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1 Introduction

In shared memory multi-processors, cache-coherence protocols maintain consis-
tency of multiple copies of cached data. The protocols control a number of
readable and writable copies of each memory line for multiprocessors. Modi-
fication of one copy of a datum line may require updating of other copies to
maintain consistency among them. One of the key property in such protocols
is the property of mutual exclusion i.e., no two processors can possess writable
copies of a memory line.

Formal Verification is desirable because there could be subtle bugs as the
complexity of protocols increases, which cannot be detected in simulation. The
FLASH cache coherence protocol has already been verified by Seungjoon Park
[3], McMillan [2] and several others. Park used the PVS theorem prover to verify
by his method of aggregation of distributed transactions. But this is a laborious
process, because it requires generating a lot of inductive invariants (around
72), the theorem prover has to be manually guided and its time consuming.
McMillan used his SMV model checker for the verification employing the method
of compositional model checking. Though his proof is elegant, it puts a huge
burden on the model checker. The proof was completed in two days.

We verify the mutual exclusion property for the FLASH protocol in UCLID
system. The UCLID [4] system is used to specify and verify parameterized sys-
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tems of unbounded state. It has a decision procedure based on a logic of counter
arithmetic with lambda expressions and uninterpreted functions [1]. The advan-
tage of using UCLID is that its decision procedure is completely automated and
very well suited for parameterized systems. Its language is sufficiently rich to
model commonly used data structures by lambda expressions and uninterpreted
functions. The verification is done by the method of inductive invariant check-
ing. Using this method, one verifies whether the next state transition function
preserves the safety property at the most general state of the protocol. One
must verify that the transition relation preserves the safety property at the ini-
tial state of the protocol. We have to design auxiliary invariants to prune the
unreachable state space. In addition to the challenge of finding these invariants,
there is the challenge of avoiding irrelevant invariants since the cost of checking
the system increases exponentially with the number of invariants. We have de-
vised a systematic way of discovering invariants as and when needed. It took
just 8 invariants to prove the safety property. We do a thorough analysis of the
counterexample trace that UCLID outputs (when a property fails) to discover
or strengthen the invariants. We describe in detail this analysis step by step.

Clearly, we can’t yet compare our method with Park’s method, since we
have verified only the safety property. As we have obtained promising results
in terms of the number of invariants and proof time, we hope that we can prove
other properties too more efficiently and elegantly.

We briefly explain the FLASH Cache Coherence Protocol in Section 2. In
Section 3, we give a short background of UCLID theorem prover. Then, in Sec-
tion 4, the protocol model is described. The next section gives the overview of
inductive invariant checking method for verification of mutual exclusion prop-
erty of FLASH. We give a step-by-step detail of generating the invariants in
section 6. Finally, we conclude in section 7 with future work to be done.

2 FLASH Cache Coherence Protocol Descrip-
tion

The cache-coherence protocol is a directory based protocol. Each cache-line
sized block in memory is associated with directory header which keeps informa-
tion about the line. For a memory line, the node on which that piece of memory
is physically located is called home and the other nodes are called remote. The
home maintains all the information about memory lines in its main memory in
the corresponding directory headers.

The system consists of a set of nodes, each of which contains a processor,
caches and a portion of global memory of the system. The nodes communicate
using asynchronous messages. The state of a cached copy is either invalid, shared
(readable) or exclusive (readable and writable).

If a read miss occurs in a processor, the corresponding node sends out a
Get request to the home. Receiving the Get request, the home consults the
directory corresponding to the memory line to decide what action the home
should take. If the line is pending, meaning another request is already being
processed, the home sends a NAK to the requesting node. If the directory
indicates there is a dirty copy in a remote node, then the home forwards the
Get request to that node. Otherwise the home grants the request by sending



a Put to the requesting node and updates the directory properly. When the
requesting processor receives the Put reply, the processor sets its cache to shared
and proceeds to read.

If a write miss occurs in a processor, the corresponding node sends out a
GetX request to the home. Receiving the GetX request, the home consults the
directory. If the line is pending, the home sends a NAK to the requesting node.
If the directory indicates there is a dirty copy in a remote node, then the home
forwards the GetX to that node. If the directory indicates there are shared
copies of the memory line in other nodes, the home sends invalidations (INV)
to those nodes. The FLASH multiprocessor has two modes, in which it can be
run. In Eager mode, the home grants the request by sending the PutX message
to the requesting node, without waiting for invalidation acknowledgments to
be received. In Delayed mode, this grant is deferred till all the invalidation
acknowledgments are received. If there are no shared copies, the home sends a
PutX to the requesting node and updates the directory. On receiving PutX
message, the requesting node changes its cache state to exclusive.

During the read miss transaction, an operation called sharing write-back is
necessary in the following ”three hop” case. This occurs when a remote processor
in node R; needs a shared copy of a memory line of which an exclusive copy is
another node Ry. When the Get request from R; arrives at home H, the home
consults the directory to find that the line is dirty at R2. Then H forwards
the Get request to R2 with the source faked as R;. When R, receives the
forwarded Get, the processor sets its cache state to shared and issues a Put to
R;. Unfortunately the directory in H does not have R; on its sharer list yet
and the main memory does not have an updated copy when the cache line is
in shared state. The solution is for Ry to issue a ShWB (sharing writeback)
conveying the dirty data to H with the source faked as R;. When H receives
this message, it writes the data back into memory and puts R; on sharer list.

When a remote node receives an INV, it invalidates its copy and sends
InvAck to the home. A processor which is waiting for a Put reply may get an
INYV before it gets the shared copy. In such a case, the requested line is marked
as invalidated, and the Put reply is ignored when it arrives.

A shared copy can be replaced by issuing a replacement message to the
home. An exclusive copy is written back to the memory by a WB (write-back)
request to the home. Receiving the WB, the home updates the line in main
memory and the directory properly.

3 Background : UCLID

The UCLID system [4] is used to specify and verify systems that have infinite
or unbounded state. The language include uninterpreted function and predicate
symbols, counter arithmetic and non-nested lambda expressions. It can be used
to specify a state machine, where each state variable can be boolean, enumerated
or an uninterpreted symbol. The lambda expressions can be used to define data
structures like arrays, which are common in the FLASH protocol. Also, using
lambda expressions multiple positions of an array can be updated in a single
step.

The UCLID verification engine comprises of a symbolic simulator that can
be ”configured” for different kinds of verification tasks, and a SAT based deci-



sion procedure for a logic of counter arithmetic with lambda Expressions and
uninterpreted functions [1]. We describe below the verification tasks we used in
proving the cache coherence property.

e Bounded Model Checking The symbolic simulation of the model can
be done using the simulate command, specifying the number of steps as
an argument. The decide command can then be used to check the safety
property of interest in the state the system attained after the simulation.
This is usually a very useful method to find simple bugs such as typo-
graphical mistakes in the specification.

e Inductive Invariant Checking In this technique, the starting state is
initialized to the most general state. The system is symbolically simulated
for one step. Then, a property of the form P = Next (P) is checked, where
P denotes a formula for the safety property we wish to verify and Next
(P) is its next-state version.

In general, the user will have to supply the verification engine with several
other auxiliary invariants along with the safety property P. The process of
deciding these auxiliary invariants is automatic. If the invariant is found
to be false, UCLID returns a counterexample. This counterexample can
be used to further strengthen the invariant or discover new ones.

Most of the time, its very difficult to understand these counterexamples
in a complex system like FLASH involving numerous state variables and
rules. The idea is to focus on the state variables in (i) the transition rule
in the counterexample, (ii) the safety property of interest (iii) the false
invariant and (iv) source rules that can possibly fire the transition rule.
Once we determine these ”state variables of interest”, we try to figure
out relationship(s) between them. There seems to be no systematic way
of discovering the relationship(s), given any counterexample. However,
there are some ”intelligent” tricks that can be used to find them. We
can use these relationships to further strengthen the invariant or discover
new ones. We explain in details in section 6 how to interpret the coun-
terexample and the tricks to determine the relationships in the case of
FLASH.

4 Modeling of FLASH Cache Coherence Proto-
col in UCLID

Our model closely follows McMillan’s model in SMV [2]. We model proces-
sors, data and memory as uninterpreted TERMs. We model a cache as an
array where the index represents the processor. Directory fields are declared
as TRUTH or TERM as the case may be. The field dir_real which gives the
number of shared copies of a cache-line is modeled as a boolean array where
the index is the processor. dir_real is set for the processor with a shared copy.
The message passing takes on 4 different kinds of network. They are unet, wb-
net, shwbnet and invnet. As the names suggest, unet deals with messages
of type {Get, GetX, Put, PutX}. wbnet deals with messages of type WB.
shwbnet deals with messages of type {ShWB,FAck} . invnet carries mes-
sages of type {Inv,InvAck} . The entire four networks are modeled as an array.



Rules in FLASH are of form : {A_B_C_N} where

A = {PIL, NI}

B = {Local, Remote}

C = {Get, GetX, Put, PutX, NAK, Inv, WB, ShWB, FAck, In-
vAck, Replace}

N = {1,2,3}

The PI rules are initiated by a requesting processor, while NI rules are ini-
tiated by a message from the network. The notation ’Local’ or 'Remote’ imply
whether the processing node is home node or not.

The rules in FLASH are nested if-then-else statements, with each condition
being a boolean formula involving at least 4 state variables. But, unlike SMV,
UCLID doesn’t support nested ITE’s. To deal with this, we divide the rule
R into many simpler non-nested ITE’s. For example, consider a rule R of the
form below (for simplicity, we assume the conditions to be made of single clause,
unlike in real model).

R: if (c1) then b2 else if (c2) then b3 ;
So we divide the rule R into following 2 rules :

R; : if (c1) then b2 ;
R : if (~c1 & c2) then {b3} ;

There are about 30 such rules in the system.

The other notable difference is that the SMV model uses existential quan-
tification to define auxiliary state variables some_others_left and not_need_invs.
The variable some_others_left is set when the home node has yet to receive all
InvAcks from the nodes who had the copy of the cache line. not_need_invs is
set when no node has a copy of the cache line. But UCLID doesn’t support the
existential quantifier.

These state variables were of the form, s/ := ®(3i: (i != src) & s(i)),
where s/ is the auxiliary state variable, ® is an unary boolean operator, src
is the source node and s is a state variable already defined. For example,
not_need_invs := ~(3i: (i != src) & dir_shlist(i)), where dir_shlist(i) is
the list of sharer nodes. This means that, not_need_invs is set, if there doesn’t
exist any non-source node in the list of sharers.

To deal with this, we consider the set of rules R, which assign the next state
of the state variable s to be 1. For each such rule in R, we set or reset the value
of s/, depending on ® and taking care that (i != src) .

Formally in UCLID,

next(s!) := lambda(i) . ITE (((i != sre) & (rule ¢ R)) , (®(1)) , s(7)) ;

In the case of not_need_iinvariants, we reset its value for all those rules that
set the state variable dir_shlist for non source nodes.



5 Verification

We verify whether the system satisfies the property of Mutual Exclusion (ME),
represented in UCLID as

ME := Lambda (i,5) . ((i = j) & (cache_state (i) = exclusive)) =
(cache_state (j) = exclusive) ;

We use the method of Inductive Invariant Checking to prove the above property.
There are two parts involved :

Part A : Prove that the next state transition relation preserves the safety
property at the initial state. Initial state for the FLASH system is the state
where all the networks are empty and the caches are in invalid state.

Part B : Prove that the next state transition relation preserves the safety
property at the most general state. We model the most general state as the
state where the caches and networks can non-deterministically have any values.

Part A is easy to prove. So we focus on Part B.

It is possible that the most general state, as determined above, can appear
in unreachable state space. We have to care only about the reachable state
space satisfying the safety property. To do this, we construct invariants such
that they restrict the state space to reachable state space relevant to the safety
property. There is no systematic way to construct invariants. We construct
them based on counterexample obtained on running UCLID. Once we construct
the invariants, we decide the following formula :

FORALL (i, j). (init_invs (i,j) = next_ME (i,j)) ;

where init_invs represents the state of invariants and safety property ME before
simulating for one step, and next_MFE represents the state of safety property MFE
after simulation.

We decide the formula that, given that all invariants and MFE are satisfied
at the most general state before simulation, the safety property is valid at the
next state. We describe in detail how the invariants are discovered in the next
section.

6 Invariant Generation in FLASH

The invariants were generated as needed from the structure of the counterex-
ample. We explain below how the invariants were discovered and strengthened.

First we try to check the safety property MESym (mutual exclusion is sym-
metric) without providing any invariant to the system.

ME := Lambda(i,j). ((¢ = j) & (cache_state(i) = exclusive) ) =
(cache_state(j) '= exclusive) ;



MESym := Lambda(i,j). (ME(i,5) & ME(j3)) ;

This gave a counterexample on running UCLID. Counterexample in UCLID
is presented in two parts. Part 1 assigns interpretations to function and predi-
cate symbols. Part 2 is the Counter Example Trace, showing two states. State
0 is the initial state, and state 1 is the next state which violates the invari-
ant. The nezt state is obtained by applying some transition rule, chosen non-
deterministically, on the initial state.

For each counterexample trace, we will do an analysis of the trace to help
discover or strengthen invariants. We will look at the state variable assignments,
relevant to the safety property, in both the initial and next states. We will also
look at the rule(s), which are responsible for taking the system to the next state,
where it violates the property. Since we will be analyzing the counterexamples
in great detail, it would be helpful for the reader to have a copy of the appendix
A of Park’s [3] paper. The appendix A gives a detailed description of FLASH
protocol(EAGER mode).

Following is the counterexample obtained on running UCLID to decide
MESym.

Counterezample 1
Initial State

i := home, j := remote, dir_dirty := false
cache_state(i) := shared, cache_state(j) := exclusive
rule := PI_Local_GetX (rule to be simulated)

Clearly the initial state satisfies the invariant, as it doesn’t satisfy the antecedent
part of the invariant.

Next State
The rule PI Local_GetX grants exclusive access to the home node and sets
dir_dirty. So we have,

dir_dirty := true, cache_state(i) := exclusive
thus contradicting with MESym.

Analysis
Consider the initial state. dir_dirty wasn’t set even though there was an exclu-
sive copy in the system. This forced the rule PI_Local_GetX to grant exclusive
access to the home node.

So, we can get rid of this incorrect initial state by generating an auxiliary in-
variant, which says that, if there exists a node in an ezclusive state then dir_dirty
is true. Let’s call this auxiliary invariant A.

A := Lambda (i) . (cache_state(i) = exclusive) = dir_dirty ;

Now, using invariant A, we try to decide the safety property MESym. We
run UCLID and obtain the following counterexample.



Counterexample 2
Initial State

i :=r1 (remote 1), j := r2 (remote 2)

cache_state(i) := shared, cache_state(j) := exclusive

dir_dirty := true (as expected because of invariant A)
unet_mtype(i) := PutX (means i has received a PutX message)
rule := NI_Remote_PutX

Next State
The rule NI Remote_PutX simply puts the exclusive copy into cache. So we
have cache_state(i) := PutX thus contradicting MESym.

Analysis
Again there is a problem in the initial state. If there is PutX in the network,
then there can’t be a node in exclusive state, because if there is a node in exclu-
sive state then dir_dirty is true and if dir_dirty is true then no rule allows PutX
message to be sent.

So we get another invariant B.

B := Lambda (i,5) . (unet_mtype(i) = PutX) = (cache_state(j) = exclusive) ;

And we run UCLID again to decide MESym using both A and B invariants.
This time, UCLID doesn’t find any counter-examples and the formula is found
to be valid. This proves the safety property using invariants A and B.

The job, now in hand, is to prove the invariants A and B. So we run UCLID
now to decide invariant A. And we get counter-example in proving A.

Counterezample 3
Initial State

i := remote, cache_state(i) := exclusive, dir_dirty := true
rule := NI_Writeback, wbnet_mtype := WB

So the initial state satisfies A.

Next state
The rule NI_Writeback on receiving WB message resets dir_dirty.
So, dir_dirty := false, thus contradicting A.

Analysis

If we look at the source of WB, from rule PI_Remote_PutX, WB can only be
initiated by the remote node in an exclusive state. Since the initial state had a
remote node in an ezxclusive state, unlike previous counterexamples the initial
state assignment is correct.

We consider the source rule of WB message, PI_Remote_PutX. This rule
states that the node with exclusive access changes its state to invalid when WB
message is sent. And since there can be only one node in ezclusive state as per
MESym, we can’t have a WB message if there is a node in ezclusive state. So



we strengthen A further to A;.

Ay := Lambda (i) . (cache_state(i) = exclusive) = ((wbnet-mtype != WB)
& dir_dirty) ;

We run UCLID to decide the strengthened invariant A;. UCLID outputs a
counterexample of the following form.

Counterezample 4
Initial State

1 1= remote

cache_state(i) := exclusive, dir_dirty := true
shwbnet_mtype := ShWB

rule := NI SharingWriteback

Next State
Like NI_Writeback, NI_SharingWriteback resets dir_dirty. so dir_dirty := false,
contradicting A; .

Analysis
Once again we have to further strengthen A; to A,, based on the same argu-
ment as in the previous case. So,

Ay := Lambda (i) . (cache_state(i) = exclusive) = ((wbnet-mtype != WB)
& (shwbnet_mtype '= ShWB) & dir_dirty) ;

We run UCLID to decide Ay and get the following counterexample.

Counterexample 5
Initial State

i := remote, cache_state(i) := shared

unet_miype(i) := PutX (remote node in shared state receives a PutX message)
dir_dirty := false

wbnet_mtype :== WB

rule := NI_Remote_PutX

Next state

The rule NI_Remote_PutX puts the remote node in exclusive state. So, cache_state()
:= exclusive, which contradicts invariant Ay since dir_dirty is false and wb-
net_mtype = WB.

Analysis

We look at the initial state assignments, especially the source rule of PutX
(as PutX fired the rule NI.Remote_PutX). From the rules, NI_Local_GetX and
NI_Remote_GetX, we can see that whenever there is PutX message in the net-
work dir_dirty is set. Also, if there is PutX message in the network, then there
can’t be a node in ezclusive state, by invariant B. Since there can’t be a node
in exclusive state, there can’t be a WB message in the network, as only the



ezclusive node has the privilege to write back. A similar argument shows that
a ShWB cannot be in the system.

The idea in strengthening of an invariant is to understand the source rules
of the message that fired the transition rule in the counterexample trace, and
determine how the source rules affect the state variables in the invariant.

So we further strengthen A, to As.

As := Lambda (i) . ((cache_state(i) = exclusive) | (unet_mtype(i) = PutX))
= ((wbnet_mtype != WB) & (shwbnet_mtype |= ShWB)
& dir_dirty) ;

Now we run UCLID which gives the following counterexample.

Counterezample 6
Initial State

i := home, cache_state(i) := shared,
dir_dirty := false,

wbnet_mtype := WB,

rule := PI_Local_GetX

Next State

The home node requests ezclusive access and since dir_dirty is not set, it gets
ezxclusive status by rule PI_Local_GetX. So,

cache_status(i) := exclusive
which contradicts As since dir_dirty is false and wbnet_mtype := WB.

Analysis

Since the initiator of the rule PI Local GetX is not a message, unlike previous
case we don’t venture into looking at other rules. Instead we focus on the initial
state and the rule PI_Local_GetX.

We could have avoided ¢ being granted exclusive access, had dir_dirty been
set. Since a node being in shared state doesn’t imply directory being dirty, we
look for relationship between dir_dirty and WB message.

Since WB message can only be issued by a node in ezclusive state, and a
node in ezxclusive state implies dir_dirty being set, we get a new invariant here.
If there is a WB message in the network, then dir_dirty must be set. So, we
have a new entrant.

C := (wbnet_-mtype = WB) = dir_dirty ;

With invariant C in the system too, we go for deciding Az. Once again, we
get a counter-example, which is exactly similar to counterezample 6 but in place
of WB we have ShWB.

Counterexample 7
This counterexample is similar to counterezample 6, except we have ShWB mes-
sage instead of WB, i.e.,



shwbnet_mtype := ShWB.

As in the case of counterexample 4, we strengthen invariant C to include ShWB.
So, we have

Cy = ((wbnet_mtype = WB) | (shwbnet_mtype = ShWB)) = dir_dirty ;
We get a counterexample.

Counterexample 8
Initial State

i := remote, cache_state(i) := exclusive,
unet_mtype(home) := Put (home receives a Put message)
dir_dirty := true.

rule == NI_Local_Put

Next State

This rule simply resets dir_dirty, giving contradiction.

Analysis
Once again we rely on our technique of attacking the source rule of Put message
to home (that initiated NI_Local_Put).

The source rule of Put message to home is NI_Remote_Get. Before issuing
Put message, the remote node changes its state from exclusive to shared. But
we have a node in initial state with ezclusive state, which shouldn’t happen as
there can be exactly one node in ezclusive state. So, we coin a new invariant D.

D := Lambda (i,j) . (unet_mtype(i) = Put) = (cache_state(j) '= exclusive);
This again gives a counterexample almost similar to counterezample 8, except
that we have node ¢ receiving PutX instead of being in ezclusive state. So, we

strengthen D further to

D, := Lambda (i,5) . (unet_mtype(i) = Put) = ((cache_state(j) = exclusive)
& (unet-mtype(j) = PutX));

This time UCLID outputs the formula to be valid.

So, with invariant B and new invariants C; and D; we proved the invariant
Asz. Now we go on to prove invariant B.

B := Lambda (i,5) . (unet_mtype(i) = PutX) = (cache_state(j) = exclusive);

We obtain a counterexample on running UCLID to decide B.

Counterezample 9
Initial State

i:=T1,j =T



unet_mtype(i) := PutX, unet_mtype(j) := PutX (Both ¢ & j receive PutX)
cache_state(i) := cache_state(j) := shared.

dir_dirty := true

rule := NI_Remote_PutX

Next State
The rule NI_Remote_PutX applied on node j, puts j in ezclusive mode.
So, we have cache_state(j) := exclusive, which gives a contradiction with B.

Analysis
We use our technique of considering the initial state interpretation, especially
we focus on that state variable which fires the rule NI_Remote_PutX, and try
to figure out whether it can be a possible reachable state. The initial state
says that there are two PutX messages in the network. Now, if we look at the
possible sources of the PutX message to the remote node, the message can be
send either by home (by rule NI_Local_GetX) or some other remote node (by
rule NI_Remote_GetX). If there is already a PutX message in the network (at
node ), then dir_dirty should be set (by invariant A3) and the home (or remote)
node shouldn’t have sent PutX message. Since dir_dirty was set (as per invari-
ant A) in the initial state, still we got an invalid trace with two PutX messages,
suggesting that the initial state should be an unreachable state.

So we key in a new invariant E, that prunes such states, viz., there can be
exactly one PutX message in the network.

E := Lambda (i,5) . ((¢ = j) & (unet_mtype(i) = PutX))
= (unet_mtype(j) '= PutX) ;

With invariant E in the set of invariants, we are able to prove the invariant
B, as UCLID outputs the formula to be valid.
The next invariant to be checked is Cj.

Cy = ((wbnet_mtype = WB) | (shwbnet_mtype = ShWB)) = dir_dirty ;

We run UCLID to decide the above property, which returns the following coun-
terexample. As before, we will consider only those state variable assignments,
that are either present in the property or fire a transition rule that leads to
invalid state.

Counterexample 10
Initial State

wbnet_mtype := WB, shwbnet_mtype := ShWB
dir_dirty := true
rule := NI_Writeback

Next State
The rule NI Writeback resets dir_dirty flag. So, we have ShWB message with
dir_dirty not being set, thus giving contradiction.

Analysis



The initial state shows both WB and ShWB messages in the system. But this
is not possible, because if a node sends a WB message, then that node should
be the one which has the exclusive copy (by rule PI_Remote_PutX). Also, the
node which sends ShWB message also should be in ezclusive state (by rule
NI_Remote_Get). Since there can be only one node in ezclusive state, we get a
new invariant.

F := (wbnet_mtype = WB) = (shwbnet_-mtype != ShWB) ;
We run UCLID with this invariant. We get a different counterexample this time.

Counterezample 11
Initial State

wbnet_mtype := WB,
unet_mtype(home) := Put
rule :== NI_Local_Put

Next State
The rule NI_Local_Put resets dir_dirty, thus giving contradiction.

Analysis

Initial state has home receiving Put message. But the only node which can send
Putmessage to homeis a remote node with exclusive copy (by rule NI_Remote_Get).
And only this node can send a WB message too, because we can’t have two nodes
with exclusive copies. Also this node can send only one of the two messages,
because immediately after sending these messages, the node drops its ezclusive
status. This suggests further strengthening of invariant F'. So we have,

Fy := (wbnet-mtype = WB) = ((shwbnet_mtype != ShWB)
& (unet_mtype(home) '= Put)) ;

We decide this property Fi, but it gives a counterexample exactly as earlier,
except this time we have ShWB message in the system in place of WB message.

Counterezample 12
This counterexample is exactly similar to 11, except we have shwbnet_mtype :=
ShWB in place of wbnet_mtype := WB.

But we can’t modify property Fy to include (shwbnet_mtype = ShWB) in the
antecedent as it would directly conflict with the consequent (shwbnet_mtype =
ShWB). So we key in a new invariant, to state that we can’t have home receiv-
ing Put message, if there is WB or ShWB message in the system. As we can
see here, we had to develop a new invariant simply because its not possible to
strengthen Fj further. Also, since the new invariant would create redundancy
with Fy, we simplify F} to its earlier version, viz., F.

G := ((wbnet_mtype = WB) | (shwbnet_mtype = ShWB))
= (unet_mtype(home) '= Put) ;

This time, we succeed in proving property Ci and UCLID outputs the for-



mula to be valid. We now venture to prove the invariant D;.

D, := Lambda (i,j) . (unet_mtype(i) = Put) = ((cache_state(j) = exclusive) &
(unet_mtype(j) '= PutX))

This was the most difficult invariant to prove. We get a counterexample on
deciding the above property.

Counterezample 13
Initial State

i := remote, j := home

cache_state(i) = cache_state(j) := shared,
unet_mtype(i) := Put, unet_mtype(j) := None
dir_dirty := false

rule :== PI_Local_GetX

So the initial state satisfies D;, since there is no node in exclusive state or
receiving PutX when some node has received a Put message.

Next State
Since the directory is not dirty and home wishes for exclusive access, it is
granted. Thus, cache_state(j) := exclusive.

Analysis

The initial state seems to be a correct and reachable state, as it is possible to
have a remote node receiving a Put message while directory is not dirty and
there are shared copies in the nodes. So we strengthen D; further, providing
home node the exemption.

Dy := Lambda (i,j) . ((j = home) & (unet_mtype(i) = Put))
= ((cache_state(j) '= exclusive) &
(unet_mtype(j) '= PutX));

And we test this new invariant. We obtain a different counterexample this
time, suggesting that the strengthening was effective in getting rid of the earlier
counterexample.

Counterexample 14
Initial State

1= r1, J =T

cache_state(i) = cache_state(j) := shared,
unet_mtype(i) := Put, unet_miype(j) := GetX
dir_dirty := false

rule := NI_Local_GetX

Next State
Since dirty flag is not set, the home node grants exclusive access to node j. So,
cache_state(j) := exclusive



Analysis

Since it is possible to have a node requesting an exclusive access to the home
and a remote node receiving a Put message in the network, the above coun-
terexample can happen in reachable state space. So the invariant is not true for
reachable states. We would have to refine it.

The essence of the invariant is the Put message. If we look at the source
rule of the Put message to any node, it can be either from home node using rule
NI_Local_Get or from remote node using rule NI_Remote_Get. In the case of the
former, as we can see from the counterexample, its not necessary for directory
to be dirty when Put message is sent and so some other node can be granted
PutX message or exclusive state. But in the later case, the remote node is in
ezclusive state before sending the Put message and so the directory must be
dirty thus forbidding home from granting PutX or exclusive state to any node.

We refine the invariant Dy further, to have the Put message not being re-
ceived from the home node. So, we have D3 to be

D3 := Lambda (i,5) - ((j != home) & (unet_mtype(i) = Put) &
(unet_proc(i) = home)) =
((cache_state(j) = exclusive) & (unet_mtype(j) != PutX));

UCLID returns this refined invariant to be valid, but it generates a counterex-
ample in invariant A3z. So we have to prove A3 again. Let’s recollect As.

As := Lambda (i) . ((cache_state(i) = exclusive) | (unet-mtype(i) = PutX))
= ((wbnet_mtype != WB) & (shwbnet_mtype != ShWB)
& dir_dirty) ;

Counterezample 15
Initial State

1 1= remote,

cache_state(i) := exclusive,

unet_mtype(i) := None, unet_mtype(home) := Put,
unet_proc(home) := home,

dir_dirty := true,

rule := NI_Local_Put

Next State
dir_dirty := false
Analysis
The initial state deals with home receiving the Put message from itself. This is
simply impossible, as home can receive Put message only from a remote node.

So we bring in a simple new invariant.

H := (unet_mtype(home) = Put) = (unet_proc(home) '= home) ;



And we test again the invariant Az, and UCLID returns the formula to be
valid.

Having proved A3z, B, C; and D3 we move forward to prove the next invari-
ant F. Recall that,

E := Lambda (i,5) . ((i = j) & (unet_mtype(i) = PutX))
= (unet_mtype(j) = PutX) ;

We run UCLID to decide the above property This time, we are lucky and the
property is returned to be valid in first attempt itself.
So, we move ahead to prove the simple property F'.

F := (wbnet_mtype = WB) = (shwbnet_mtype != ShWB) ;

We run UCLID to check this property. We get lucky second time, and the
property is found to be true.
Next invariant to be proven is G.

G := ((wbnet_mtype = WB) | (shwbnet_mtype = ShWB))
= (unet_mtype(home) '= Put) ;

This time also, we are successful in proving without any hindrance, the invariant
G. Next and hopefully the last invariant to be proven is H.
We check this using UCLID. And with the result being positive, we finish
the innings of proving the safety property completely using just 8 invariants.
All the invariants and safety property were proved automatically by UCLID.
It takes only 5.510 seconds to finish the proof. The UCLID code has 1000 lines,
including the model, invariants and comments.

7 Conclusion

We have seen a formal proof of FLASH cache coherence protocol satisfying the
mutual exclusion property using the method of inductive invariant checking in
UCLID. The safety property was verified using just 8 auxiliary invariants. These
invariants were generated very frugally and in a systematic way. We have kept
the proof as simple and elegant as possible. We have seen how the automated
verification engine of UCLID helped us in coming up with the auxiliary invari-
ants. But, along with this advantage of having a fast and efficient verification
engine, there are also disadvantages in terms of the UCLID language. The lan-
guage does not provide conventional way of programming. As nested ITE’s are
not allowed, the user has to be very careful in dividing them and accordingly,
assigning the state variables that fall within their scope. Also, since existential
quantifiers are not allowed, it puts additional burden on modeling those state
variables that are existentially dependent on state variables. We have consid-
ered such cases in FLASH, but those variables were existentially dependent on
a single state variable. It would be much more complicated to define them, if
they were existentially dependent on multiple state variables.

Our future work would be to apply this technique of discovering invariants
in the verification of coherence property for FLASH protocol in delayed mode.



We believe that it is possible to prove coherence with fewer invariants. We are
also interested in using this method for the verification of other complex pro-
tocols/systems. We also think that the tricks deployed in generating invariants
can be generalized to be applicable on other complex systems/protocols. Such a
generalization would help one in automating (or semi-automating) the invariant
generation procedure. Also, it would help us in keeping the number of invariants
as low as possible and sufficient enough to prove the desired safety property.
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