
Interactive Raytraced Caustics

Chris Wyman Charles Hansen Peter Shirley

University of Utah, School of Computing
Technical Report UUCS-03-009

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

April 23, 2003



Abstract

In computer graphics, bright patterns of light focused onto matte surfaces are
called “caustics”. We present a method for rendering dynamic scenes with moving
caustics at interactive rates. This technique requires some simplifying assumptions
about caustic behavior allowing us to consider it a local spatial property which we
sample in a pre-processing stage. Storing the caustic locally limits caustic rendering
to a simple lookup. We examine a number of ways to represent this data, allowing us
to trade between accuracy, storage, run time, and precomputation time.



1 Introduction

Daily life immerses us in environments rich in illumination we wish to capture in our
renderings. Unfortunately rendering complex illumination often incurs a significant com-
putational cost. Since many applications require interactive speeds, costly algorithms for
global illumination are often infeasible.

Many applications could benefit from fast and simple algorithms for global illumination.
Such algorithms exist and are used in various fields ranging from research to entertainment.
These techniques vary in physical accuracy from exact radiosity solutions to fabricated
lightmaps used to texture map surfaces in many of today’s games. These methods typically
suffer from a common computer graphics problem—poor scaling with scene complexity.
Often techniques which run quickly on simple scenes bog down when used on a complex
environment. Generally, too much effort is spent computing illumination that has only
a minor impact on the image and a negligible perceptual impact. In fact, while global
illumination provides humans perceptual cues as to relative object locations, accuracy is
not always important[1, 2].

While global illumination appears to have a significant impact upon how humans view
interactions between objects, computing a full global illumination solution is often unnec-
essary. For example, computing the contribution of sunlight reflected off a wooden pencil
onto the wall across the room is an academic exercise, as the pencil’s contribution on any
but the nearest objects is small. While some researchers[3] have looked into simplifying
the environment to reduce unnecessary computations, significant questions remain as to
how much simplification will compromise the perceived quality of the global illumination.

In this paper, we examine the focusing of light caused by reflective and refractive surfaces.
This focusing, known in computer graphics as a “caustic,” potentially affects the entire en-
vironment. However, in most cases caustics are seen in a relatively localized space around
the objects causing them. For example, one might see a caustic from a glass figurine on a
table or the caustic from a mirror on an adjacent wall.

Our technique samples the caustic near the focusing object. This allows us to reduce caus-
tic rendering from a global problem to a localized property which can be computed with a
simple lookup. We can perform this lookup at interactive framerates even when objects or
lights move. However sampling takes significant precomputation and memory, and accu-
rate caustics are limited to the sampled region.

The rest of the paper is divided as follows. In Section 2, we outline the previous work
in computing and speeding up global illumination. Section 3 discusses the behavior of



Figure 1: Our technique generates this caustic at 2.3 fps on 30 processors while moving
the bunny or light.

caustics and shows how we deal with their complexities. Section 4 discusses various ways
to sample a caustic and the tradeoffs involved and section 5 discusses some issues involved
in rendering a caustic from sampled data. Section 6 presents our results. Finally, Section 7
presents our discussion, conclusions, and future work.

2 Background

As global illumination is important for many scenes, researchers have proposed many illu-
mination models. Many existing techniques focus on diffuse interactions or do not handle
all specular effects. We focus our attention in this section on techniques which generate
caustics and interactive techniques similar to ours.

Extremely accurate caustics have been generated semi-analytically for smooth surfaces[4],
but that method is too slow for interactivity. Also, researchers have investigated accurate
interpolation between specular rays[5, 6], but these techniques have not yet yielded fast
sampling-based methods for accurate caustic generation.



Pathtracing[7] generates beautiful global illumination renderings, but accuracy comes at
an extreme computational cost. Numerous researchers have looked into speeding up path-
tracing and raytracing[8, 9, 10, 11]. These methods typically rely on storing previously
computed samples and reprojecting them for a new viewpoint, sampling the places where
errors are greatest. Unfortunately, in the case of moving caustics, the errors will be highest
in the areas most expensive to recompute—the caustic.

Sending rays from the light has been successfully applied to generate caustics[12]. Many
researchers have since used this technique, and it has been extended to include non-diffuse
surfaces (e.g., photon mapping[13, 14]). This gives excellent caustics with much higher
efficiency than pathtracing. While the results are view-independent, they require a rea-
sonably expensive preprocess which must be repeated after moving a light or an object.
Combinations of photon shooting and pathtracing have been examined[15]. By utilizing
significant CPU resources, they could interactively render scenes with global illumination,
including simple caustics. Such techniques can only shoot a limited number of photons
per frame. Since higher quality caustics and caustics for complex objects require signifi-
cant numbers of photons, such techniques cannot always quickly recompute crisp looking
caustics in dynamic scenes.

A number of extensions to the basic radiosity[16] technique allow specular effects in static
scenes[17, 18, 19]. Stochastic approaches to radiosity[20, 21] can be adapted to generate
caustics, though like pathtracing reducing variance can be expensive. A combination of
hierarchical radiosity and particle tracing[22] proved able to render specular effects, like
caustics, interactively for simple objects. However, like most particle tracing techniques
rendering takes longer for more complex objects.

Using volume data structures to encode lighting information about a scene has been ac-
complished in the context of static scenes for diffuse[3] and more general reflectance
functions[23]. It has been shown that such data structures can be used to illuminate dy-
namic objects provided they are sufficiently small to not require updates of the volume data
structure[24]. However, none of these methods allow a movable specular object to affect
the lighting of the scene itself.

Graphics hardware has been used to generate accurate caustics[25, 26]. However, such
techniques are far from interactive and limit the use of curved reflectors and refractors.
Precomputed radiance transfer functions allow graphics hardware to render global illumi-
nation effects in real-time[27]. While this technique can render caustics, results are highly
blurred due to the use of low-order spherical harmonics.

Our technique precomputes all the data required for arbitrarily moving caustics in advance,



Figure 2: A photograph of a real world caustic.

so a simple table lookup suffices even for complex specular objects. No photon tracing is
required between frames, so caustics computations are not dependant on object complexity.

3 Caustics

In this section we describe the behavior of caustics and discuss the assumptions and sim-
plifications necessary for our technique. Our goal was to develop a method that locally
approximates a caustic. We wanted our technique to require little or no recomputation
from frame to frame, even when the objects and lights move.

3.1 Caustic Behavior

Caustics are caused by the focusing of light due to reflection or refraction off specular
surfaces[28]. Some examples of caustics in daily life include sunlight reflected off a watch
onto a car ceiling, the cardioid shape at the bottom of a coffee mug (Figure 2), and the
focusing of light through a magnifying glass.

While caustics are common, few people know exactly how they should look. For example,
one would expect a glass figure to cast a caustic onto a table, but blurred, slightly offset, or
even missing details may go unnoticed.



~L

α
~P

p

O

Figure 3: We want to compute the caustic from object O at p. This caustic function has 8
dimensions, 3 each from ~P and ~L, and two from the orientation α of the receiving surface
relative to ~P.

Flat surfaces, like mirrors, reflect light without focusing it. However any concave reflector
focuses light into bright lines or points. Technically, only curved surfaces cause caustics,
but in this paper, we adopt the common graphics usage and refer to any specularly reflected
or refracted light as a caustic, as we want to handle both effects.

Consider a transmissive object fixed relative to a lightsource. The caustic’s intensity at
point p changes based upon the position of p relative to the object and the orientation α of
the surface at p. For fixed light and object positions, the caustic can be considered a 5D
function. Allowing the light (or equivalently the object O) to move changes the caustic into
a 8D function, by allowing the vector ~L to vary (see Figure 3).

To render caustics interactively, we must be able to quickly evaluate this 8D caustic inten-
sity function. Unfortunately no current methods allow the extraction of a caustic’s analytic
description from an arbitrary object, so we fall back to numerically approximating the func-
tion.

3.2 Simplifying the Problem

Our simplifications are based on the following observations:

• The direction to the light often has a greater impact on the visible caustic than the
distance to the light.

• Lights located relatively far away generate caustics similar to those of lights located
infinitely far away.

• Most objects that focus light are relatively far away from the light. The most preva-
lent exception, mirrors in light fixtures, can usually be treated as part of the light-
source (e.g. Canned Lightsources[29]).



• The area nearby a object generally contains its most complex caustic behavior.

Using these observations, we can make some assumptions to simplify the problem. Com-
bining the first two observations, we assume that the distance to the light source can be
ignored. This allows us to reduce the dimensionality of the problem by one by assuming
that all lights are directional.

We further assume that some finite volume exists around the reflective or refractive surface
in which its caustic contributes significantly to the illumination of other objects. This al-
lows us to sample ~P over a finite region. Outside this region, our caustic is based upon
samples from the outer region of our sampling volume. Alternately, outside the sampling
region caustic contributions could be faded. Note that considering the caustic a local object
property limits us to casting caustics onto diffuse surfaces to avoid specularly reflecting the
precomputed caustic.

Finally, we assume we can precompute the caustic for some known orientation αfixed. We
can then compute the caustic intensity at p using the cosine of the difference between αp

and αfixed. We set αfixed = −P̂ = −~P/‖~P‖ at each sample.

Using these assumptions, we can sample a simplified 5D caustic function. These five di-
mensions are x, y, z, φ, and θ, where ~P = (x, y, z), and φ and θ correspond to the direction
of L̂.

4 Caustic Sampling

This section outlines the approaches we have examined for sampling and representing the
five dimensional caustic function discussed above. Since our caustics are local properties of
an object, sampling must be independently performed on each object which focuses light.
We discuss the sampling of the volume over x, y, and z separately from the sampling of
incoming light directions φ and θ.

4.1 Sampling the Light

For each caustic object, we need to store information about the caustic as the light moves
relative to the object. Since we have assumed directional lighting, sampling this lighting is



Figure 4: A linear change in φ and θ does not correspond to a linear change in the caustic.

equivalent to sampling directions (φ, θ) over a unit sphere.

We found that sampling φ and θ in a fixed, uniform or near-uniform, pattern generally
works as well as adaptively sampling. Each linear change in φ or θ corresponds to varying
non-linear changes (see Figure 4) in the caustic intensity over the volume (x, y, z). Because
incoming light often bounces around the object many times, few incoming directions L̂

have a “simpler” caustic behavior than others. Thus, adaptive sampling of the sphere tends
to converge to a relatively uniform sampling.

Currently, we sample φ and θ on a geodesic. Specifically, we subdivide an icosahedron
between 3 and 6 and project the vertices to the unit sphere. We either sample at the vertices
or centers of the subdivided triangles. This provides a nearly uniform sampling over the
sphere. We use this method simply because we need not recompute all samples when we
subdivide for a denser sampling.

4.2 Sampling Space

Given a light sample L̂i, we need to sample the volume around object O. If the object has
a bounding volume of radius r, we found in our tests we needed to sample a region with
radius ≈ 3r. However, this varies depending on where focal points of the object lie.

We have sampled this region using two different structures, a uniform grid and a set of
concentric shells subdivided as a geodesic (see Figure 5). After subdividing the volume,
we sample the caustic function using the following algorithm. For each light sample L̂i,
we shoot photons from the directional lightsource towards the object O. Once a photon
specularly bounces, it contributes to all the new cells it passes though (the dashed lines in
Figure 5).



L̂i
L̂i

Figure 5: We sampled space either on a uniform grid or a set of concentric shells.

A photon’s contribution to a cell is computed as if it hit a surface at the sample point S
with surface normal in the direction of Ocenter − S. After shooting photons, the values
in each cell must be normalized by how many photons would have hit the cell without
object O present. The idea is that each grid cell stores an approximation of the irradiance at
the cell’s center (similar to the Irradiance Volume[24]), with the caveat that we only store
irradiance due to specularly reflected light.

Storing data on a grid has the advantage of easy implementation and fast lookups. How-
ever, a rectangular grid structure does not correspond well to caustic data because intensity
data changes in a generally radial fashion. This means much space is wasted storing data
which changes slowly and not enough is concentrated in regions where the caustic changes
quickly.

Storing data on concentric shells allows non-uniform placement of the shells to densely
sample the data radially in regions where the caustic varies significantly. Using this allows
us to reduce the sampling of one dimension of the volume by up to a factor of 5, either
reducing memory usage or allowing a finer sampling in other dimensions. We avoid the
difficulty of indexing into a geodesic by using a table lookup.

4.3 Data Representation

One of the major problems with sampling a high dimensional function, such as the caustic
intensity, is the large storage requirement. Using such data in interactive applications can
be difficult if significant portions must remain in memory. We have examined a number of



methods to represent this data which reduce the memory overhead. Each approach has its
advantages and disadvantages.

Our first implementation stores the complete set of sampled data, both on disk and in mem-
ory. Obviously, this requires a machine with lots of memory. For instance, naively storing
all sampled data for the ring images (see Figure 11), requires around 1 GB of memory. Our
data is stored in colors of three bytes each, one byte for each red, green, and blue channels.
The advantage of this technique is easy implementation and fast lookups, leading to faster
framerates when data can be completely stored in main memory.

Using a multi-resolution approach helps save memory. We found multi-resolution tech-
niques could reduce memory usage by up to a factor of 10 with equivalent quality results.
The tradeoff is that lookups take longer due to the more expensive data traversal routines.
This results in moderately reduced framerates. Additionally, multi-resolution approaches
may not always reduce storage space.

We also examined using spherical harmonics to compress the sampled data. For each cell in
the volume, instead of storing a color for each light sample L̂i, we store spherical harmonic
coefficients approximating the irradiance for the entire sphere of incoming directions. Al-
ternately, we tried storing one set of spherical harmonic coefficients to represent each of
the concentric shells for a given light sample. One main advantage of spherical harmonics
is that a large amount of data can be approximated by a few coefficients. The major prob-
lem with this approach, however, is that spherical harmonics eliminate most of the high
frequency information in a caustic. We believe such sharp features are important to caustic
rendering. Increasing the order of the spherical harmonic approximation significantly in-
creases precomputation time as well as the number of coefficients required. As the number
of coefficients increases, rendering time slows as well.

5 Caustic Rendering

After sampling our caustic function, we use a raytracer to interactively render the scene.
Note that this technique is not limited to raytracers. We simply use a raytracer because it
runs interactively on a large shared-memory machine, easily allowing us to access large
amounts of memory. Any renderer which can access the necessary data quickly and per-
form per-pixel operations could use our sampled data to compute caustic intensity.



βj

βi

βk

L̂k
L̂

Light

L̂i

~Lj

O

Figure 6: L̂ intersects the spherical triangle formed by L̂i, L̂j, and L̂k.

5.1 Rendering Algorithm

Raytracing the scene proceeds normally until the determination of the color at a diffuse sur-
face. At these surfaces, instead of just looking for direct illumination, we perform lookups
into the sampled data to determine if they are illuminated by a caustic. This process can be
described algorithmically as follows:

1. Determine the direction L̂ from the center of the object O to the light. Locate the
nearest light sample L̂i (where L̂ · L̂i is maximal). This volume stores the closest
approximation to the caustic from the current light position. This step should be
done only once per frame, since it is independent of the intersection point p.

2. At each intersection point p, find p’s location in the volume sampled around O and
look up the caustic contribution. Add this result to the direct lighting computed by
the raytracer.

5.2 Issues Rendering Caustic Data

Unfortunately, using a single light sample L̂i to render the caustic causes temporal coher-
ence issues as objects move. This is due to differences in the caustic from one light sample
to the next (see Figure 4). The popping can be reduced by combining the caustic from mul-
tiple light samples L̂i, L̂j, and L̂k (where L̂ ·L̂i ≥ L̂ ·L̂j ≥ L̂ ·L̂k ≥ L̂ ·L̂m,∀m /∈ {i, j, k}).



Figure 7: Ghosting happens when the caustic changes significantly between neighboring
light samples L̂i, L̂j, and L̂k. Images (left) without caustics, (center) with ghost caustics,
and (right) a correct caustic.

L̂i, L̂j, and L̂k form the three vertices of a spherical triangle on the unit sphere which in-
cludes L̂ (see Figure 6).

Using three light samples eliminates popping between caustic samples but introduces a new
problem—ghosting (see Figure 7). Ghosting happens because object O’s caustic can differ
significantly between neighboring light samples, so blending data from L̂i, L̂j, and L̂k

results in three separate faint caustics. Unfortunately, the best way to eliminate ghosting
is to sample the caustic for more light directions. This significantly increases memory
consumption.

Below, we describe a technique which we found helps reduce ghosting for relatively smooth
objects. This algorithm replaces step 2 from the rendering algorithm described above:

A. Compute the vector ~P from Ocenter to p.

B. Find the barycentric coordinates of L̂ in the spherical triangle formed by L̂i, L̂j, and
L̂k. This gives the relative contributions from each light sample (Figure 6).

C. Compute the angles βi, βj , and βk between L̂ and the three nearest sampled light
directions L̂i, L̂j, and L̂k.

D. Calculate rotation axes ~Ri, ~Rj, and ~Rk by taking the cross product between ~L and
~Li, ~Lj, and ~Lk, respectively.

E. Rotate vector ~P around the axes ~Ri by angle βi to find a new vector ~P′

i. Similarly
find ~P′

j and ~P′

k by rotating around ~Rj and ~Rk by angles βj and βk (Figure 8).

F. Find the points p′

i, p
′

j, and p′

k. Where p′

i = Ocenter + ~P′

i.



L̂i

Light
Light

p

Sampled

L̂

βi

p’

~P′

i

~P

Figure 8: Find the cell to use in the weighted average by rotating ~P around the axis ~Ri

(which points into the page at Ocenter) by angle βi.

G. Perform caustic lookups as if p′

i, p′

j, and p′

k were the intersection points (instead of
p). Weight the contributions from these points based on the barycentric coordinates
computed in step B.

The process performs an interpolation between samples. Unfortunately, such an interpola-
tion is not generally valid, as it assumes the caustic changes linearly in space for a linear
change in light direction. We found for relatively smooth objects, like the sphere and bunny,
such “interpolation” generally allows us to use fewer light samples. For objects such as the
cube and prism which have sharp angles, we found that this approach does not reduce the
ghosting.

6 Results

We implemented our algorithm on an interactive parallel raytracer running on an SGI Ori-
gin 3800 with thirty-two 400 MHz R12000 processors. This is a shared memory ma-
chine which easily holds our entire scene and caustic datasets in main memory. However,
our approach is not limited to such applications. Any renderer which has per-pixel light-
ing control could implement our technique given enough memory. Existing systems (e.g.
[22, 9, 10, 11, 15]) could easily incorporate our method to avoid the cost of reshooting the
photons causing caustics each frame.

Table 1 contains timings for the images generated for Figures 1, 9, and 10. We incurr a 10–
45% speed penalty for displaying caustics, depending on the relative costs of the caustic
lookups to the raytracing costs of the scene. The cost of our photon shooting preprocess



Figure 9: From left to right: Images generated with a photon map, our concentric shell
approach, our grid technique, and a 5th order spherical harmonic representation.

ranges from 1.3 to 25 seconds per light sample. Shooting photons for a photon map takes a
similar amount of time, though additional overhead is needed to create the required kd-tree.
Framerates are for a 360 x 360 window running on thirty processors.

Figure 9 compares a photon map with our technique using both the grid and concentric shell
storage techniques. The comparisons are between grids and shells using roughly the same
memory. We show a 5th order spherical harmonic, which runs at roughly the same speed as
indexing into sampled data. The advantage of the spherical harmonic representation is its
high temporal coherence and low memory consumption. For comparison, these 5th order
representations require as much memory as the data used for Figure 11a. Since the number
of coefficients increases quadratically with order, computation costs quickly become the
bottleneck.

Figure 11 illustrates the effect of sampling density on memory consumption and caustic
quality. For relatively smooth object, like the bunny (see Figure 1), we used 162 light



Object Grid Shell MultiRes No Shoot Photons
Caustics Caustics Caustics Caustics (per sample)

(fps) (fps) (fps) (fps) (sec)
Sphere 15.2 17.3 15.0 26.9 1.7
Cube 12.1 12.6 10.8 20.2 2.4
Prism 12.7 13.2 11.0 20.3 2.0
Ring 9.3 9.5 8.8 12.9 1.3

Building 1.94 2.01 1.90 2.29 4.5
Bunny 2.16 2.30 2.25 2.55 25.0

Table 1: Times for shooting photons are for a single 400 MHz R12000 processor. Framer-
ates are for thirty 400 MHz R12000 processors rendering a 3602 window.

Figure 10: This “building” can dynamically cast caustics on surrounding terrain based on
the sun’s position.

samples. For objects where our rotational alignment technique from Section 5.2 does not
work well (like the cube and prism), we needed up to 2500 light samples. Note that number
of light samples does not affect framerate, assuming the data can all fit into memory.

Obviously, with symmetric objects one need not sample the entire sphere of incoming light
directions. For a sphere, a single sample suffices. For the metallic ring, we found be-
tween 50 and 100 light samples are sufficient for good temporal coherence. Many common
objects have symmetrical properties which could be used to simplify the sampling space.



Figure 11: Sharper caustics come at the expense of denser sampling. The images shown
require 5.7, 22.5, 90.1, 360, and 1440 kilobytes of memory per light sample. The data is
stored using the concentric shell representation. Using a multiresolution approach, similar
results require 4.8, 12.6, 29.5, 70.4, and 179 kilobytes of memory per light sample.

7 Conclusions

We have presented a novel technique for rendering approximate caustics interactively by
localizing the problem to the vicinity of the focusing object. This approach avoids the
recurring cost of photon shooting existing methods require to generate dynamic caustics.
Because particle tracing in not necessary between frames, this technique could be applied
to other interactive systems that cannot traditionally perform such computations (e.g. hard-
ware based renderers). Additionally, the rendering costs of our method are independant of
object complex. We examined a number of ways of sampling the data and representing
the samples in memory. Since our method generates caustics using table lookups, memory
becomes the bottleneck.

We have found that storing a highly sampled caustic function in memory produces the
best looking results. Unfortunately, the memory requirements make the technique difficult
to use unless object symmetries or other simplifying conditions exist. Multi-resolution
approaches can significantly reduce memory overhead by storing densely sampled data
only where necessary. In exchange lookups are more costly.

Storing data using spherical harmonics generally blurs caustics extensively. We believe
that the results look unconvincing. Higher order approximations will improve results at the
expense of additional coefficients. We plan on examining other bases, such as spherical
wavelets, to see if they result in sharper caustics with similar memory savings.

Scenes that lend themselves well to our technique include outdoors scenes where the sun
effectively acts as a constant directional lightsource. Such a scene requires a single light
sample. Leveraging object symmetries also can reduce some of the memory burden. Many
common objects have such symmetries, so our sampling techniques may be feasible for



such objects.

Our work has a number of limitations, including:

• Expensive memory requirements for general environments when the entire sampled
dataset must be available.

• Poor realignment of neighboring light samples causes ghosting when φ and θ are not
sampled densely enough.

• Area light sources are not handled. Since the shape of a light can significantly affect
the caustics, this problem needs to be addressed.

• Our assumptions rule out using this method for scenes with reflective or refractive
objects near the lights.

We believe that the alignment of light samples presents a serious problem, particularly for
objects with large planar surfaces. We plan on examining ways of representing the entire
5D dataset instead of simply considering the function as a 2D array of 3D volumes. Such
a representation may allow us to perform a true interpolation between light samples. Such
interpolation would eliminate the need for a dense sampling of φ− θ space.

Current graphics hardware has extensive pixel shader hardware which could apply our
sampled data in interactive OpenGL or DirectX applications. We plan on examining the
details involved with such an approach.

We believe that global illumination gives important information to users of interactive sys-
tems and cannot be ignored. Our results indicate that viable techniques exist for including
specular effects in addition to diffuse global illumination in these applications.

Acknowledgments

The authors would like to thank the reviewers and countless other people who provided
suggestions on the work and gave valuable feedback on the text. This material is based upon
work supported by the National Science Foundation under Grants: 9977218 and 9978099.



References

[1] H. Hu, A. Gooch, W. Thompson, B. Smits, J. Rieser, and P. Shirley, “Visual cues for imminent
object contact in realistic virtual environments,” in Proceedings of Visualization, pp. 127–136,
2000.

[2] D. Kersten, D. C. Knill, P. Mamassian, and I. Bulthoff, “Illusory motion from shadows,” Na-
ture, vol. 279, no. 6560, p. 31, 1996.

[3] H. Rushmeier, C. Patterson, and A. Veerasamy, “Geometric simplification for indirect illumi-
nation calculations,” in Proceedings of Graphics Interface, pp. 227–236, 1993.

[4] D. P. Mitchell and P. Hanrahan, “Illumination from curved reflectors,” in Proceedings of SIG-
GRAPH, (Chicago, Illinois), pp. 283–291, 1992.

[5] K. Bala, J. Dorsey, and S. Teller, “Radiance interpolants for accelerated bounded-error ray
tracing,” ACM Transactions on Graphics, vol. 18, pp. 100–130, August 1999.

[6] M. Chen and J. Arvo, “Theory and application of specular path perturbation,” ACM Transac-
tions on Graphics, vol. 19, pp. 246–278, October 2000.

[7] J. T. Kajiya, “The rendering equation,” in Proceedings of SIGGRAPH, pp. 143–150, 1986.

[8] G. W. Larson and M. Simmons, “The holodeck ray cache: An interactive rendering system
for global illumination in non-diffuse environments,” ACM Transactions on Graphics, vol. 18,
pp. 361–368, October 1999.

[9] S. Parker, W. Martin, P.-P. J. Sloan, P. S. Shirley, B. Smits, and C. Hansen, “Interactive ray
tracing,” in ACM Symposium on Interactive 3D Graphics, pp. 119–126, 1999.

[10] P. Tole, F. Pellacini, B. Walter, and D. Greenburg, “Interactive global illumination in dynamic
scenes,” in Proceedings of SIGGRAPH, pp. 537–546, 2002.

[11] B. Walter, G. Drettakis, and S. Parker, “Interactive rendering using the render cache,” in Eu-
rographics Rendering Workshop 1999, (Granada, Spain), pp. 19–30, Springer Wein / Euro-
graphics, June 1999.

[12] J. Arvo, “Backward ray tracing,” Developments in Ray Tracing, pp. 259–263, 1986. ACM
Siggraph ’86 Course Notes.

[13] H. W. Jensen, “Importance driven path tracing using the photon map,” in Eurographics Ren-
dering Workshop, pp. 326–335, 1995.

[14] H. W. Jensen, “Global illumination using photon maps,” in Eurographics Rendering Work-
shop, pp. 21–30, 1996.

[15] I. Wald, T. Kollig, C. Benthin, A. Keller, and P. Slusallek, “Interactive global illumination
using fast ray tracing,” in Eurographics Rendering Workshop, 2002.



[16] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, “Modelling the interaction of
light between diffuse surfaces,” in Proceedings of SIGGRAPH, pp. 213–222, 1984.

[17] D. S. Immel, M. F. Cohen, and D. P. Greenberg, “A radiosity method for non-diffuse environ-
ments,” in Proceedings of SIGGRAPH, pp. 133–142, 1986.

[18] T. J. V. Malley, “A shading method for computer generated images,” Master’s thesis, Computer
Science Department, University of Utah, June 1988.

[19] H. Rushmeier and K. Torrance, “Extending the radiosity method to include specularly re-
flecting and translucent materials,” ACM Transactions on Graphics, vol. 9, pp. 1–27, January
1990.

[20] P. Bekaert, Hierarchical and Stochastic Algorithms for Radiosity. PhD thesis, Department of
Computer Science, Katholieke Universiteit Leuven, 1999.

[21] L. Neumann, M. Feda, M. Kopp, and W. Purgathofer, “A new stochastic radiosity method for
highly complex scenes,” in Eurographics Rendering Workshop, pp. 283–291, 1994.

[22] X. Granier, G. Drettakis, and B. Walter, “Fast global illumination including specular effects,”
in Eurographics Rendering Workshop, pp. 47–58, 2000.

[23] K. Chiu, K. Zimmerman, and P. Shirley, “The light volume: an aid to rendering complex
environments,” in Eurographics Rendering Workshop, pp. 1–10, 1995.

[24] G. Greger, P. Shirley, P. M. Hubbard, and D. P. Greenberg, “The irradiance volume,” IEEE
Computer Graphics & Applications, vol. 18, pp. 32–43, March-April 1998.

[25] P. J. Diefenbach and N. I. Badler, “Multi-pass pipeline rendering: Realism for dynamic envi-
ronments,” in ACM Symposium on Interactive 3D Graphics, pp. 59–70, 1997.

[26] T. Nishita and E. Nakamae, “Method of displaying optical effects within water using accumu-
lation buffer,” in Proceedings of SIGGRAPH, pp. 373–381, 1994.

[27] P.-P. Sloan, J. Kautz, and J. Snyder, “Precomputed radiance transfer for real-time rendering in
dynamic, low-frequency lighting environments,” in Proceedings of SIGGRAPH, pp. 527–536,
2002.

[28] J. F. Nye, Natural Focusing and Fine Structure of Light. Bristol: Institute of Physics Publish-
ing, 1999.

[29] W. Heidrich, J. Kautz, P. Slusallek, and H.-P. Seidel, “Canned lightsources,” in Eurographics
Rendering Workshop, pp. 293–300, 1998.


