
Analyzing the Intel Itanium Memory Ordering
Rules Using Logic Programming and SAT ?

Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom, and Konrad Slind

School of Computing, University of Utah
{yyang, ganesh, gary, slind}@cs.utah.edu

Abstract. We present a non-operational approach to specifying and
analyzing shared memory consistency models. The method uses higher
order logic to capture a complete set of ordering constraints on execution
traces, in an axiomatic style. A direct translation of the semantics to a
constraint logic programming language provides an interactive and incre-
mental framework for exercising and verifying finite test programs. The
framework has also been adapted to generate equivalent boolean satisfi-
ability (SAT) problems. These techniques make a memory model spec-
ification executable, a powerful feature lacked in most non-operational
methods. As an example, we provide a concise formalization of the Intel
Itanium memory model and show how constraint solving and SAT solv-
ing can be effectively applied for computer aided analysis. Encouraging
initial results demonstrate the scalability for complex industrial designs.

1 Introduction

Modern shared memory architectures rely on a rich set of memory-access re-
lated instructions to provide the flexibility needed by software. For instance, the
Intel ItaniumTM processor family [1] provides two varieties of loads and stores
in addition to fence and semaphore instructions, each associated with different
ordering restrictions. A memory model defines the underlying memory order-
ing semantics (also known as memory consistency). Proper understanding of
these ordering rules is essential for the correctness of shared memory consis-
tency protocols that are aggressive in their ordering permissiveness, as well as
for compiler transformations that rearrange multithreaded programs for higher
concurrency and minimal synchronization. Due to the complexity of advanced
computer architectures, however, practicing designers face a serious problem in
reliably comprehending the memory model specification.

Consider, for example, the assembly code shown in Fig. 1 that is run concur-
rently on two Itanium processors (such code fragments are generally known as
litmus tests): The first processor, P1, executes a store of datum 1 into address a;
it then performs a store-release1of datum 1 into address b. Processor P2 performs
a load-acquire from b, loading the result into register r1. It is followed by an or-
dinary load from location a into register r2. The question arises: if all locations
? This work was supported by a grant from the Semiconductor Research Corporation

for Task 1031.001, and Research Grants CCR-0081406 and CCR-0219805 of NSF.



P1 P2

st a,1; ld.acq r1,b;

st.rel b,1; ld r2,a;

Fig. 1. A litmus test showing the ordering properties of store-release and load-acquire.
Initially, a = b = 0. Can it result in r1 = 1 and r2 = 0? The Itanium memory model
does not permit this result. However, if the load-acquire in P2 is changed to an ordinary
load, the result would be allowed.

initially contain 0, can the final register values be r1=1 and r2=0? To determine
the answer, the Itanium memory model must be consulted. The formal specifi-
cation of the Itanium memory model is given in an Intel application note [2]. It
comprises a complex set of ordering rules, 24 of which are expressed explicitly
based on a large amount of special terminology. One can follow a pencil-and-
pen approach to reason that the execution shown in Fig. 1 is not permitted by
the rules specified in [2]. Based on this, one can conclude that even though the
instructions in P2 pertain to different addresses, the underlying hardware is not
allowed to carry out the ordinary load at the beginning, and by the same token,
a shared memory consistency protocol or an optimizing compiler cannot reorder
the instructions in P2. A further investigation shows that the above result would
be permitted if the st.rel in P1 is changed to a st, or the ld.acq in P2 is
changed to a ld. Therefore, st.rel and ld.acq must both be used in pairs to
achieve the “barrier” effect in this scenario.

A litmus test like this can reveal crucial information to help system design-
ers make right decisions in code selection and optimizations. But as bigger tests
are used and more intricate rules are involved, trace properties quickly become
non-intuitive and hand-proving program compliance can be very difficult. How
can one be assured that there does not exist an interacting rule that might in-
troduce unexpected implications? Also, a large scale design is often composed
from simpler components. To avoid being overwhelmed by the overall complex-
ity, a useful technique is to isolate the rules related to a specific architectural
feature so that one can analyze the model piece by piece. For example, if one
can selectively enable/disable certain rules, he or she may quickly find out that
the “program order” rules in [2] are critical to the scenario in Fig. 1 while many
others are irrelevant.

These issues suggest that a series of useful features are needed from the
specification framework to help people better understand the underlying model.
Unfortunately, most non-operational specification methods leave these issues un-
resolved because they use notations that do not support analysis through execu-

1 Briefly, a store-release instruction will, at its completion, ensure that all previous
instructions are completed; a load-acquire instruction correspondingly ensures that
all following instructions will complete only after it completes. These explanations
are far from precise - what does “previous” and “completion” mean? A formal spec-
ification of a memory model is key to precisely capture these and all similar notions.



tion. Given that designers need lucid and reliable memory model specifications,
and given that memory model specifications can live for decades, it is crucial
that progress be made in this regard.

In this paper, we take a fresh look at the non-operational specification method
and explore what verification techniques can be applied. We make the follow-
ing contributions in this paper. First, we present a compositional method to
axiomatically capture all aspects of the memory ordering requirements, result-
ing a comprehensive, constraint-based memory consistency model. Second, we
propose a method to encode these specifications using FD-Prolog.2 This enables
one to perform interactive and incremental analysis. Third, we have harnessed a
boolean satisfiability checker to solve the constraints. To the best of our knowl-
edge, this is the first application of SAT methods for analyzing memory model
compliance. As a case study in this approach, we have formalized a large subset
of the Itanium memory model and used constraint programming and boolean
satisfiability for program analysis.

Related work The area of memory model specification has been pursued under
different approaches. Some researchers have employed operational style specifi-
cations [3] [4] [5] [6], in which the update of a global state is defined step-by-step
with the execution of each instruction. For example, an operational model [4]
for Sparc V9 [7] was developed in Murphi. With the model checking capability
supported by Murphi, this executable model was used to examine many code se-
quences from the Sparc V9 architecture book. While the descriptions comprising
an operational specification often mirror the decision process of an implementer
and can be exploited by a model checker, they are not declarative. Hence they
tend to emphasize the how aspects through their usage of specific data structures,
not the what aspects that formal specifications are supposed to emphasize.

Other researchers have used non-operational (also known as axiomatic) spec-
ifications, in which the desired properties are directly defined. Non-operational
styles have been widely used to describe conceptual memory models [8] [9]. One
noticeable limitation of these specifications is the lack of a means for automatic
execution. An axiomatic specification of the Alpha memory model was written
by Yu [10] in Lisp in 1995. Litmus-tests were written in an S-expression syntax.
Verification conditions were generated for the litmus tests and fed to the Simplify
[11] verifier of Compaq/SRC. In contrast, we specify the modern Itanium mem-
ory model. Our specification is much closer to the actual industrial specification,
thanks to the declarative nature of FD-Prolog. The FD constraint solver offers
a more interactive and incremental environment. We have also applied SAT and
demonstrated its effectiveness.

Lamport and colleagues have specified the Alpha and Itanium memory mod-
els in TLA+ [12] [13]. These specifications also support the execution of litmus
tests. Their approach builds visibility order inductively. While this also pre-
cisely specifies the visibility order, the manner in which such inductive definitions
2 FD-Prolog refers to Prolog with a finite domain (FD) constraint solver. For example,

SICStus Prolog and GNU Prolog have this feature.



Memory Model 

Prolog
Constrant Solver

(Legal execution)

(Illegal execution)

Rules

True

Fail

Test Program

SAT
Solver

Sat
(Legal execution)

Unsat
 (Illegal execution)

Propositional 
Formula

DIMACS

Fig. 2. The process of making an axiomatic memory model executable. Legality of a
litmus test can be checked by either a constraint solver or a SAT solver.

are constructed will vary from memory model to memory model, making com-
parisons among them harder. Our method instead relies on primitive relations
and directly describes the components to make up a full memory model. This
makes our specifications easier to understand, and more importantly, to com-
pare against other memory models using the same primitives. This also means
we can disable some sub-rules quite reliably without affecting the other primitive
ordering rules - a danger in a style which merges all the ordering concerns in a
monolithic manner.

Roadmap In the next section, we introduce our methodology. Section 3 de-
scribes the Itanium memory ordering rules. Section 4 demonstrates the analysis
of the Itanium memory model through execution. We conclude and propose
future works in Section 5. The concise specification of the Itanium ordering
constraints is provided in the Appendix.

2 Overview of the Framework

A pictorial representation of our methodology is shown in Fig. 2. We use a
collection of primitive ordering rules, each serving a clear purpose, to specify
even the most challenging commercial memory models. This approach mirrors
the style adopted in modern declarative specifications written by the industry,
such as [2]. Moreover, by using pure logic programs supported by certain modern
flavors of Prolog that also include finite domain constraints, one can directly
capture these higher order logic specifications and also interactively execute the
specifications to obtain execution results for litmus tests. Alternatively, we can
obtain SAT instances of the boolean constraints representing the memory model
through symbolic execution, in which case boolean satisfiability tools can be
employed to quickly answer whether certain litmus tests are legal or not.

2.1 Specification Method

To define a memory model, we use predicate calculus to specify all constraints
imposed on an ordering relation order . The constraints are almost completely



first-order; however, since order is a parameter to the specification, the con-
straints are most easily captured with higher order predicate calculus (we use the
HOL logic [14]). Previous non-operational specifications often implicitly require
general ordering properties, such as totality, transitivity, and circuit-freeness.
This is the main reason why such specifications cannot readily be executed.
In contrast, we are fully explicit about such properties, and so our constraints
completely characterize the memory model.

2.2 Executing Axiomatic Specifications

A straightforward transcription of the formal predicate calculus specification
into a Prolog-style logic program makes it possible for interactive and incremen-
tal execution of litmus tests. This encourages exploration and experiment in the
validation and (we anticipate) the development of complex coherence protocols.
To make a specification executable, we instantiate it over a finite execution and
convert the verification problem to a satisfiability problem.

The Algorithm Given a finite execution ops with n operations, there are n2

ordering pairs, constituting an ordering matrix M, where the element Mij indi-
cates whether operations i and j should be ordered. We go through each ordering
rule in the specification and impose the corresponding constraint regarding the
elements of M. Then we check the satisfiability of all the ordering requirements.
If such a M exists, the trace ops is legal, and a valid interleaving can be derived
from M. Otherwise, ops is not a legal trace.

Applying Constraint Logic Programming Logic programming differs fun-
damentally from conventional programming in that it describes the logical struc-
ture of the problems rather than prescribing the detailed steps of solving them.
This naturally reflects the philosophy of the axiomatic specification style. As a
result, our formal specification can be easily encoded using Prolog. Memory or-
dering constraints can be solved through a conjunction of two mechanisms that
FD-Prolog readily provides. One applies backtracking search for all constraints
expressed by logical variables, and the other uses non-backtracking constraint
solving based on arc consistency [15] for FD variables, which is potentially more
efficient and certainly more complete (especially under the presence of negation)
than with logical variables. This works by adding constraints in a monotonically
increasing manner to a constraint store, with the in-built constraint propagation
rules of FD-Prolog helping refine the variable ranges (or concluding that the
constraints are not satisfiable) when constraints are discovered and asserted to
the constraint store.

Applying Boolean Satisfiability Techniques The goal of a boolean satis-
fiability problem is to determine a satisfying variable assignment for a boolean
formula or to conclude that no such assignment exists. A slight variant of the
Prolog code can let us benefit from SAT solving techniques, which have advanced
tremendously in recent years. Instead of solving constraints using a FD solver,



we can let Prolog emit SAT instances through symbolic execution. The resultant
formula is true if and only if the litmus test is legal under the memory model.
It is then sent to a SAT solver to find out the result.

3 Specifying the Itanium Memory Consistency Model

The original Itanium memory ordering specification is informally given in various
places in the Itanium architecture manual [1]. Intel later provided an applica-
tion note [2] to guide system developers. This document uses a combination of
English and informal mathematics to specify a core subset of memory opera-
tions in a non-operational style. We demonstrate how the specification of [2]
can be adapted to our framework to enable computer aided analysis. Virtually
the entire Intel application note has been captured.3 We assume proper address
alignment and common address size for all memory accesses, which would be
the common case encountered by programmers (even these restrictions could be
easily lifted). The detailed definition of the Itanium memory model is presented
in the Appendix. This section explains each of the rules. The following defini-
tions are used throughout this paper:

Instructions - Instructions with memory access or memory ordering semantics.
Five instruction types are defined in this paper: load-acquire (ld.acq), store-
release (st.rel), unordered load (ld), unordered store (st), and memory fence
(mf). An instruction i may have read semantics (isRd i = true) or write seman-
tics (isWr i = true). Ld.acq and ld have read semantics. St.rel and st have
write semantics. Mf has neither read nor write semantics. Instructions are de-
composed into operations to allow a finer specification of the ordering properties.

Execution - Also known as a trace, contains all memory operations generated
by a program, with stores being annotated with the write data and loads being
annotated with the return data. An execution is legal if there exists an order
among the operations in the execution that satisfies all memory model con-
straints.

Address Attributes - Every memory location is associated with an address
attribute, which can be write-back (WB), uncacheable (UC), or write-coalescing
(WC). Memory ordering semantics may vary for different attributes. Predicate
attribute is used to find the attribute of a location.

Operation Tuple - A tuple containing necessary attributes is used to mathe-
matically describe memory operations. Memory operation i is represented by a
tuple 〈P,Pc,Op,Var,Data,WrId,WrType,WrProc,Reg,UseReg,Id 〉, where

3 We have formally captured 21 out of 24 rules from [2]. Semaphore operations, which
require 3 rules, have yet to be defined.



requireLinearOrder requireMemoryDataDependence requireReadValue
- requireIrreflexiveTotal - MD:RAW - validWr
- requireTransitive - MD:WAR - validLocalWr
- requireAsymmetric - MD:WAW - validRemoteWr

- validDefaultWr
requireWriteOperationOrder requireDataFlowDependence - validRd

- local/remote case - DF:RAR
- remote/remote case - DF:RAW requireNoUCBypasss

- DF:WAR
requireProgramOrder requireSequentialUC

- acquire case requireCoherence - RAR case
- release case - local/local case - RAW case
- fence case - remote/remote case - WAR case

- WAW case
requireAtomicWBRelease

Table 1. The specification hierarchy of the Itanium memory ordering rules.

p i = P : issuing processor
pc i = Pc : program counter
op i = Op : instruction type
var i = V ar : shared memory location
data i = Data : data value
wrID i = WrId : identifier of a write operation
wrType i = WrType : type of a write operation
wrProc i = WrProc : target processor of a write operation
reg i = Reg : register
useReg i = UesReg : flag of a write indicating if it uses a register
id i = Id : global identifier of the operation

A read instruction or a fence instruction is decomposed into a single oper-
ation. A write instruction is decomposed into multiple operations, comprising
a local write operation (wrType i = Local) and a set of remote write opera-
tions (wrType i = Remote) for each target processor (wrProc i), which also
includes the issuing processor. Every write operation i that originates from a
single write instruction shares the same program counter (pc i) and write ID
(WrID i).

3.1 The Itanium Memory Ordering Rules

As shown below, predicate legal is a top-level constraint that defines the legal-
ity of a trace ops by checking the existence of an order among ops that satisfies
all requirements. Each requirement is formally defined in the Appendix.

legal ops ≡ ∃ order.

requireLinearOrder ops order ∧



requireWriteOperationOrder ops order ∧
requireProgramOrder ops order ∧
requireMemoryDataDependence ops order ∧
requireDataFlowDependence ops order ∧
requireCoherence ops order ∧
requireReadValue ops order ∧
requireAtomicWBRelease ops order ∧
requireSequentialUC ops order ∧
requireNoUCBypass ops order

Table 1 illustrates the hierarchy of the Itanium memory model definition.
Most constraints strictly follow the rules from [2]. We also explicitly add a pred-
icate requireLinearOrder to capture the general ordering requirement since [2]
has only English to convey this important ordering property.

General Ordering Requirement (Appendix A.1) This requires order to
be an irreflexive total order which is also circuit-free.

Write Operation Order (Appendix A.2) This specifies the ordering among
write operations originate from a single write instruction. It guarantees that no
write can become visible remotely before it becomes visible locally.

Program Order (Appendix A.3) This restricts reordering among instruc-
tions of the same processor with respect to the program order.

Memory-Data Dependence (Appendix A.4) This restricts reordering among
instructions from the same processor when they access common locations.

Data-Flow Dependence (Appendix A.5) This is supposed to specify how
local data dependency and control dependency should be treated. However, this
is an area that is not fully specified in [2]. Instead of pointing to an informal
document as done in [2], we provide a formal specification covering most cases
of data dependency, namely establishing data dependency between two memory
operations by checking the conflict usages of local registers.4 Although [2] out-
lines four categories for data-flow dependency (RAR, RAW, WAR, and WAW),
the WAW case (a write here is actually a read in terms of register usage, e.g.,
st a,r) does not establish any value-based data dependence relation. Therefore,
data dependency as specified in orderedByLocalDepencence is only setup by
the first three cases.

4 We do not cover branch instructions or indirect-mode instructions that also induce
data dependency. We provide enough data dependency specification to let designers
experiment with straight-line code that uses registers - this is an important require-
ment to support execution.



Coherence (Appendix A.6) This constrains the order of writes to a common
location. If two writes to the same location with the attribute of WB or UC become
visible to a processor in some order, they must become visible to all processors
in that order.

Read Value (Appendix A.7) This defines what data can be observed by a
read operation. There are three scenarios: a read can get the data from a local
write (validLocalWr), a remote write (validRemoteWr), or the default value
(validDefaultWr). In validRemoteWr we require that “the read is not ordered
with the candidate remote write”. It is slightly different from [2], which requires
that “the candidate write is ordered with the read”. This results from the differ-
ence in the way the ordering path is constructed. Since we do no have an explicit
rule that establishes the order when a read gets the value from a write, the order-
ing relation between them would not pre-exist. In [2], a total order is implicitly
imposed. Similar to shared memory read value rules, predicate validRd guaran-
tees consistent assignments of registers - the value of a register is obtained from
the most recent previous assignment of the same register.

Total Ordering of WB Releases (Appendix A.8) This specifies that store-
releases to write-back (WB) memory must obey remote write atomicity, i.e.,
they become remotely visible atomically.

Sequentiality of UC Operations (Appendix A.9) This specifies that op-
erations to uncacheable(UC) memory locations must have the property of se-
quentiality, i.e., they must become visible in program order.

No UC Bypassing (Appendix A.10) This specifies that uncacheable(UC)
memory is not cacheable and does not allow local bypassing from UC writes.

4 Making the Itanium Memory Model Executable

We have developed two methods to analyze the Itanium memory model. The
first, as mentioned earlier, uses Prolog backtracking search, augmented with
finite-domain constraint solving. The second approach targets the powerful SAT
engines that have recently emerged.

The Constraint Logic Programming Approach
Our formal Itanium specification is implemented in SICStus Prolog [16]. Litmus
tests are contained in a separate test file.5 When a test number is selected,
the FD constraint solver examines all constraints automatically and answers
whether the selected execution is legal. By running the litmus tests we can learn

5 We have verified most of the sample programs provided by [2]. The only 3 (out of 17)
examples we cannot do at this point involve disjoint accesses to memory locations.
Other litmus tests can also be easily added.



P1 P2

(1) st_local(a,1); (7) ld.acq(1,b);

(2) st_remote1(a,1); (8) ld(0,a);

(3) st_remote2(a,1);

(4) st.rel_local(b,1);

(5) st.rel_remote1(b,1);

(6) st.rel_remote2(b,1);

Fig. 3. An execution resulted from the program in Fig. 1. Stores are decomposed into
local stores and remote stores. Loads are associated with return values.

the degree to which executions are constrained, i.e., we can obtain a general view
of the global ordering relation between pairs of instructions.

Consider, for example, the program discussed earlier in Fig. 1. Its instruc-
tions are decomposed into operations as shown in Fig. 3. After taking this trace
as input, the Prolog tool attempts all possible orders until it can find an instanti-
ation that satisfies all constraints. For this particular example, it returns “illegal
trace” as the result. If one comments out the requireProgramOrder rule and
examines the trace again, the tool quickly finds a legal ordering matrix and a
corresponding interleaving as shown in Fig. 4. Many other experiments can be
conveniently performed in a similar way. Therefore, not only does this approach
give people the notation to write rigorous as well as readable specifications, it
also allows users to play with the model, asking “what if” queries after selectively
enabling/disabling the ordering rules that are crucial to their work.

Although translating the formal specification to Prolog is fairly straightfor-
ward, there does exist some “logic gap” between predicate calculus and Prolog.
Most Prolog systems do not directly support quantifiers. Therefore, we need to
implement the effect of a universal quantifier by enumerating the related finite
domain. The existential quantifier is realized by the back tracking mechanism of

1 2 3 4 5 6 7 8

1 0 1 1 0 0 0 0 0
2 0 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 1 1 1 0 1 1 1 0
5 1 1 1 0 0 1 1 0
6 1 1 1 0 0 0 1 0
7 1 1 1 0 0 0 0 0
8 1 1 1 1 1 1 1 0

Fig. 4. A legal ordering matrix for the execution shown in Fig. 3 when requirePro-
gramOrder is disabled. A value 1 indicates that the two operations are ordered. A
possible interleaving 8 4 5 6 7 1 2 3 is also automatically derived from this matrix.



Prolog when proper predicate conditions are set.

The SAT Approach
As an alternative method, we use our Prolog program as a driver to emit

propositional formulae asserting the solvability of the constraints. After being
converted to a standard format called DIMACS, the final formula is sent to a
SAT solver, such as berkmin [17] or zChaff [18]. Although the clause-generation
phase can be detached from the logic programming approach, the ability to have
it coexist with FD-Prolog might be advantageous since it allows the two methods
to share the same specification base. The complexity of boolean satisfiability is
NP-Complete. However, tremendous progress has been achieved in recent years
in SAT tools, making SAT solving an effective technique for industrial applica-
tions. According to our initial results, this seems to offer an encouraging path
to tackling larger problems.

Performance Results
Performance statistics from some litmus tests is shown below. These tests are

chosen from [2] and represented by their original table numbers. Performance is
measured on a Dell Inspiron 3800 machine with 512 MB memory 700 MHz CPU.
SICStus Prolog is run under compiled mode. The SAT solver used is berkmin.

Test Result FD Solver(sec) Vars Clauses SAT(sec) CNF Gen Time
[2, Table 5] illegal 0.38 64 679 0.03 negligible
[2, Table 10] legal 2.36 100 1280 0.01 negligible
[2, Table 15] illegal 17.7 576 15706 0.05 a minute
[2, Table 18] illegal 1.9 144 2125 0.01 few secs
[2, Table 19] legal 3.8 144 2044 0.02 few secs

5 Conclusions

The setting in which contemporary memory models are expressed and analyzed
needs to be improved. Towards this, we present a framework based on axiomatic
specifications (expressed in higher order logic) of memory ordering requirements.
It is straightforward to encode these requirements as constraint logic programs
or, by an extra level of translation, as boolean satisfiability problems. In the
latter case, one can employ current SAT tools to quickly answer whether certain
executions are permitted or not. Our techniques are demonstrated through the
adaptation and analysis of the Itanium memory model. Being able to tackle such
a complex design also attests to the scalability of our framework for cutting-edge
commercial architectures.

Our methodology provides several benefits. First, the ability to execute the
underlying model is a powerful feature that promotes understanding. Second, the
compositional specification style provides modularity, reusability, and scalability.
It also allows one to add constraints incrementally for investigation purposes.
Third, the expressive power of the underlying logic allows one to define a wide



range of requirements using the same notation, providing a rich taxonomy for
memory consistency models. Finally, the method of converting axiomatic rules to
a propositional formula allows one to perform property checking through boolean
reasoning, thus opening up new means to conduct formal verification.

Future Work One enhancement that can be made is to develop the capabil-
ity of exercising symbolic (non-ground) litmus tests. Such a tool may be used
to automatically synthesize critical instructions of concurrent code fragments
comprising compiler idioms or other synchronization primitives. For example,
one could imagine using a symbolic store instruction in a program and asking
a tool to solve whether it should be an “ordinary” or a “release” store to help
generate aggressive code. Another area of improvement is in reducing the logic
gap between the formal specification and the tools that execute the specifica-
tion. One possibility is to apply a quantified boolean formulae (QBF) solver that
directly accepts quantifiers. The research of QBF solvers is still at a preliminary
stage compared to propositional SAT. We hope our work can help accelerate its
development by providing industrially motivated benchmarks.

References

1. Intel Itanium Architecture Software Developer’s Manual,
http://developer.intel.com/design/itanium/manuals.htm

2. A Formal Specification of Intel Itanium Processor Family Memory Ordering. Appli-
cation Note, Document Number: 251429-001 (October, 2002)

3. K. Gharachorloo: Memory consistency models for shared-memory multiprocessors.
Technical Report CSL-TR-95-685, Stanford University, (December 1995)

4. D. Dill, S. Park, A. Nowatzyk: Formal Specification of Abstract Memory Models.
Research on Integrated Systems: Proceedings of the 1993 Symposium, Ed. G. Bor-
riello and C. Ebeling, MIT Press (1993)

5. Prosenjit Chatterjee, Ganesh Gopalakrishnan: Towards a Formal Model of Shared
Memory Consistency for Intel Itanium. ICCD 2001, Austin,TX (Sept 2001)

6. Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom: Specifying Java Thread Se-
mantics Using a Uniform Memory Model, Joint ACM Java Grande - ISCOPE Con-
ference (2002)

7. The SPARC Architecture Manual, Version 9, Prentice Hall (1993)
8. Leslie Lamport: How to Make a Multiprocessor Computer That Correctly Executes

Multiprocess Programs. IEEE Transactions on Computers, 28(9): 690–691 (1979)
9. M. Ahamad, G. Neiger, James Burns, Prince Kohli, Philip Hutto: Causal Memory:

Definitions, Implementation and Programming. Technical Report: GIT CC-93/95
(July 1994)

10. Yuan Yu, through personal communication
11. Simplify, http://research.compaq.com/SRC/esc/Simplify.html
12. TLA+, http://research.microsoft.com/users/lamport/tla/tla.html
13. Rajeev Joshi, Leslie Lamport, John Matthews, Serdar Tasiran, Mark Tuttle, Yuan

Yu: Checking Cache-Coherence Protocols with TLA+ Formal Methods in System
Design. Formal Methods in System Design, 22(2): 125-131 (Mar 2003)

14. M. J. C. Gordon, T. F. Melham: Introduction to HOL: A theorem proving envi-
ronment for higher order logic, Cambridge University Press (1993)



15. J. Jaffar, J-L. Lassez: Constraint Logic Programming. Principles Of Programming
Languages, Munich, Germany (January 1987)

16. SICStus Prolog, http://www.sics.se/sicstus
17. E. Goldberg, Y. Novikov: BerkMin: a Fast and Robust Sat-Solver. Design, Au-

tomation and Test in Europe Conference and Exhibition Paris, France (2002)
18. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik: Chaff: Engineering an

Efficient SAT Solver. 39th Design Automation Conference, Las Vegas (June 2001)

Appendix: Formal Itanium Memory Ordering Specification

A.1 General Ordering Requirement

requireLinearOrder ops order ≡
requireIrreflexiveTotal ops order ∧ requireTransitive ops order ∧
requireAsymmetric ops order

requireIrreflexiveTotal ops order ≡ ∀ i, j ∈ ops.
id i 6= id j ⇒ (order i j ∨ order j i)

requireTransitive ops order ≡ ∀ i, j, k ∈ ops. (order i j ∧ order j k) ⇒ order i k

requireAsymmetric ops order ≡ ∀ i, j ∈ ops. order i j ⇒ ¬(order j i)

A.2 Write Operation Order

requireWriteOperationOrder ops order ≡ ∀ i, j ∈ ops.
orderedByWriteOperation i j ⇒ order i j

orderedByWriteOperation i j ≡ isWr i ∧ isWr j ∧ wrID i = wrID j ∧
(wrType i = Local ∧ wrType j = Remote ∧ wrProc j = p i ∨
wrType i = Remote ∧ wrType j = Remote ∧
wrProc i = p i ∧ wrProc j 6= p i)

A.3 Program Order

requireProgramOrder ops order ≡ ∀ i, j ∈ ops.
(orderedByAcquire i j ∨ orderedByRelease i j ∨ orderedByFence i j) ⇒
order i j

orderedByProgram i j ≡ p i = p j ∧ pc i < pc j

orderedByAcquire i j ≡ orderedByProgram i j ∧ op i = ld.acq

orderedByRelease i j ≡ orderedByProgram i j ∧ op j = st.rel ∧
(isWr i ⇒ (wrType i = Local ∧ wrType j = Local ∨
wrType i = Remote ∧ wrType j = Remote ∧ wrProc i = wrProc j))

orderedByFence i j ≡ orderedByProgram i j ∧ (op i = mf ∨ op j = mf)



A.4 Memory-Data Dependence

requireMemoryDataDependence ops order ≡ ∀ i, j ∈ ops.
(orderedByRAW i j ∨ orderedByWAR i j ∨ orderedByWAW i j) ⇒
order i j

orderedByMemoryData i j ≡ orderedByProgram i j ∧ var i = var j

orderedByRAW i j ≡
orderedByMemoryData i j ∧ isWr i ∧ wrType i = Local ∧ isRd j

orderedByWAR i j ≡
orderedByMemoryData i j ∧ isRd i ∧ isWr j ∧ wrType j = Local

orderedByWAW i j ≡ orderedByMemoryData i j ∧ isWr i ∧ isWr j ∧
(wrType i = Local ∧ wrType j = Local ∨
wrType i = Remote ∧ wrType j = Remote ∧
wrProc i = p i ∧ wrProc j = p i)

A.5 Data-Flow Dependence

requireDataFlowDependence ops order ≡ ∀ i, j ∈ ops.
orderedByLocalDepencence i j ⇒ order i j

orderedByLocalDepencence i j ≡ orderedByProgram i j ∧ reg i = reg j ∧
(isRd i ∧ isRd j ∨
isWr i ∧ wrType i = Local ∧ useReg i ∧ isRd j ∨
isRd i ∧ isWr j ∧ wrType j = Local ∧ useReg j)

A.6 Coherence

requireCoherence ops order ≡ ∀ i, j ∈ ops.
(isWr i ∧ isWr j ∧ var i = var j ∧
(attribute (var i) = WB ∨ attribute (var i) = UC) ∧
(wrType i = Local ∧ wrType j = Local ∧ p i = p j ∨
wrType i = Remote ∧ wrType j = Remote ∧ wrProc i = wrProc j) ∧
order i j)
⇒
(∀ p, q ∈ ops.
(isWr p ∧ isWr q ∧ wrID p = wrID i ∧ wrID q = wrID j ∧
wrType p = Remote ∧ wrType q = Remote ∧ wrProc p = wrProc q) ⇒
order p q)

A.7 Read Value

requireReadValue ops order ≡ ∀ j ∈ ops.
(isRd j ⇒ (validLocalWr ops order j ∨ validRemoteWr ops order j ∨
validDefaultWr ops order j)) ∧ ((isWr j ∧ useReg j) ⇒ validRd ops order j)



validLocalWr ops order j ≡ ∃ i ∈ ops.
(isWr i ∧ wrType i = Local ∧ var i = var j ∧ p i = p j ∧
data i = data j ∧ order i j) ∧
(¬ ∃ k ∈ ops. isWr k ∧ wrType k = Local ∧ var k = var j ∧ p k = p j ∧
order i k ∧ order k j)

validRemoteWr ops order j ≡ ∃ i ∈ ops.
(isWr i ∧ wrType i = Remote ∧ wrProc i = p j ∧ var i = var j ∧
data j = data i ∧ ¬(order j i)) ∧
(¬ ∃ k ∈ ops. isWr k ∧wrType k = Remote ∧ var k = var j ∧wrProc k = p j ∧
order i k ∧ order k j)

validDefaultWr ops order j ≡
(¬ ∃ i ∈ ops. isWr i ∧ var i = var j ∧ order i j ∧
(wrType i = Local ∧ p i = p j ∨ wrType i = Remote ∧ wrProc i = p j)) ⇒
data j = default (var j)

validRd ops order j ≡ ∃ i ∈ ops.
(isRd i ∧ reg i = reg j ∧ orderedByProgram i j ∧ data j = data i) ∧
(¬ ∃ k ∈ ops. isRd k ∧ reg k = reg j ∧
orderedByProgram i k ∧ orderedByProgram k j)

A.8 Total Ordering of WB Releases

requireAtomicWBRelease ops order ≡ ∀ i, j, k ∈ ops.
(op i = st.rel ∧ wrType i = Remote ∧ op k = st.rel ∧ wrType k = Remote ∧
wrID i = wrID k ∧ attribute (var i) = WB ∧ order i j ∧ order j k) ⇒
(op j = st.rel ∧ wrType j = Remote ∧ wrID j = wrID i)

A.9 Sequentiality of UC Operations

requireSequentialUC ops order ≡ ∀ i, j ∈ ops. orderedByUC i j ⇒ order i j

orderedByUC i j ≡
orderedByProgram i j ∧ attribute (var i) = UC ∧ attribute (var j) = UC ∧
(isRd i ∧ isRd j ∨
isRd i ∧ isWr j ∧ wrType j = Local ∨
isWr i ∧ wrType i = Local ∧ isRd j ∨
isWr i ∧ wrType i = Local ∧ isWr j ∧ wrType j = Local)

A.10 No UC Bypassing

requireNoUCBypass ops order ≡ ∀ i, j, k ∈ ops.
(isWr i ∧ wrType i = Local ∧ attribute (var i) = UC ∧ isRd j ∧
isWr k ∧ wrType k = Remote ∧ wrProc k = p k ∧ wrID k = wrID i ∧
order i j ∧ order j k) ⇒
(wrProc k 6= p j ∨ var i 6= var j)


