS generates every possible pattern it discovers in the
corpus and then computes statistics based on how often each pattern appears in the relevant texts
versus the irrelevant texts. AutoSlog-TS then produces a ranked list of extraction patterns coupled
with statistics indicating how strongly each pattern is associated with the domain.

AutoSlog-TS learns extraction patterns by performing two passes over the corpus. In the first
pass, AutoSlog-TS applies AutoSlog’s syntactic templates to the texts in an exhaustive fashion.
That is, AutoSlog-TS generates patterns to extract every noun phrase in the corpus by applying the
syntactic templates to every context surrounding a noun phrase. Whenever a template matches,
an extraction pattern is generated by instantiating the template based on the words in the context.
One way to think about this process is that it is analogous to asking AutoSlog to generate patterns
to extract every noun phrase it sees. This step produces an enormous set of extraction patterns,
often generating tens of thousands of distinct patterns. Collectively, these patterns are capable of
extracting nearly every NP in the corpus.'®

The second pass of AutoSlog-TS applies the learned patterns to the corpus and collects statistics
based on how often each pattern appears in the relevant texts versus the irrelevant texts.’” For
each extraction pattern, pattern;, AutoSlog-TS computes two frequency counts: total freg; is the
number of times that the pattern appears anywhere in the corpus, and rel freq; is the number of

4For those curious about the name, AutoSlog-TS stands for “AutoSlog - The Sequel”. This name was intended to
be temporary while | tried to think of something more clever, but alas, | never did.

51t is best if the relevant and irrelevant texts are of a somewhat similar nature because AutoSlog-TS will focus
on the differences between them. For example, if the irrelevant texts cover a dramatically different topic, such as
chemistry, then any pattern common in terrorism articles but not in chemistry articles will be thought to be terrorism-
related. This may include any pattern that mentions a weapon, the police, or the media. If, however, the irrelevant texts
include stories about (say) natural disasters or petty crime, then AutoSlog-TS will do a better job of distinguishing
patterns that are truly terrorism-related from those that represent (say) injuries, weapons, and police activities that have
nothing to do with terrorism.

16There will be some NPs that cannot be extracted because their surrounding context does not match any of the
syntactic templates.

70ur implementation will generate these statistics after both the first pass and the second pass. However, the
numbers produced after the first pass are only preliminary. The numbers produced after the second pass are the
official, most accurate AutoSlog-TS statistics.

25

Input Sentence: A light plane crashed at a Jerusalem airport after take-off
injuring six people, one of them critically, police said.

Case Frame Structure Shorthand Pattern Description

Name: <subj> _active_verb_1 <subj> crashed
Anchor: VP1(CRASHED)

Act_Fcns: active_verb_broad_p(VP1(CRASHED))

Slot: subj

Name: active_verb_prep<NP>_1 crashed at <np>
Anchor: VP1(CRASHED)

Act_Fcns: active_verb_narrow_p(VP1(CRASHED))

Slot: PP(AT)

Name: active_verb_prep<NP>_2 crashed after <np>
Anchor: VP1(CRASHED)

Act_Fcns: active_verb_narrow_p(VP1(CRASHED))

Slot: PP(AFTER)

Name: <subj> _active_verb_2 <subj> injuring
Anchor: VP1(INJURING)

Act_Fcns: active_verb_broad_p(VP1(INJURING))

Slot: subj

Name: <subj>_active_verb_dobj_1 <subj> injuring people

Anchor: VP1(INJURING)

Act_Fcns: active_verb_narrow_p(VP1(INJURING))
has_dobj_following_r(VP1(INJURING) NP1(PEOPLE))

Slot: subj

Name: active_verb_<dobj>_1 injuring <dobj>
Anchor: VP1(INJURING)

Act_Fcns: active_verb_narrow_p(VP1(INJURING))

Slot: dobj

Name: noun_prep<NP>_1 one of <np>
Anchor: NP1(ONE)

Act_Fcns: noun_phrase_broad_p(NP1(ONE))

Slot: PP(OF)

Name: <subj> _active_verb_3 <subj> said
Anchor: VP1(SAID)

Act_Fcns: active_verb_broad_p(VP1(SAID))

Slot: subj

Figure 11: Extraction patterns (simple case frames) generated by AutoSlog

26

Parsed Sentence: A light plane crashed at a Jerusalem airport after take-off Friday
>COMMA injuring & & 6 people >COMMA one of them critically >COMMA police police
said >PERIOD <EOS

CaseFrame: <subj>_active verb_1

Trigger(s): (CRASHED)

Extractions:

SUBJ_Extraction = “Alight plane” [NO ATTRIBUTES]

CaseFrame: active_verb_prep<NP>_1

Trigger(s): (CRASHED)

Extractions:

PP(AT)_Extraction = “a Jerusalem airport” [NO ATTRIBUTES]

CaseFrame: active_verb_prep<NP>_2

Trigger(s): (CRASHED)

Extractions:

PP(AFTER)_Extraction = “take-off” [NO ATTRIBUTES]

CaseFrame: <subj>_active_ verb 2

Trigger(s): (INJURING)

Extractions:

SUBJ_Extraction: “take-off” [NO ATTRIBUTES]

CaseFrame: <subj>_active_verb_dobj_1
Trigger(s): (INJURING,PEOPLE)

Extractions:

SUBJ_Extraction: “take-off” [NO ATTRIBUTES]

CaseFrame: active_verb_<dobj>_1

Trigger(s): (INJURING)

Extractions:

DOBJ_Extraction = “& &6 people” [NO ATTRIBUTES]

CaseFrame: noun_prep<NP>_1

Trigger(s): (ONE)

Extractions:

PP(OF)_Extraction = “them” [NO ATTRIBUTES]

CaseFrame: <subj>_active_ verb_3

Trigger(s): (SAID)

Extractions:

SUBJ_Extraction = “police” [NO ATTRIBUTES]

Figure 12: The learned extraction patterns applied to a sentence by Sundance

27

times that the pattern appears in the relevant texts. AutoSlog-TS then computes two statistical
measures from these frequency counts:

e A conditional probability estimate of the likelihood that a story is relevant given that a specific
pattern, pattern;, appears in the story.

relfreq;
total freq;

P(relevant | pattern;) =

e The RlogF measure (Riloff, 1996b), which weights (balances) a pattern’s conditional proba-
bility estimate with the log of its frequency.

RlogF (pattern;) = loga(rel freq;) * P(relevant | pattern;)

An extraction pattern will receive a high RlogF score if either its probability is very high and
its frequency is moderately high or if its frequency is very high and its probability is moderately
high. Intuitively, this rewards patterns that are very strongly correlated with the relevant texts or
are moderately correlated with the relevant texts but occur very frequently in them. For example, a
pattern that has a probability of .75 and frequency of 500 is often just as valuable as a pattern that
has a probability of .95 and a frequency of 10 because the more frequent pattern is so common that
many extractions will be missed if the pattern is not used.

Our implementation of AutoSlog-TS produces a list of all the learned patterns and, for each one,
computes the four statistics just described: totalfreq, relfreq, prob, and RlogF. It is then up to the
user to rank the patterns based on the statistic(s) of their choosing and to decide what threshold
values to use to isolate the most important and most reliable patterns for their application domain.
In our IE research, we have found that the RlogF measure does a good job of lifting the most
important extraction patterns to the top of the list. We usually select the best patterns using both
an RlogF threshold and a totalfreq threshold, since the statistics on low frequency patterns are
usually not reliable enough to depend on. For classification tasks where precision is paramount
(e.g., (Riloff and Wiebe, 2003)), we have ranked the patterns based on the prob value instead of
RlogF because the probability measure identifies patterns that have the strongest correlation with
the relevant texts.

Figure 13 shows relevant and irrelevant text samples and the output that AutoSlog-TS would
produce given these text samples as input. Note that all patterns that have RelFreq < 1 will receive
an RlogF score of 0 because logs(1) is 0.

28

Relevant Text

CNN reported that three people died today in Bogota in a terrorist event. Armed guerrillas
shot 3 judges with a machine gun. They died in an attack at the court house. The FMLN
claimed responsibility for the death of the judges and claimed that the death of more judges
would soon follow.

Irrelevant Text

The Los Angeles Times reported that Marlon Brando died today in California. Marlon
Brando died at the UCLA Hospital at the age of 80. Sources claimed that he had been
diagnosed with pulmonary fi brosis.

TotalFreq RelFreq Prob RlogF Pattern

3 0.750 1.189 died in <np>

1.000 1.000 death of <np>

0.667 0.667 <subj> claimed

0.500 0.500 <subj> died

0.000 0.000 was diagnosed with <np>
0.000 0.000 < subj> was diagnosed
0.000 0.000 age of <np>

1.000 0.000 <subj> follow

1.000 0.000 responsibility for <np>
1.000 0.000 claimed <dobj>

1.000 0.000 <subj> claimed responsibility
0.333 0.000 died at <np>

1.000 0.000 shot with <np>

1.000 0.000 shot <dobj>

1.000 0.000 <subj> shot judges

1.000 0.000 <subj> shot

0.500 0.000 <subj> reported

NP RPRPRPRPWORRPRPRPRRPRPEPAEONDDN
PR RPRPRPRPRPRPRPRPLPOOCONNDNDN

Figure 13: AutoSlog-TS Example

29

4.4 Defining New Case Frame Templates for AutoSlog and AutoSlog-TS

A feature that we recently added to AutoSlog and AutoSlog-TS is the ability to explicitly define
the case frame templates that they use for learning. In Section 4.2, Figure 10 showed the syntactic
templates that were designed for the original AutoSlog and AutoSlog-TS algorithms. Those tem-
plates are already implemented in our current system. However, we thought it would be useful for
users to be able to design their own case frame templates for new applications. The current im-
plementation of AutoSlog permits this by storing the case frame templates in a special file called
“caseframe_templates.txt” that can be easily augmented or modified.

Figure 14 shows an example of a properly formatted case frame templates file. Each template
begins with the string “NAME: ” (space after colon is required). Following this is a single string
(without any whitespace) denoting the name of the template. The value of the string has no signifi-
cance to AutoSlog other than giving a name to case frames that are instantiated from that template.
The next line begins with “ANCHOR: ” and specifies a constituent variable that the case frame
will use as its anchor.

The next line begins with “ACT_FCNS: ”. Activation functions are the predicates that must
be satisfied for a case frame to be created. The activation_functions that are already recognized
by Sundance can be found in the file src/activationFcnPatterns.C. At least one activation function
must be specified. When multiple activation functions are specified, they must all be satisfied for
the case frame to be created (see Section 4.2 for details on the purpose of activation functions).
The names given to the activation functions are case-sensitive.

Activation functions come in two varieties: predicate functions, which have the suffix _p, and
return functions, which have the suffix _r. Predicate activation functions simply return true or
false. Return activation functions also return true or false, but in addition they return a value as a
side effect of processing. The value to be returned is specified by giving the return function one
constituent variable that has an ampersand in front of it. For example, the <subj> active verb_dobj
function shown in Figure 14 uses the return function has_dobj_following_r, which will put its return
value in the NP1 variable. In essence, this function checks to see whether the VP has a direct object
following it, and if so it puts that direct object in the NP1 variable.

The final part of a case frame template is denoted by the keyword “EXT: ”. This parameter
is optional, but if you want the case frame to extract something then this slot must be defined.
If included, it is followed by one or more keywords that denote what part of the clause should
be extracted. The current legal keywords are: np, subj, dobj, and prep. We expect to add more
extraction options in the future.

To illustrate how a new template would be defined, suppose you wish to create a pattern that will
extract the direct object of an active verb phrase, but only if the active verb is in the past tense and it
isn’t preceded by a negative word. First, you must decide what to name the template. Perhaps you
would name it ““active_verb_past_not_negative_<dobj>"". Since this pattern is designed to extract
the direct object of a verb phrase, you would designate its anchor to be a verb phrase constituent
variable (e.g., VP1).2® Next you need to decide which activation functions should be included.
You would almost certainly choose active _verb_narrow _p to look for an active verb phrase. Since
active_verb doesn’t require the verb to be in the past tense, and it doesn’t check for the presence of

18This is because the role to be extracted, dobj, should be the direct object of the verb phrase.

30

NAME: <subj>_passive_verb
ANCHOR: VP1

ACT_FCNS: passive_verb_broad_p(VP1)
EXT: subj

NAME: <subj>_active_verb_dobj

ANCHOR: VP1

ACT_FCNS: active_verb_narrow_p(VP1)
has_dobj_following_r(VP1, &NP1)

EXT: subj

NAME: noun_prep<NP>

ANCHOR: NP1

ACT_FCNS: noun_phrase_broad_p(NP1)
EXT: prep

Figure 14: Three Sample Case Frame Templates

negative words, you will need to add more activation functions as constraints. You might create a
new activation function called no_negate_verb_p, which can be added to the list of activation func-
tions to make sure the verb is not negated, as well as a function called past_tense_verb_p which
would check that the verb phrase contains a past tense verb. Now you have all the constraints you
need, but you still need to define the items that the template will extract. The direct object of the
verb should be extracted, so you would define dobj as the extraction type. The new case frame
template will look like this:

NAME: active_verb_past_not_negative_<dobj>

ANCHOR: VP1

ACT_FCNS: active_verb_narrow_p(VP1)
no_negate_verb_p(VP1)
past_tense_verb_p(VP1)

EXT: dobj

You might notice that the current list of items that can be extracted all refer to noun phrases.
This is because AutoSlog was created for information extraction tasks, which tend to look for
noun phrases. However, our implementation is flexible enough to allow for additional extraction
types to be created, such as adjective_phrases and verb_phrases, or even head_words only. We
expect to be augmenting the types of extractions that are possible in the future.

31

5 How to Use Sundance and AutoSlog

In this section, we will review the mechanics involved in installing and running Sundance and
AutoSlog. All instructions assume that you are installing Sundance on a linux or unix operating
system. Sundance can be used either as a stand-alone application or as an API. We will explain how
to use Sundance in both ways. AutoSlog is primarily meant to be used as a stand-alone application,
so we will only review that mode of operation.

5.1 Installing Sundance and AutoSlog

Sundance and AutoSlog are packaged together in a single installation file, which we will call the
Sundance distribution package. This file is distributed as a tar’ed and gzip’ed file. The name of
the file will be *““sundance-<number>.tar.gz””, where the number corresponds to the version of the
Sundance distribution you have received. For example, if you received version 4.2, then the file
will be named sundance-4.2.tar.gz . To install the software, you should follow these steps:

1. Decide on a top-level directory under which you would like to install Sundance. Sundance
will create its own subdirectory containing all of its files in the top-level directory that you
choose.

2. Move the Sundance distribution package to this directory.

3. Unzip and untar the distribution package. Here are details for how to unzip and untar files:

To unzip the file, on the command line type:
gunzi p sundance- <nunber >.tar. gz
This will produce a file called sundance- <nunber >. t ar

To untar the file, on the command line type:

tar -xvf sundance- <nunber >.tar
This will produce a directory called sundance- <nunber >, with the Sundance
source and data files placed underneath it.

4. Enter the sundance- <nunber > directory. You will find the following sub-directories:
bin/, data/, docs/, include/, lib/, man/, regression/, scripts/, src/, and tools/.

5. Enter the scripts/ directory.

6. Run the executable script install_sundance.*® You must be in the scripts/ directory when
you run install_sundance! This script will perform many functions, such as setting the current
directory path in files to allow for correct installation. It will then compile the source code and

19The install_sundance script requires that your system has the csh shell installed and looks for it in /bin. If you
do not have csh installed, you will have to perform the procedures found in install_sundance by hand. This basically
requires replacing placeholders in various files with your current directory path, copying these files to different direc-
tories, and then running the Makefile in the src/ directory. The steps are pretty straightforward for anyone with solid
programming skills and minor familiarity with gawk. Otherwise, it will be necessary to install csh to complete the
installation.

32

create the Sundance and AutoSlog binaries. This will take a few minutes. You may receive
some warning messages during compilation, but they should not affect correct installation.
We try to ensure that Sundance is compatible with recent releases of g++, but if you have
compilation problems then you may want to check the README file to see which version of
g++ this Sundance package is known to be compatible with.

After running the install_sundance script, you should have a working installation of Sundance!
The Sundance and AutoSlog binaries will be located in the bin/ directory. You will find a file
called .nlp-opts in the data/ directory. This file specifies the location of the dictionaries and data
files that Sundance uses. If you wish to have Sundance use different dictionaries or data files, you
can change the .nlp-opts file or make a local copy of it in the directory from which you plan to
work and modify that copy. Sundance first checks the local working directory for a .nlp-opts file.
If one isn’t there, then Sundance uses the version in its data/ directory. However, if you plan to use
customized dictionaries or data files, we recommend that you set up a new domain under Sundance
and put the domain-specific files there. Section 5.5 explains how to set up a new domain under
Sundance.

5.2 Using Sundance as a Stand-Alone Application

Sundance can be run by invoking the “nlp” executable in the bin/ directory. Figure 15 shows the
command line options that it can take.

Command line option | Explanation

-wt word tagging mode

-seg segmentation (parsing) mode

-ext information extraction mode

-f <filename> give text file to parse

-l <slist> give a list of text files to parse

-0 <string> append string to front of output filename (with -f option only)

-0 <output-directory> | put output files in this directory (with -1 option only)

-d <domain> use dictionaries and data files for the specified domain

-c <caseframefile> give a set of case frames to use for information
extraction (-ext mode only)

-p shepherd print extraction output in concise mode (-ext mode only)

-trace show trace output for debugging purposes

-h help

Figure 15: Command line options for Sundance (nlp)

Sundance can be run in 3 different modes: -wt (word tagging), -seg (segmentation), or -ext
(extraction). These modes are mutually exclusive, so Sundance can be run in only one mode at
a time.?® Word tagging mode (-wt) is really just for debugging. It simply reports the part-of-
speech tags that are found for a word first by looking up the word in Sundance’s dictionaries, and

2|n fact, the modes are cumulative. Segmentation mode includes word tagging, and extraction mode includes both
word tagging and segmentation.

33

if that fails, by applying morphological analysis. Segmentation mode (-seg) performs parsing, as
described in Section 3. Extraction mode (-ext) performs information extraction, as described in
Section 4.

Input/Output Arguments

The -f option specifies a single file that Sundance should process. The -l option specifies a
list of files that Sundance should process. In this case, the -1 argument should be followed by
what we call an slist file, which simply contains a directory path on the first line followed by
one individual file name on each succeeding line. The directory path will be appended to the
file names when Sundance looks for the files. Subdirectory names can be included as part of
individual file names, allowing Sundance to access files in different subdirectories underneath a
common directory. Figure 16 shows a sample slist file.

/home/riloff/dr_seuss/stories/
TheLorax.txt

Grinch.txt
CatInHat/CatIinHatOriginal.txt
CatlnHat/CatInHatComesBack.txt

Figure 16: A sample slist file

If neither the -f option nor the -1 option is given, then Sundance will enter interactive mode by
default. Sundance can be used interactively by typing sentences at the prompt. To exit the program,
a user must type Control-D. Using Sundance interactively can be useful to familiarize oneself with
Sundance, or to see how Sundance processed an individual sentence or text snippet.

When using the -f option to specify an input file, by default Sundance will produce an output
file that has exactly the same name but with a suffix appended to it. It will append a .tags suffix to
files processed in -wt mode, a .sundance suffix to files processed in -seg mode, and a .cases suffix
to files processed in -ext mode. In combination with the -f option, the -0 option can be used to
append a string to the beginning of the output file name. For example:

nlp -seg -f Lorax.txt -o July28._
will produce an output file named Jul y28 Lor ax. t xt . sundance . When using the -1 option
to specify a list of input files, the -o argument should be a directory where the output files are to be
placed.

Other Arguments

As we will describe in Section 5.5, Sundance allows users to set up special dictionary and data
files for a specific “domain”. Using this capability, a user can customize Sundance for a specialized
domain. To use domain-specific dictionary and data files, Sundance should be invoked with the
“-d <domain>" option, where the domain can be one of the predefined domains, or a user-created
domain as described in Section 5.5.

The “-c <caseframefile>" option gives Sundance a specific set of case frames to use for in-
formation extraction. If you are working within a domain, then a case frames file may already

34

be specified for that domain in its .domain-spec file (see Section 5.5). But if you wish to use a
different set of case frames, or are running the general version of Sundance without a specified
domain, then the -c option should be used. A file of case frames can be created manually, or can
be generated automatically by AutoSlog or AutoSlog-TS.

The “-p shepherd” option is a concise printing mode that can be used for information extraction
output. In this mode, Sundance simply prints each extracted noun phrase followed by an asterisk
followed by the name of the case frame that extracted it. For example, given the sentence: “John
F. Kennedy was killed by Lee Harvey Oswald with a gun.”, Sundance will produce the following
output:

John F. Kennedy * killed_1
Lee Harvey Oswald * killed_2
a gun * Kkilled_3

where the killed_1 case frame represents the pattern “<subj> killed”, the killed 2 case frame
represents the pattern “killed by <np>"’, and the killed_3 case frame represents the pattern “killed
with <np>"". We have found the “-p shepherd” printing mode to be very useful for gathering
extraction data over a large corpus.

Finally, the “~trace” option prints Sundance’s parse output after each stage of the parsing process.
This is very verbose and should be used only for debugging purposes. It can be helpful to discover
exactly where in the parsing process a problem is occurring.

5.3 Using Sundance as an API

Sundance also provides for use as an API. Using Sundance as an API allows users to embed
calls to Sundance in other application programs, and it allows users to directly access Sundance’s
internal data structures. This may be useful if more information is needed from Sundance than
what it prints by default. However, accessing Sundance’s data structures requires knowledge of the
Sundance code, which is beyond the scope of this report. We recommend that people who have
minimal familiarity with Sundance should use it as an API only to embed it in other applications
in a straightforward manner. Since Sundance is written in C++, we will only discuss it’s usage as
an APl in C++ code. The Makefile located in src/ does allow for dynamic libraries to be created,
however, making it possible to also call Sundance from within java code.

There are three things that need to be done to set up the API. First, the sundance. h file needs
to be included in your source code. This file contains references to many header files that you will
need. This can be added to your source code by including the statement:

#i ncl ude "sundance. h"

Next, you will need to initialize Sundance before using it. Simply include a call to the global
function “init_sundance()” before using Sundance. This assumes that you will be using Sundance
in segmentation (parsing) mode, and you will not be running it in a special domain. If you wish
to use Sundance in extraction mode or want to invoke it with additional arguments (e.qg., to specify
a domain), you will need to call the “init_sundance_CL (argc, argv)” initialization function, where
argc is an integer and argv is a char**. This will allow you to specify the -ext and -d arguments on
the command line and your program will pass these arguments to Sundance.

35

The third step is to add the location of the Sundance files and static library to your Makefile.
Let’s assume that SUNDANCE_HOME is the full pathname of your Sundance directory. Then
you can set up the variable SUNDANCE_INCLUDE in your Makefile to point to your Sundance
files, and use the variable SUNDANCE_LIB to specify the Sundance library information. You
should set up these variables in your Makefile as follows:

SUNDANCE_INCLUDE = -I $(SUNDANCE_HOME)/src/ -1 $(SUNDANCE_HOME)/include/
SUNDANCE_LIB = -L $(SUNDANCE_HOME)/lib/ -l sundance

These variables can then be used as needed for compiling and linking to your code throughout
your Makefile. If you are not familiar with how to do this, there is a simple example of a Makefile
that uses Sundance as an API in docs/sample_code/.

You are now ready to use the API. To do this you will first want to declare an object of the
Sentence class. You can then apply the input operator directly to this object from an input stream.
This stream can either be cin or a file stream that you have opened. The input operator will remove
one sentence at a time from your stream. To parse this sentence, invoke the “process()” method
that belongs to the Sentence class. You can then use the output operator on your object to print
the parsed sentence to an output stream. Figure 5.3 shows a simple example of code that uses
Sundance as an API. This program prints out the parse of sentences that are entered interactively
by a user, until Control-D exits the program.

#include <iostream.h>
#include “sundance.h”

int main(int argc, char** argv) {

/I Arguments to Sundance can be specifi ed on the command line
init_sundance_CL (argc, argv);
Sentence Sent;

/[Print a welcome message and a prompt.
cout << “Welcome to Sample Program 1. *
cout << “Quit by pressing Ctrl-D” << endl,
cout << “>"

Il Setup a loop which reads input from standard in
while (cin >> Sent) {

Sent.process();

cout << S;

cout << *>",

}
}

Figure 17: Sample API program

36

When using the Sundance API in extraction mode, instead of defining a Sentence object and
calling the process() function, you must invoke the global function “do_extraction(istream&, os-
tream&)”. This will process all of the sentences sent in via the input stream (“istream”). The
resulting extractions will be sent to the output stream (*“ostream”).

5.4 Using AutoSlog and AutoSlog-TS as Stand-Alone Applications

AutoSlog can be run by invoking the “aslog” executable in the bin/ directory. Figure 18 shows
the command line options that AutoSlog can take. Many of the options are the same as those for
Sundance, so here we will only describe the ones that are specific to AutoSlog, which are the last
five options shown in Figure 18. The “aslog” executable serves double duty as both an imple-
mentation of the AutoSlog supervised learning algorithm (see Section 4.2), and the AutoSlog-TS
weakly supervised learning algorithm (see Section 4.3). In the following sections we describe how
to use it in both ways.

Command line option Explanation

-f <filename> give a text file to parse

-l <slist> give a list of text files to parse

-0 <string> append string to front of output filename (with -f option only)
-0 <output-directory> put output files in this directory (with -l option only)

-d <domain> use dictionaries and data files for the specified domain

-h help

-n <nouns-file> give a list of targeted nouns to AutoSlog

-r <rel-file> give a list identifying the relevant texts for AutoSlog-TS

-2 <caseframefile> perform the second pass of AutoSlog-TS with this case frame file
-u <number> give frequency cutoff for case frames produced by AutoSlog-TS
-t <caseframe_templates> | specify case frame templates to use for learning

Figure 18: Command line options for AutoSlog and AutoSlog-TS (aslog)

5.4.1 Running AutoSlog

To run the AutoSlog algorithm, you must use the -n argument followed by the name of a file that
contains the targeted nouns. This file should simply contain nouns, one per line. AutoSlog will
generate a pattern to extract every noun phrase whose head noun matches a noun in this file. The
case frames that are generated will be put in a file called <filename>.aslog, where <filename> is
the text file that was processed. If the -l option is used, multiple .aslog files will be created, one for
each file in the list.

5.4.2 Running AutoSlog-TS

The first pass

To run the AutoSlog-TS algorithm, you should call “aslog” with the -1, -r, and -u arguments.
AutoSlog-TS takes one set of “relevant” texts and one set of “irrelevant” texts as input, and then
generates extraction patterns found in those texts along with statistics indicating how strongly each

37

pattern is correlated with the relevant texts. Both the relevant and the irrelevant text files should
be included in the slist file that is specified with the -l option. The “-r <rel-file>" argument then
indicates which of those texts are relevant (i.e., which ones correspond to the topic of interest).
The <rel-file> should be a file that simply lists the names of the relevant text files, one per line.
There should not be directory paths in the <rel-file>.?* The “aslog” program will generate every
extraction pattern that appears in the texts, along with statistics indicating how many occurrences
of each pattern were found in the relevant texts vs. the irrelevant texts. The -u <number> argu-
ment specifies a cutoff value based on the frequency of occurrences. Given the number NV, aslog
will only retain case frames that appeared > N times in the corpus (the relevant and irrelevant
texts combined). This is a useful argument because the number of generated case frames can be
enormous, often in the tens of thousands. Eliminating the case frames that were seen only once in
the corpus, for example, is often worthwhile because those case frames typically aren’t very useful
and discarding them can cut the size of the learned case frame file in half. To discard case frames
that have a frequency of exactly 1, you should use the argument “-u 2”. To retain all of the learned
case frames, you should give the argument “-u 1”.

CF:

Name: <subj>_passive_verb_1

Anchor: VP1(PURCHASED)

Act_Fcns: passive_verb_broad_p(VP1(PURCHASED))
Slot: subj

frequency: 4

relevant_freq: 3

cond. probability: 0.750

relevance score: 1.189

CF:

Name: infinitive verb prep<np>_1

Anchor: VP1(PURCHASE)

Act_Fcns: infinitive verh. p(VP1(PURCHASE))
Slot: PP(WITH)

frequency: 5

relevant_freq: 4

cond. probability: 0.400

relevance score: 0.400

Figure 19: Sample .caseframes file produced by AutoSlog-TS

When the first pass of AutoSlog-TS is finished, two files will be created: *“<slist>.caseframes”
and “<slist>.stats1”, where slist is the name of the file specified by the -l argument. The “.case-
frames” file contains the actual case frame structures generated by AutoSlog-TS. This case frame

2LThere is one problem that can arise from the lack of directory paths in this file. If two files under different
directories have the same name, but one is relevant and the other is irrelevant, there is no way to distinguish them. If
the file name is put in the rel-file, both files will be considered relevant. If it is not put in the rel-file, both files will be
considered irrelevant.

38

file can be given to Sundance to use for information extraction. Figure 19 shows an example .case-
frames file. There are statistics printed below each case frame, but they are commented out and
will not be read by Sundance. We print the statistics in this file simply for convenience, so that
people can see how each case frame performed during the training phase.

The second file created by AutoSlog-TS is a “.stats” file, which contains the statistics associated
with each case frame in a tabulated format (see Section 4.3 for descriptions of these statistics).
Figure 20 shows an example .stats file. The first column shows the frequency of the case frame in
the corpus. The second column shows its frequency in the relevant texts only. The third column
shows the conditional probability P(relevant | pattern;) and the fourth column is the RlogF
score. The fifth column shows a shorthand notation for each case frame. These are not actual case
frame structures, but simply a brief description of the pattern that the case frame matches. The
purpose of this .stats file is to have a file of tabulated statistics that can be easily sorted with the
unix sort command. This will prove to be useful very shortly when we discuss the case frame
filtering step. This .stats file is meant for inspection purposes only and is not used by Sundance or
AutoSlog-TS in any way.

4 3 0.750 1.189 *“passive_verb_broad_p PURCHASED”
5 4 0400 0.400 “infinitive_verb_p PURCHASE WITH”

Figure 20: Sample .stats file produced by AutoSlog-TS

The statistics generated by the first pass of AutoSlog-TS are only preliminary. To get the final,
most accurate statistics associated with the AutoSlog-TS algorithm, you must perform the second
pass of the algorithm.

The second pass

The second pass of AutoSlog-TS is invoked by calling “aslog” with a “-2 <caseframefile>" argu-
ment, where <caseframefile> is the file of case frames generated by the first pass of the algorithm.
The rest of the arguments are the same as those for the first pass: -, -r, and -u options should be
used with the same filenames supplied during the first pass. As output, the second pass also pro-
duces two files that are analogous to those produced during the first pass: *“<slist>.caseframes_2”
and “<slist>.stats2”, where slist is the name of the file specified by the -I argument. The .case-
frames_2 file contains the complete set of case frames learned by AutoSlog-TS after its second
pass, and the .stats2 file contains the final tabulated statistics associated with those case frames.

Filtering the case frames

The *“.caseframes_2” file literally contains every case frame that AutoSlog-TS discovered in the
corpus (minus those discarded based on the cutoff frequency specified with the -u option). Typ-
ically, the vast majority of these case frames are not useful for a specific information extraction
task. To separate out the case frames that are useful, the user must filter the “.caseframes_2” file to
find the case frames that are most strongly associated with the domain. The purpose of the “.stats2”
file is simply to list the various statistics associated with each case frame so that users can easily

39

sort the case frames based on these statistics (say, using the unix sor t command) and then decide
what thresholds they want to use.

Once you have decided on the best thresholds for your application, you must use the fi | t er
program in the tools/ directory and apply these thresholds to the “.caseframes_2” file. There is a
README filter file in the tools/ directory explaining the types of thresholds that are possible and
how to apply them. Simply runthe fi | t er program on the “.caseframes_2” file, and the resulting
output file will contain only the case frames that pass those thresholds.

An example of how to run AutoSlog-TS

As an example, here is a complete execution sequence that could be used to run AutoSlog-TS:

aslog -r relfiles.txt -1 corpus.slist -u 2

aslog -2 corpus.slist.casefranes -r relfiles.txt
-l corpus.slist -u 2

filter -f corpus.slist.caseframes?2 -o corpus.slist.filteredcfs
-freq 5 -prob .80

This process will produce a file called cor pus. sl i st. filtered.cfs thatwill contain all of
the case frames generated by AutoSlog-TS that occurred at least 5 times in the corpus and also had
at least 80% of those occurrences in relevant texts. This file represents the final set of case frames
that should be used for information extraction.

5.4.3 Using New Case Frame Templates

As described in Section 4.4, users have the ability to define their own case frame templates for
AutoSlog and AutoSlog-TS to use during learning. The case frame templates that AutoSlog uses
are read from a text file at runtime. If AutoSlog is run in a specified domain, then the case frame
templates file specified by the .domain-spec file will be used. If you wish to use a different set of
case frame templates, you can specify the file with the “-t <caseframe_templates>" command line
option. The example below shows a call to AutoSlog that tells it to use the file “my _templates.txt”
as the case frame templates.

aslog -1 corpus.slist -n nouns.txt -t ny_tenplates.txt

5.5 Setting up a Specialized Domain

Sundance was designed to be a general-purpose shallow parser that should do a reasonably good
job of parsing texts in any domain. But a central aspect of its design was also to support domain-
specific text processing where specialized dictionaries and data files might do a better job than
general resources. Sundance uses general dictionaries and general data files in its default mode of
operation. However, Sundance also gives users the ability to set up a specific domain that contains
special dictionaries and data files. These files can augment or replace the default files. A new

40

domain can be defined without having to alter any of Sundance’s source code. To create a new
domain, three things must be done.

(1) Create a subdirectory for the domain under data/.

(2) Define the new domain in the .nlp-opts file. The .nlp-opts file contains a section consisting
of several lines that begin with “domain_spec”. These lines list the domains that currently exist
and indicate where their specification files are located. By convention, each specification file ends
with the extension *“.domain-spec” and should be located in a directory called data/domain/. For
example, if you wanted to create a domain called “sports”, you might add a line to the .nlp-opts
file like this:

domai nspec sports /hone/ nane/ sundance-v4. 2/ dat a/ sports/. domai n- spec

(3) Create the .domain-spec file that you just listed. The format for this file can be easily copied
from an existing .domain-spec file, such as the one already defined for the terrorism domain in
data/terror/.domain-spec. This file tells Sundance the location of the special dictionaries and data
files that are associated with the domain. For some domains, you may wish to significantly modify
the behavior of Sundance by creating many specialized dictionaries and data files. For other do-
mains, you may wish to create only a single specialized dictionary or data file. When setting up a
new domain, you have the option to create domain-specific versions of any of the following files:

Case Frame Dictionary (caseframefile): A set of case frames to extract information from texts in
the domain.

Append Dictionary (domain_append_dict): A dictionary of domain-specific words. When run-
ning Sundance in your domain, Sundance’s default dictionary as well as the domain-specific
append dictionary will be accessed (i.e., the definitions in the append dictionary are effec-
tively unioned with those in the general dictionary). The append dictionary should contain
domain-specific words that you might not want to put in the general dictionary for several
reasons. (1) Highly-specialized terms (e.g., medical terms) would virtually never be needed
outside of the domain. Putting them in a separate domain-specific dictionary will keep the size
of the general dictionary more manageable. (2) Some words may have a special usage within
a domain. For example, in a general dictionary the word “apple” might simply be defined as
a noun. But in a business domain, most occurrences of the word “apple” might refer to the
company Apple Computer. In this case, it would make sense to assign the semantic category
COMPANY to the word “apple” in the append dictionary for a business domain.

Override Dictionary (domain_override_dict): A dictionary of domain-specific words that have a
different use in the specialized domain than they normally have. When a word is defined in
the override dictionary, the new definitions become the sole definitions for the word. Any
definitions of the word that are found in Sundance’s default dictionary will be ignored. For
example, the word pound is frequently mentioned in business domains as a form of money. A
general dictionary would define pound as both a verb and a noun. Ideally, Sundance’s parsing
heuristics should correctly disambiguate the word, but its disambiguation heuristics are not
perfect. If Sundance were to consistently misparse pound as a verb in business texts, then

41

one solution would be to redefine pound only as a noun in the business domain’s override
dictionary. Assuming that pound really is used as a noun most of the time in that domain,
this would probably improve parsing performance. The override dictionary can also be used
to override semantic features assigned to a word. For example, if the word “apple” was
explicitly defined as a FOOD in the general dictionary, we could redefine it as a COMPANY in
the business domain’s override dictionary and the FOoD label would be ignored.

Phrasal Dictionary (domain_phrases_file): A dictionary of lexicalized phrases that are relevant
to the domain. These phrases will be unioned with those in the Sundance’s default phrasal
dictionary.

EOS Files (domain_eos_followers_file and domain_non_eos_file): Additional lists of EOS_followers
and Non_EQOS words can be specified for the domain. These lists will be unioned with the de-
fault EOS lists used by Sundance.

Semantic Hierarchy (domain_semantic_hierarchy): A semantic hierarchy for the domain. The
domain-specific semantic hierarchy will replace the general one.

Recognizer Patterns (domain_recognizerpatternfile): A new set of recognizer patterns for the do-
main. To create a new entity type (e.g., NP-LOCATION and NP-COMPANY), the new type
must be added to Sundance in three places. (1) It must be added to the PatternType enumera-
tion list in src/tags.h. (2) It must be added to the PatternTypeToString function in src/tags.C.
(3) It must be added to the StringToPatternType function in src/tags.C.

5.6 Summary

Well, I think that does it! You are now fully armed with all the knowledge you should need to use
Sundance and AutoSlog effectively. Although we can offer no promises in terms of producing new
releases of our software in any specific time frame, we welcome any feedback that you may have,
such as bug reports, problematic parsing or learning behavior, general suggestions for improve-
ment, and reports of positive experiences as well. Please send all comments to riloff@cs.utah.edu.

6 Acknowledgments

This research was supported in part by the National Science Foundation under awards IR1-9704240
and 11S-0208985, and this material is based upon work supported by the Advanced Research and
Development Activity (ARDA) under Contract No. NBCHC040012. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the ARDA or the Department of Interior-National Business Center
(DOI-NBC). We are very grateful to several programmers who helped to develop the Sundance
and AutoSlog systems over the years, most notably David Bean who wrote substantial portions
of the Sundance code. We are also grateful to Siddharth Patwardhan for reviewing a draft of this
report.

42

7 Appendix A: The Sourceand Data Files

Tables 1 and 2 give a brief overview of the source code files used by Sundance and AutoSlog. The
first column shows the file name and the second column briefly describes the contents of the file.
At the end of each description we indicate which program (nlp or aslog) primarily uses the code in
the file.?2 All these files are found under the src/ or include/ directories.

Source File Description
activationFcns.h/.C matches the extraction patterns with supplied clauses;
finds potential extractions (nlp)
activationFcnPatterns.C | checks if constraints for activationFcns met in creating case frames,
part of processFile class (aslog)
aslogMain.C main driver function (aslog)
caseFrameTemplates.h/.C | reads in definitions of case frame templates (aslog)
caseFrames.h/.C provides data structures (d.s.) and operations needed for
working with case frames (aslog & nlp)
clause.C clause handling functions (nlp)
clist.h/.C contains constituentlist class that is used primarily by Constituent class
to implement the class member children (nlp)
commandLine.h/.C stores global variables obtained from the command line (aslog)
constituent.h/.C the main class that contains sentence components.
Words, phrases, and clauses are all constituents (nlp)
date.h/.C a constituent just for maintaining numerical dates (nlp)
dictionary.h/.C reads in and stores all words from dictionaries (text files).
Provides access to words and also performs morphology (nlp)
extractions.h/.C class that holds extractions and related information (nlp)
main.C main driver function (nlp). Includes command line parsing
and text handling functionalities.
miscfunc.h/.C includes main functions for wordtagging, parsing, and extracting.
Also includes many functions implementing details of parsing (nlp)
miscglobals.h/.C global information needed for parsing (nlp)
morphology.h/.C morphological analysis functions (nlp)
paren.h/.C a constituent for some punctuation handling (nlp)
pos.h/.C a part of speech class used by the word class. Also contains
classes with supporting information for the parts of speech (nlp)
prepro.h/.C contains global information needed to perform the preprocessing steps
of Sundance, including sentence breaks (nlp)
preproMain.C main driver function (prepro)

Table 1: Source Files (Part I)

2 AutoSlog is built on top of Sundance, so technically AutoSlog uses all of Sundance’s code as well as its own.

43

Source File

Description

processFile.h/.C

finds all case frames in text that can be created from
given case frame templates (aslog)

recogpatterns.h/.C

named entity recognition functions (nlp)

segment.C

implementation for the sentence class methods related to segmenting.
Implemented to reduce size of Sentence class file (nlp)

semtree.h/.C

semantic hierarchy functions (nlp)

sense.h/.C

word sense handling functions — not currently used
but still integrated into the code (nlp)

sentence.h/.C

holds words in sentence and implements much of segmenting,
clause handling, and extracting (nlp)

sundance.h contains header files needed to use Sundance as an API (nlp)
synrole.h/.C specifies all possible syntactic roles a phrase can take (nlp)
tags.h/.C contains enumerated legal values for POS, syntactic features,

patterntypes, and constituentTypes (nlp)

texthandler.h/.C

functionality for dealing with different types of text input, including cin (nlp)

word.h/.C class with all d.s. and functionality needed for words (nlp)
dst.h a template for a digital search tree (all)
filehelp.h/.C helper functions for retrieving data from files,

including skipping headers for domains (nlp)
hash.h template for a hashtable (all)
intset.h/.C an integer set class used for represented enumerated list members (all)
list.h a template for a list class used throughout Sundance

— has features of both a list and vector class (all)
ntree template for a ntree (all)
strutil.h/.C utility for retrieving and sending list of sunstr from files (all)
sunstr.h/.C a string class used throughout Sundance (all)

Table 2: Source Files (Part I1)

44

Data File Description
.domain-spec defines location of files for a domain
.nlp-opts defines location of files for Sundance (nlp)

append_dict.txt

domain-specific dictionary to be appended to the default dictionary

caseframe_templates.txt

defines all the case frame templates for aslog

caseframes.txt

case frames for use by nlp -ext

closed-dict.txt

default dictionary of closed-class words

dictionary.txt

default dictionary of open-class words

eos_followers.txt

end-of-sentence follower words

non_eos.txt words that are not end-of-sentence words
override.txt domain-specific dictionary to override default dictionary
phrasal.txt phrasal lexicon

recognizer_patterns.txt

rules for recognizer_patterns

rules.txt

morphology rules

semtree.txt

semantic hierarchy

Table 3: Dictionaries and Data Files

45

References

Steven Abney. 1990a. Partial parsing with finite-state cascades. In John Carroll, editor, Workshop
on Robust Parsing (ESSLLI *96), pages 8-15.

Steven Abney. 1990b. Rapid incremental parsing with repair. In Proceedings of the 6th New OED
Conference: Electronic Text Research, pages 1-9. University of Waterloo.

D. Appelt, J. Hobbs, J. Bear, D. Israel, and M. Tyson. 1993. FASTUS: a finite-state processor
for information extraction from real-world text. In Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence.

K. Church. 1989. A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text. In
Proceedings of the Second Conference on Applied Natural Language Processing.

Dayne Freitag. 1998. Toward General-Purpose Learning for Information Extraction. In Proceed-
ings of the 36th Annual Meeting of the Association for Computational Linguistics.

J. Furnkranz, T. Mitchell, and E. Riloff. 1998. A Case Study in Using Linguistic Phrases for Text
Categorization from the WWW. In Working Notes of the AAAI/ICML Workshop on Learning
for Text Categorization.

T. Geisel. 1971. The Lorax. Random House, New York.

R. Grishman. 1995. The NYU System for MUC-6 or Where’s the Syntax? In Proceedings of the
Sixth Message Understanding Conference (MUC-6), San Francisco, CA. Morgan Kaufmann.

Donald Hindle. 1994. A parser for text corpora. In A. Zampolli, editor, Computational Ap-
proaches to the Lexicon, pages 103-151. Oxford University Press.

S. Huffman. 1996. Learning information extraction patterns from examples. In Stefan Wermter,
Ellen Riloff, and Gabriele Scheler, editors, Connectionist, Statistical, and Symbolic Approaches
to Learning for Natural Language Processing, pages 246-260. Springer-Verlag, Berlin.

J. Kim and D. Moldovan. 1993. Acquisition of Semantic Patterns for Information Extraction from
Corpora. In Proceedings of the Ninth IEEE Conference on Artificial Intelligence for Applica-
tions, pages 171-176, Los Alamitos, CA. IEEE Computer Society Press.

N. Kushmerick, D. Weld, and R. Doorenbos. 1997. Wrapper Induction for information extraction.
In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pages
729-735.

E. Riloff and R. Jones. 1999. Learning Dictionaries for Information Extraction by Multi-Level
Bootstrapping. In Proceedings of the Sixteenth National Conference on Artificial Intelligence.

E. Riloff and J. Wiebe. 2003. Learning Extraction Patterns for Subjective Expressions. In Pro-
ceedings of the 2003 Conference on Empirical Methods in Natural Language Processing.

46

E. Riloff. 1993. Automatically Constructing a Dictionary for Information Extraction Tasks. In
Proceedings of the Eleventh National Conference on Artificial Intelligence, pages 811-816.
AAAI Press/The MIT Press.

E. Riloff. 1996a. An Empirical Study of Automated Dictionary Construction for Information
Extraction in Three Domains. Artificial Intelligence, 85:101-134.

E. Riloff. 1996b. Automatically Generating Extraction Patterns from Untagged Text. In Proceed-
ings of the Thirteenth National Conference on Artificial Intelligence, pages 1044-1049. The
AAAI Press/MIT Press.

S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert. 1995. CRYSTAL.: Inducing a conceptual
dictionary. In Proc. of the Fourteenth International Joint Conference on Artificial Intelligence,
pages 1314-1319.

47

