
A Characterization of Visual
Feature Recognition

Binu Mathew, Al Davis, Robert Evans
{mbinu | ald | revans}@cs.utah.edu

UUCS-03-014

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

September 3, 2003

Abstract

Natural human interfaces are a key to realizing the dream of ubiquitous computing. This
implies that embedded systems must be capable of sophisticated perception tasks. This pa-
per analyzes the nature of a visual feature recognition workload. Visual feature recognition
is a key component of a number of important applications, e.g. gesture based interfaces, lip
tracking to augment speech recognition, smart cameras, automated surveillance systems,
robotic vision, etc. Given the power sensitive nature of the embedded space and the natural
conflict between low-power and high-performance implementations, a precise understand-
ing of these algorithms is an important step developing efficient visual feature recognition
applications for the embedded space. In particular, this work analyzes the performance
characteristics of flesh toning, face detection and face recognition codes based on well
known algorithms. We also show how the problem can be decomposed into a pipeline of
filters that have efficient implementations as stream processors.

1 Introduction

The focus on embedded computing has both diversified and intensified in recent years as the
focus on mobile computing, ubiquitous computing, and traditional embedded applications
have begun to converge. A side effect of this intensity is the desire to support sophisticated
applications such as speech recognition, visual feature recognition, and secure wireless
networking in a mobile, battery-powered platform. Unfortunately these applications are
currently intractable for the embedded space. Running these applications on a low-power
embedded processor cannot keep up with the inherent real-time processing requirements
of speech recognition for example. The problem is that low-power processors do not have
sufficient compute power. Using mainstream high-performance microprocessors comes
close to meeting the performance requirements but the energy requirements are not com-
mensurate with mobile and embedded processing domains. The first step in developing
new architectures and systems which can adequately support these applications is a precise
understanding of the algorithms.

Our focus has been on perception algorithms which form the basis for natural human inter-
faces to the embedded computing space. This is motivated by a belief that natural human
interfaces are essential to realizing the dream of ubiquitous computing. In earlier work we
have studied speech recognition [8] and the results of that study have allowed us to create
new architectures which support real-time, speaker independent, large vocabulary speech
to text applications at a power level that is commensurate with embedded space energy
budgets. In this paper, we report on a similar study of visual feature recognition systems.

Visual feature recognition systems vary significantly based on the type of feature that is be-
ing recognized. Relatively simple recognizers are regularly employed in industrial visual
inspection systems. On the other hand, human face recognition is an extremely complex
task given the huge possibility space of facial features and skin tones. Facial recognition
systems clearly have utility in security and surveillance domains, and other visual recog-
nizers play key roles in gesture interfaces, lip reading to support speech recognition, and
robotics. Our interest in face recognition however is primarily motivated by the difficulty
of the problem which cannot be currently supported by embedded systems. Furthermore
the structure of our face recognizer appears to be easily adapted to address other visual
feature recognition tasks. The main differences for these other tasks is a different training
regimen and different frame rate requirements. For example, the Rowley method of face
detection described in this paper has been applied to license plate detection [10].

The particular application studied here can be viewed as a pipeline of 3 major functional
components. A flesh tone detector is used to isolate areas of a frame where a face is

likely to be present. The next stage is a face detector which determines whether there is
a face present or not. The final phase is a face recognizer. Each of these components is
based on well known algorithms which have been adapted to fit into our framework. Some
algorithmic optimization and restructuring has been done to suit our purposes but the basic
approach has been developed by other researchers.

Interestingly the face recognition system when viewed from a structural perspective com-
prises a series of increasingly discriminating filters. Early stages of the sequence must
inherently filter the entire image. As the process proceeds downstream, each stage needs
to examine less image data since previous stages have eliminated certain area from the
probable candidate list. The result is an interesting balance of simple algorithms which
analyze lots of data early in the sequence and more sophisticated algorithms which only
need to analyze limited amounts of data late in the process. The result is a structure which
is amenable for implementation as an embedded system.

The following sections provide a conceptual description of the recognition process, charac-
terize our test harness, describe the performance and power characteristics of the recognizer
both by phase and for the whole application, describe optimization options, and concludes.

2 Overview of Visual Feature Recognition

Figure 1 shows the major steps in face recognition. The input is a low-resolution video
stream such as 320x200 pixels at 10 frames per second. The stream is processed one frame
at a time and sufficient state is maintained to perform history sensitive tasks like motion
tracking. The process is essentially a pipeline of filters which reduce the data and attach
attributes to frames for the use of down stream components. Typically each filter is invoked
at the frame rate. This underlines the soft real time nature of this application. Additional
data is required since filters may access large databases or internal tables. These additional
data streams add to the aggregate bandwidth requirement of the system. The periodic
nature of the application domain often makes it possible to easily estimate the worst case
requirements.

Flesh
Tone

Segment
Image

Rowley/
Viola-Jones
Detector

Rowley
Voter

Neural Net
Eye Locator

Eigenfaces
Face

RecognizerVideo
Stream

Figure 1: Algorithmic stages of a face recognizer

Object recognition typically proceeds in two steps: object detection and the actual object

identification. Most approaches to object identification require a clearly demarked area,
normalized to a particular size, and the location of key features. Object detectors find the
area where the desired feature is likely to reside, scale the area to meet the normalization
requirement, and then creates a location and boundary description for that area. False
positives and negatives occur but the algorithms try and minimize their occurrence.

Object detectors also often work at a fixed scale. The detector is swept across the image
recording all positions at which a detection was reported. The image is then sub-sampled or
scaled down by a small factor (typically 0.8) and the process is repeated until the frame is
below the size of the detector. A decision procedure is then applied to all the predicted hits
to decide which ones are the most likely. Detectors often have much lower compute cost
per sub-window than their corresponding identifying routines. Since they are swept across
the entire image, a significant portion of the applications execution time might be spent in
the detector. In contrast, even though identifying filters are more compute intensive, they
are applied only to the high probability regions of the frame, so their contribution to the
overall execution time might be low. Though object detectors are less compute intensive,
they are much more difficult to design due to their generality. For example a face identifier
chooses from one of N known faces, but a face detector has to distinguish between the
infinite sets of faces and non-faces.

Since detection is time consuming, it is common to structure an object detector as a cascade
of filters with cheaper heuristics upstream identifying potential regions for more expensive
heuristics downstream. An extreme case of this is the Viola/Jones method which trains a
sequence of about 200 increasingly discriminate filters [14]. A more common approach
when dealing with faces and gestures is to identify the flesh colored regions of an image
and apply a more sophisticated detector to those regions.

The identifier receives candidate regions from the detector along with other information
like probability, scale and feature locations. It typically identifies key features of interest,
say edges or connected components and employs some sort of distance metric from known
references to provide a positive identification. In our face recognizer, the first level of
detection is provided by flesh toning which is followed by an image segmenting algorithm.
These are followed in turn by aa more complex detector, voting for high probability regions,
an eye locator and finally a face identifier.

2.1 Flesh Toning

Flesh toning identifies flesh colored pixels in an image. The commonly used RGB color
space is not well suited for flesh toning because skin color occupies a wide range in primary

color space. Variations due to lighting and ethnicity are hard to deal with and skin-like
colors on walls and clothing are harder to discriminate. However, skin colors are tightly
clustered in color spaces like HSV and YCbCr. Flesh toning can be done by converting
pixels from sample images into the chosen color space and making a scatter plot with two
colors, one for flesh pixels and one for non-flesh pixels. A boundary is then drawn around
flesh tone clusters. This boundary is then approximated by curves which can be described
by simple geometric equations. In the image under test, any pixel that lies inside this new
approximated but easily described boundary is considered to be a flesh pixel.

The base algorithm involves transforming the RGB color space into the NCC (Normalized
Color Coordinates) space using the simple equation r = R/(R + G + B), g = G/(R +
G+B). In this space flesh pixels occupy a space bounded by two parabolas and maximum
and minimum x-axis values. Applying two inequalities of the form ax2 + bx + c to the
color coordinates will predict if the pixel is flesh colored or not [12]. While this algorithm
is simple and achieves good discrimination, we observed that it tends to classify certain
shades of blue found in clothing as a skin color. A second algorithm is then employed to
transform the RGB value of a pixel to an HSV (Hue, Saturation, Value/Luminance) value.
In the HSV space, flesh color is tightly clustered allowing the use of four simple inequalities
for flesh tone [3]. In practice we have observed that this algorithm generates too many false
positives. However, when we employ the consensus of the two color space algorithms the
results are very good. The output of this phase is a bit mask of the same size as the image
where bits are set if the corresponding pixel is flesh colored.

2.2 Segmentation

Segmentation is the process of clumping together individual pixels into regions where an
object might be found. A common approach is to do a connected component analysis which
typically forms irregular regions. Since the the Viola and Rowley algorithms we use for
face detection need rectangular regions, instead of connected component analysis we use a
simple algorithm to cut apart the flesh tone bit mask into rectangles [14, 10].

First two operators from mathematical morphology are applied to the bit mask: a 3x3
erosion operator followed by a 4x4 dilation operator. This has the effect of cutting away
small connections and regions which are likely to be false positives and then smoothing the
bit mask by filling in any small holes in the middle of an otherwise acceptable sized region.
A logical OR of all the rows in the image is then performed to make a single row. This step
is called vertical separation. Runs of “1” values in the single row represent vertical stripes
of the image that contain objects of interest. Runs of “0” values represent vertical stripes
that may be thrown away. For each vertical stripe, we logically “OR” the columns to create

a single column. This is called horizontal separation. Runs of “1” represent the region
of interest. This algorithm can be recursively applied to isolate the rectangular regions of
interest. In the actual implementation, the horizontal separation steps for all the vertical
stripes are done together in an interleaved manner. This has the effect of converting the
column walk across the bitmap into a row walk giving better cache performance. Recursion
is stopped after two levels since this has empirically provided adequate results. The flesh
tone bitmap is discarded at this stage. The output of this stage is a list of coordinates of the
top left and bottom right corners of rectangular regions of interest and a gray scale version
of the image.

2.3 Rowley Face Detector

Henry Rowley’s neural net based face detector is well known as a pioneer in this field [10].
Its implementation was provided to us by the Robotics Institute at CMU. This detector is
designed to determine if a 20x20 pixel image contains a face or not. Face detection is done
by sweeping the detector over the image and computing the decision at each pixel location.
Then the image is scaled and reduced in size by a factor of 0.8 and the procedure is repeated.
The resulting series of images and detection locations is called an image pyramid. In the
case of real faces, a detection will be reported at several nearby pixel locations at one scale
and at corresponding locations in nearby scales. False positives do not usually happen with
this regularity. Hence a voting algorithm can be applied to the image pyramid to decide the
site of any true detections.

In each window the detector first applies a correction for varying lighting conditions fol-
lowed by histogram equalization to expand the range of intensity values. The preprocessed
window is then applied to a multi-layer neural network where the input layer has retinal
connections to the image window. This is followed by a hidden layer comprised of three
classes of units. Four units look at 10x10 sub-windows, 16 units look at 5x5 sub-windows
and 6 units look at overlapping 20x5 horizontal stripes. The final output of the network
indicates if the 20x20 window contains a face or not.

The voting algorithm (our terminology) notes the location and scale of each detection in an
image pyramid. The next step called spreading replaces each location in the pyramid with
the count of the number of detections in a neighborhood. The neighborhood of a location
extends an equal number of pixels along the position and scale axes. The values are then
thresholded and the centroids of all remaining locations are found. Centroids are examined
in descending order of the number of detections per centroid and other centroids that repre-
sent a face overlapping the current face are eliminated. The remaining centroids represent
the location of faces found in the image. To further reduce false positives, multiple neural

nets each trained separately may be applied to the image and their consensus can represent
a more accurate detection.

2.4 Viola and Jones’ Detector

Viola and Jones present a new and radically faster approach to face detection based on
the AdaBoost algorithm from machine learning [14]. They claim a 15x speedup over the
Rowley detector for their implementation without using flesh toning. Since their source
code is proprietary, we re-implemented their algorithm based on example code obtained
from the University of British Columbia. Our re-implementation uses flesh-toning for both
the Rowley and the Viola/Jones detectors and the algorithms are close in speed due to
factors mentioned later. To understand the Viola/Jones detector we first need to explain the
concept of boosting.

A random guess to a yes or no question stands the chance of being correct 50% of the time.
If a heuristic can improve the odds by a very small amount then it is called a weak learner.
It is possible to generate weak learners for several tasks in a semiautomated manner by
enumerating a huge set of heuristics generated on the basis of combinations of simple rules
and evaluating their performance on a set of samples. A heuristic that can improve the
odds of the guess by a significant amount is called a strong learner. Boosting is a method
of combining several weak learners to generate a strong learner. AdaBoost is a well known
algorithm to generate strong learners from weak learners, while providing statistical bounds
on the training and generalization error of the algorithm [11].

The weak learners in the Viola/Jones algorithm are based on features of three kinds. A two
rectangle feature is the difference between the sum of the values of two adjacent rectangular
windows. A three rectangle feature considers three adjacent rectangles and computes the
difference between sum of the pixels in the extreme rectangles and the sum of the pixels
in the middle rectangle. A four rectangle feature considers a 2x2 set of rectangles and
computes the difference between sum of pixels in the rectangles that constitute the main
and off diagonals. For a 24x14 sub-window there could be more than 180,000 such features.
The task of the AdaBoost algorithm is to pick a few hundred features and assign weights to
each using a set of training images. Face detection is reduced to computing the weighted
sum of the chosen rectangle-features and applying a threshold. As in the case of the Rowley
algorithm a 24x24 detector is swept over every pixel location in the image and the image is
rescaled. We apply Rowley’s voting algorithm to decide the final detection locations.

The original slow approach described in the Viola/Jones paper uses 200 features. They
then go on to describe a faster approach where they cascade many such detectors with

more complex detectors following simpler ones. A window is passed to a detector only
if it was not rejected by the preceding detector. Since training this cascade is a laborious
process, we model the workload characteristics of this algorithm with a single 100 feature
detector.

2.5 Eigen Faces

Eigenfaces is a well known Principle Component Analysis (PCA) based face recognition
algorithm developed by researchers at MIT [13]. In this paper, we use a re-implementation
of the Eigenfaces algorithm from researchers at Colorado State University [5]. Face images
are projected onto a feature space called face space defined by the eigen vectors of a set
of faces. This captures the variation between the set of faces without emphasis on any
one facial region like the eyes or nose. The mathematical treatment of Eigenfaces is too
involved to discuss here. The approach works by computing and storing the face space
corresponding to each face in a training set. A test image is projected on to each saved
eigenface and a set of weights is computed based on closeness to the known eigenfaces. The
weights are then used to label the test image as one of the known persons or an unknown
one. In our evaluation the eigenfaces database contains 10 personalities from television.

3 Characterization

In this section we provide a detailed characterization of visual feature recognition by native
execution and profiling using processor performance counters as well as via simulation.
The native execution results were obtained using SGI SpeedShop on a 666 MHz R14K
processor. Simulation studies are based on MLRSIM, an out of order processor simulator
derived from the Rice University RSIM simulator. It is detailed enough to run a derivative
of the Net BSD operating system and can run SPARC binaries compiled for Sun OS without
any modification. A multi-GHz processor is required to operate this application in real time.
Parameters like L1 cache hit time, memory access time, floating point latencies etc. were
measured on a 1.7 GHz AMD Athlon processor using the lmbench hardware performance
analysis benchmark [9]. Numbers that could not be directly measured were obtained from
vendor micro-architecture references. MLRSIM was configured to reflect these parameters.
Unless mentioned otherwise, the remainder of this paper uses the default configuration.

Default Configuration: SPARC V8 ISA, 2 GHz clock frequency, 16KB 2 way associative
L1 I and D cache with 2 cycle latency, 2MB L2 Cache, 2 way associative, 20 cycle latency,

max 4 integer + 4 floating point issue, max 4 graduations per cycle, 600 MHz, 64 bit DRAM
interface.

Embedded Configuration: This closely models an Intel Xscale StrongARM develop-
ment system with the exception that the processor has a floating point unit. SPARC V8
ISA, 400 MHz clock frequency, 32 KB 32 way associative L1 I and D cache with 1 cycle
latency, 1 ALU, 1 FPU, single issue, 100 MHz 32 bit DRAM interface. Though the XScale
does not have an L2 cache, since MLRSIM cannot be configured without an L2 cache, this
configuration has a 64KB inclusive L2 cache. Since the cache is inclusive and the same
size as the sum of the L1 caches, this configuration behaves similar to a machine with no
L2 cache.

We discuss characteristics of the application in 5 configurations: a) full pipeline using the
Rowley face detector, b) full pipeline using the Viola/Jones face detector, c) only the Row-
ley face detector with flesh toning and image segmentation, d) only the Viola/Jones face
detector with flesh toning and image segmentation, e) only the Eigenfaces recognizer. The
last three configurations are important from an energy savings perspective since running
the individual algorithms on separate low frequency processors or hardware accelerators,
can lead to significant energy savings.

Figures 2 and 3 show the relative execution times of each algorithm using the Rowley
detector and the Viola/Jones detector. Figures 4 and 5 show the L1 Dcache miss rate and
the L2 cache hit rates for all 5 application configurations. Since the caches are inclusive, the
L2 hit rate is defined as the L1 misses that hit in the L2 cache divided by the total number
of accesses made by the application. Since this application achieves 99.8% ICache hit rate
with a 16KB ICache, no other ICache configurations were studied. Figure 6 shows IPC for
a variety of execution unit configurations and Figure 7 shows the run times normalized to
real-time. Here, 1.0 represents minimum real time performance corresponding to 5 frames
per second. For example, in Figure 7 in the 1 ALU + 1 FPU configuration, the Rowley
algorithm is 1.13 times slower than real-time while the Eigenfaces algorithm processes 5
frames in 0.69 seconds.

For the entire application there is consistently greater than 92% L1 cache hit rate for D-
caches of 16KB and above. This indicates that the streaming pipelined model we use for
composing the algorithms is a good fit for the problem. Each 320x200 pixel color image
is 187.5 KBytes long and the corresponding gray scale versions are about 64 KBytes. The
images clearly will not fit in the L1 cache. The explanation is that the color image is
accessed in streaming mode, i.e. each pixel is touched exactly once for flesh toning. Image
segmentation works on the flesh tone bitmap (approximately 64KB) making at most two
passes over it. Since these accesses touch at most two image rows at a time, good cache
utilization is insured. Subsequently, only small windows into the image are used. Since

Flesh tone
3.9%

Viola
59.7%

Eye locator
17.1%

Eigenfaces
19.4%

Figure 2: Execution time break down of Viola/Jones detector based face recognizer

Flesh tone
6.2%

Rowley
64.6%

Eye locator
10.4%

Eigenfaces
18.8%

Figure 3: Execution time break down of Rowley detector based face recognizer

objects in these images are typically smaller than 50x50 pixels, each object is only about
2.5KB in size. The downstream algorithms make several passes over each object, but
only a small part of each object needs to be cache resident at each time. For example,
the integral image computation in the Viola/Jones algorithm is based on a recurrence that
involves two adjacent image rows and an additional row for intermediate storage and has
an L1 cache footprint of about 4.4KB. The Rowley algorithm touches at most 20 rows of
the object at the same time. However, as it sweeps across the image left to right and top
to bottom only a 20x20 pixel window needs to be cache resident at a time. Since it shifts
its position one pixel at a time, a 19x19 region of this window will be reused by the next
iteration contributing to high L1 cache hit rate. A similar pattern occurs in the later phase
of the Viola/Jones algorithm on a 24x24 region. The Eigenfaces algorithm uses a projected
image of the object to be recognized as well as basis, mean and projected image matrices
corresponding to each reference object. The target object is reused while it is compared

8 KB
16 KB

32 KB
64 KB

L1 Data Cache Size

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

M
is

s
R

at
e

(P
er

ce
nt

)

9.
22

%

6.
40

%

4.
16

%

2.
82

%

9.
97

%

7.
11

%

5.
11

%

3.
12

%

9.
52

%

6.
19

%

3.
83

%

2.
24

%

10
.7

7%

7.
68

%

5.
54

%

3.
16

%

6.
62

%

3.
90

%

2.
50

%

1.
93

%

Viola App
Rowley App
Viola
Rowley
Eigenfaces

Figure 4: L1 Dcache miss rate

against each candidate. Each candidate however is accessed only once per target object.

The objects and their attributes from each stage are typically touched again by the next
stage. The auxiliary information used by the algorithms is somewhat small. Both detector
algorithms use fixed size data structures. The worst case is the Viola/Jones algorithm which
needs a weight and a type for each feature corresponding to 100 * 2 * 4 = 800 bytes of L1
cache. The data set for the Eigenfaces algorithm on the other hand is linear in the number
of the reference faces. But since these could potentially be streamed into the L1 Dcache
once per target object (or once per frame) its foot print is small. Only the projected target
object and a small part of the basis/mean/projected reference images need to be resident in
the L1 Dcache. From Figure 5 it is seen that the L2 cache is largely ineffective since it is
accessed infrequently due to the low L1 miss rate.

From a cache footprint perspective, both the detector algorithms and the entire application
appear to be a good match for embedded processors with limited cache resources. Since

256 KB
512 KB

1024 KB

2048 KB

L2 Cache Size

0

0.5

1.0

1.5

2.0

2.5

H
it

R
at

e
(P

er
ce

nt
)

0.
82

%

1.
08

% 1.
30

%

1.
41

%

0.
82

%

1.
10

%

1.
38

% 1.
52

%

0.
84

%

1.
13

%

1.
37

%

1.
46

%

0.
86

%

1.
23

% 1.
46

%

1.
56

%

0.
66

% 0.
82

% 0.
96

%

0.
82

%

Viola App
Rowley App
Viola
Rowley
Eigenfaces

Figure 5: L2 Cache hit rate

images are accessed left to right, multiple rows at a time, sequential prefetch (or strided
prefetch) would hide memory access latencies even when the L1 Dcache is small. However,
quite a different view unfolds on examining the IPC and speedup graphs. It is seen that
embedded processors are inadequate to handle the work load in real time. In this case the
execution bandwidth is the culprit, not the memory system. The power budgets required for
such performance are beyond what is available on normal low power embedded platforms.
Thermal dissipation is a problem even on high performance processors and energy saving
solutions are important for real time workloads like visual feature recognition.

Embedded 1+1 2+2 3+3 4+4

ALUs + FPUs

0

0.25

0.5

0.75

1.0

1.25

IP
C

0.
48

0.
65 0.

69 0.
72

0.
72

0.
49

0.
65 0.
67 0.

70

0.
70

0.
56

0.
71 0.

76 0.
78

0.
78

0.
52

0.
67 0.
69 0.
71

0.
71

0.
52

0.
74 0.

80

0.
89

0.
89

Viola App
Rowley App
Viola
Rowley
Eigenfaces

Figure 6: IPC

4 Software Optimizations

The integral image computation in the Viola/Jones algorithm is an excellent example of
the role of algorithm level optimizations for this domain. The integral image value at pixel
location (x,y) in an image is defined as the sum of all pixels to the left and above the pixel
(x,y). This is computationally prohibitive. By expressing the same relationship as a pair of
recurrences, it is possible to compute the integral image with just one pass over the image.
Similarly, our initial implementation computed the standard deviation of all pixels within
a 24x24 pixel window starting at each pixel location within the region of an image where
flesh toning predicted a target. This was seen to occupy between 10-15% of the compute
time of the whole application. By defining a set of recurrences for the mean and mean
square for 24x24 sub windows over a wider NxM region, we were able to compute the
standard deviations in one pass over the image thereby reducing the execution time of this

Embedded 1+1 2+2 3+3 4+4

ALUs + FPUs

0

2

4

6

8

10

12

R
un

 ti
m

e
no

rm
al

iz
ed

 to
 re

al
-ti

m
e

19
.6

9

2.
88

2.
72

2.
59

2.
59

9.
93

1.
52

1.
47

1.
40

1.
40

10
.8

9

1.
71

1.
59

1.
54

1.
54

7.
29

1.
13

1.
09

1.
06

1.
06

4.
96

0.
69

0.
64

0.
58

0.
58

Viola App
Rowley App
Viola
Rowley
Eigenfaces

Figure 7: Speedup or Slow down over real time

component to less than 1%. However, such transformations require a lot of attention from
the programmer and insight into the algorithm. Executing kernels that operate on a MxM
sub-window of a larger NxN image and then sliding the window is a recurring theme in
image processing. Reordering the computation so that data may be streamed through a
set of execution units and computed in the minimum number of passes while observing
limits on the amount of intermediate results has wide applicability. Compiler based tools
that can take M, N, a kernel, and the size of the intermediate storage available and effect
the transformation automatically have an opportunity to enhance performance and reduce
resource utilization significantly.

5 Hardware Optimizations

As seen in Figures 6 and 7, wide issue clearly helps performance. But wide issue comes at
the cost of increased hardware complexity and could potentially limit the clock frequency
as well as exceed a limited energy budget. This application is embarrassingly parallel in
most sections due to the intrinsic data parallelism in the pixel processing. One way of
achieving good performance at low power is to use a cluster of simple processors or func-
tion units operating in parallel with a very small quantity of SRAM for local storage and
no cache. Significant power savings is possible using this approach. For example consider
the Rowley filter which is approximately real time on a 2 GHz processor with 2 ALUs and
2FPUs as seen in Figure 7. The detector workload can be done in parallel on 5 simple
streaming units and an embedded processor can execute other application stages. The en-
tire ensemble operates at 400 MHz. Since we seek to establish just a lower bound on energy
savings, assume that the streaming units and the embedded processor would each consume
the same amount of power as the a Pentium 4 processor running at 400 Mhz. Using a non-
intrusive current probe and digital oscilloscope on a PC motherboard modified at the board
level we found that a 2.4 GHz Pentium 4 processor consumes approximately 56.5 Watts at
1.8 volts when operating on a compute intensive loop. Using CMOS delay equations we
can calculate the approximate power consumption of the same processor running at 400
MHz and a correspondingly lower supply voltage [2]. Assuming that the threshold voltage
for Intel’s 0.13µ CMOS process could be in the range 0.5 to 1 volts and the CMOS param-
eter α is in the range 1.3 to 2.2, the power will be in the range 2.5 to 5 Watts. Operating six
such units on the same die would consume 15 to 30 Watts. This can be considered a worst
case bound on the energy savings possible. In our previous research with speech recog-
nition systems we have observed that an order of magnitude or better improvement was
possible in the energy delay product using a simple execution cluster/specialized compiler
combination. We expect similar results for visual feature recognition.

6 Related Work

Perception processing which encompasses a wide range of topics like computer vision,
speech recognition and gesture recognition is currently the focus of vigorous research.
While it is common in the literature to see the relative merits and performance of algo-
rithms compared, architecture level analysis of whole perception applications is extremely
rare. Wang, Bhat and Prasanna discussed methods for implementing scalable computer
vision algorithms on commercial parallel computers [16]. The Image Understanding Ar-
chitecture, a parallel processor for real time machine vision and its software environment

developed jointly by the University of Massachusetts and Hughes research is described in
[18]. Wawrzynek et al described the performance of the SPERT II, a vector micropro-
cessor based hardware accelerator for neural network algorithms [17]. Agaram, Keckler
and Burger presented a detailed architecture level analysis of the CMU Sphinx II speech
recognizer [1].

The next step in this research is to investigate special purpose architectures for machine
vision. This approach has shown significant advantages in both performance and energy
consumption for speech recognition [8]. Existing efforts on vision architectures can be
partitioned into analog and digital approaches. The analog approaches have primarily been
based on modeling the human neural system. This neuromorphic approach has produced
a variety of efficient special purpose devices for early-vision functions [6, 7, 19]. Digital
approaches have covered a broader spectrum of vision functions. Representative examples
are commercial offerings by companies such as Cognex and Coreco (www.cognex.com,
www.coreco.com) which provide application specific software for industrial applications
such as visual inspection, security monitoring, motion detection, etc. These commercial
approaches employ standard processor and memory architectures but may or may not dis-
pense with a general operating system environment. Others have experimented with di-
rectly mapping algorithm flows onto FPGA based systems, and the utility of new highly
parallel architectures such as the MIT RAW machine for vision applications [4, 15]. ASIC
implementation of vision applications are rare, perhaps due to the significant diversity of
computer vision algorithms and the high cost of ASIC development. Each approach offers
distinct advantages but is also limited by intrinsic disadvantages. General purpose pro-
cessors are slow when compared to ASIC approaches. Analog circuits are both fast and
energy efficient but they lack generality and are costly to produce. FPGA based systems
are a compromise between generality and efficiency. We feel that there is a significant
opportunity for a much better compromise which involves a customizable compute clus-
ter which retains most of the generality of the generic processor approach while achieving
performance/energy efficiency levels close to that of special purpose ASIC approaches.

7 Conclusions

We have presented a detailed analysis of the performance characteristics of a face recog-
nition system based on well-known algorithms. Existing face recognition systems are in-
adequate to support real-time operation on embedded systems. We have shown that by
taking advantage of the stream oriented nature of the application it is possible to solve this
problem. It is also evident that other visual feature recognizers can benefit from similar
tactics since our face recognizer needs few modifications in order to recognize other vi-

sual features. This effort and our previous work on speech recognition systems leads to a
strong belief that recasting perception algorithms into a stream oriented style is the key to
improving performance, reducing power consumption, and supporting these sophisticated
applications on embedded devices with limited cache, processing, and energy resources.

8 Acknowledgments

The authors would like to thank the Vision & Autonomous Systems Center (VASC) at the
Robotics Institute of the Carnegie Mellon University and Tsuyoshi Moriyama in particular
for providing us with the source code of the CMU/Rowley face detector. We would also like
to thank Peter Carbonetto of the University of British Columbia for providing the example
code which formed the starting point for our AdaBoost face detector.

References

[1] AGARAM, K., KECKLER, S. W., AND BURGER, D. A characterization of speech
recognition on modern computer systems. In Proceedings of the 4th IEEE Workshop
on Workload Characterization (Dec. 2001).

[2] ATHAS, W., YOUNGS, L., AND REINHART, A. Compact models for estimating
microprocessor frequency and power. In Proceedings of the 2002 international sym-
posium on Low power electronics and design (2002), ACM Press, pp. 313–318.

[3] BERTRAN, A., YU, H., AND SACCHETTO, P. Face detection project report. http://-
ise.stanford.edu/2002projects/ee368/Project/reports/ee368group17.pdf, 2002.

[4] BONDALAPATI, K., AND PRASANNA, V. Reconfigurable computing systems. Pro-
ceedings of the IEEE 90, 7 (July 2002), 1201–1217.

[5] COLORADO STATE UNIVERSITY. Evaluation of face recognition algorithms. http://-
www.cs.colostate.edu/evalfacerec/ , May 2003.

[6] HIGGINS, C. Multi-chip neuromorphic motion processing. In Proceedings of the
Conference on Advanced Research in VLSI, Atlanta (March 1999).

[7] MAHOWALD, M. A., AND MEAD, C. Analog VLSI and Neural Systems. Addison-
Wesley, 1989, ch. Silicon Retina, pp. 257–277.

[8] MATHEW, B., DAVIS, A., AND FANG, Z. A gaussian accelerator for sphinx 3. Tech.
Rep. UUCS-03-002, School of Computing, University of Utah, 2003.

[9] MCVOY, L. W., AND STAELIN, C. lmbench: Portable tools for performance analy-
sis. In USENIX Annual Technical Conference (1996), pp. 279–294.

[10] ROWLEY, H. A., BALUJA, S., AND KANADE, T. Neural network-based face detec-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 1 (1998),
23–38.

[11] SCHAPIRE, R. E. The boosting approach to machine learning: An overview. In In
MSRI Workshop on Nonlinear Estimation and Classification (2002).

[12] SORIANO, M., MARTINKAUPPI, B., HUOVINEN, S., AND LAAKSONEN, M. Us-
ing the skin locus to cope with changing illumination conditions in color-based face
tracking. In Proceedings of the IEEE Nordic Signal Processing Symposium (2000),
pp. 383–386.

[13] TURK, M., AND PENTLAND, A. Face recognition using Eigenfaces. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (June 1991), pp. 586–591.

[14] VIOLA, P., AND JONES, M. Rapid object detection using a boosted cascade of simple
features. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (Dec. 2001).

[15] WAINGOLD, E., TAYLOR, M., SRIKRISHNA, D., SARKAR, V., LEE, W., LEE, V.,
KIM, J., FRANK, M., FINCH, P., BARUA, R., BABB, J., AMARASINGHE, S., AND

AGARWAL, A. Baring it all to software: Raw machines. IEEE Computer 30, 9 (1997),
86–93.

[16] WANG, C.-L., BHAT, P. B., AND PRASANNA, V. K. High performance computing
for vision. Proceedings of the IEEE 84, 7 (July 1996), 931–946.

[17] WAWRZYNEK, . J., ASANOVIC, K., KINGSBURY, B., BECK, J., JOHNSON, D.,
AND MORGAN, N. Spert-ii: A vector microprocessor system. IEEE Computer 29, 3
(March 1996), 79–86.

[18] WEEMS, C. C. The second generation image understanding architecture and be-
yond. In Proceedings of Computer Architectures for Machine Perception (Nov. 1993),
pp. 276–285.

[19] WYATT, J. L., KEAST, J. C., SEIDEL, M., STANDLEY, D., HORN, B., KNIGHT,
T., SODINI, C., LEE, H., AND POGGIO, T. Analog vlsi systems for early vision

processing. In Proceedings of the 1992 IEEE International Symposium on Circuits
and Systems (May 1992), pp. 1644–1647.

