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Abstract

Many magnetoencephalography (MEG) forward and inverse
simulation models employ spheres, a singular shape which
does not require consideration of volume currents. With
more realistic, inhomogeneous, anisotropic, non-spherical
head models, volume currents cannot be ignored. We verify
the accuracy of the finite element method in MEG simula-
tions by comparing its results for a sphere containing dipoles
to those obtained from the analytic solution. We then use
the finite element method to show that in a realistic model,
the magnetic field normal to the MEG detector due to vol-
ume currents often has a magnitude on the same order or
greater than the magnitude of the primary magnetic field
from the dipole. Forward and inverse MEG simulations us-
ing the realistic model demonstrate the disparity in results
between calculations containing volume currents and those
without volume currents. Volume currents should be in-
cluded in any accurate calculation of MEG results, whether
they be for a forward or inverse simulation.

Keywords: Forward MEG, Inverse MEG, Source localiza-
tion, Volume currents, Finite element method

Introduction

External magnetic fields produced by neuronal activity
within the brain can be measured using magnetoencephalog-
raphy (MEG). A standard method for modeling the activity
of these neurons assumes that they act as electric current
dipoles. The electric fields produced by the dipoles can be
separated into two components: the primary current, which
represents the area of neural activity, and the secondary or
volume current, which is the electric field that results from
the primary current”®. MEG detectors measure the net
magnetic field due to both primary and secondary currents.

Attempts to determine the magnetic fields that result
from current dipoles, the forward problem, most commonly
use a model for simulations consisting of a set of concentric
spheres, each with homogeneous and isotropic conductivity.
Given this model, the MEG forward problem can be reduced
to a closed form analytic solution. However, with more real-
istic, inhomogeneous, anisotropic, non-spherical head mod-
els, a closed form solution is not as easily computed and
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approximation methods, such as finite or boundary element
methods, must be used.

Many realistic head models used for forward simulation
do not incorporate the volume currents in the MEG mea-
sured magnetic field. We used the numeric finite element
method’ %% 1% 16 t6 investigate the effects that volume cur-
rents have on the total magnetic field measured at the MEG
detectors, and their importance in accurately calculating
magnetic fields detected by MEG. The accuracy of our nu-
meric model is first confirmed by comparing the model’s
computed results for a sphere containing dipoles to that of
the analytic solution for the sphere; this numeric method is
then applied to forward simulations in a more realistic head
model.

The task of determining the current dipole’s location
within the head from the normal component of the magnetic
field located at each detector, the inverse problem or dipole
source localization, relies on the techniques and modeling
of the forward problem. After determining the importance
of volume currents in the forward simulations, we used our
forward model to perform inverse simulations on the realis-
tic head model and to investigate the importance of volume
currents for accurate dipole source localization.

Background

The dipole’s primary current density, Jp, results from the
electromotive force impressed by biological activity on con-
ducting tissues''. Assuming .J, is within a conductive re-
gion, G, of the brain with conductivity o and that the mag-
netic permeability is homogeneous, p = po, the quasistatic
approximations of Maxwell’s equations in determining the
electric field, E, and the magnetic field, B, apply as follows:

E=-V¢ (1)
VxB=pJ V-B=0 (2)
J=Jy+0E (3)

where ¢ is the electric potential and J is the total current
density. The magnetic field is calculated by the Biot-Savart
law:

B) = po/tm [ J6) % =)l Plo @)

where 7’ is the coordinate of the dipole and r is the point of
detection. Combining equations (1), (3), and (4),



B(r) = ;Lo/47r/G[Jp—0V¢] < (r—1)/|r — ' [Pdv

(,m/zm[/c Ty x (r— 1)/ — ' PPdo
—Eaj/c:jv¢x(r—r)/|r—r|dv} (5)

For a current dipole with a moment Q:

B(r) = po/Ar([Q x (r—1")/lr —1'|
_zaj/ Vo x (r—1')/Ir—r'PPd]  (6)
Gj

The integral portion of equation (6) models the volume
currents which are dependent upon the conductivity and
electric potential, while the balance of the right hand side of
equation (6) models the primary current.

If the conductor is in the shape of a sphere, an analytic
closed form equation exists for calculating the magnetic field.
According to Sarvas ' , the magnetic field outside of a ho-
mogeneous sphere enclosing a dipole can be calculated as
follows:

B(r) = po/AnF*(FQ x 1’ — Q x ' - rVF) (7)

where F' = |a|(|r||a| + |7|*> =" -7), a = r — ¢/, and VF =
(Iaf>/lrl +a-r/la] + 2|a] + 2r))r — (la| + 2Ir| +a- r/la])r".

Equation (7) shows that for a spherical conductor, if the
source is oriented radially to the point where the magnetic
field is being measured, then the system is a magnetically
silent volume conductor®. Note that equation (7) does not
directly mention conductivity, c. However, although in a
homogeneous sphere the contribution to the magnetic field
from the volume currents is independent of conductivity, the
volume currents are implicitly incorporated in equation (7)*!
and do contribute to B.

The detectors used in MEG measure only the component
of the magnetic field normal to the detectors®. Thus equa-
tion (6) becomes

B(r) = po/4[@x (r—2")/lr—7'*-n
—ZO’j/ V¢X(r—r/)/|r—r'|3dv-n] (8)
Gj

where n is the normal to the detector. Equation (7) then
becomes

B(r):,uo/47rF2(FQ><r'—Q><r'-rVF)-r/|r| 9)

Equation (9) indicates that in the spherically symmetric
conductor, MEG is sensitive only to the tangential compo-
nent of the primary electric current® 9.

Results

In our simulations, the finite element method was used to
calculate the electric potential in a discrete, numeric model
of both spheres and realistic heads'*. The SCIRun Problem
Solving Environment® was used to drive the forward and
inverse MEG simulations.

Spherical Head Model

Several tests were performed to validate the numeric model
being used for simulations. Using a sphere, we calculated the
magnetic field by our numeric model and compared it to the
magnetic field calculated by the analytic equation (7). The
sphere tests were performed on a 98,001 node unit decime-
ter sphere containing 459,784 elements with 180 detectors
placed symmetrically around the sphere at radii of 1.3dm,
1.4dm, 1.5dm, and 1.6dm. A dipole was placed first at the
center of the sphere with a moment of (0,0,1). In comparing
the numeric to the analytic solution, the cumulative RMS
error at all the detectors was 1.12x1077T.

A dipole was next placed in the sphere at (0.8,0.5,0) with
moment (1,-0.5,0). The results from the numeric model were
compared to the calculations from equation (7) and were
found to correspond with a correlation coefficient of 0.998.
Figures 1 and 2 allow for a visual comparison between the
analytic and numeric magnetic fields calculated at the 180
detectors for this dipole.

The next validation test employed dipoles that were ran-
domly placed and randomly oriented in the sphere. Only
one dipole was inside the sphere for each of the numeric and
analytic magnetic field calculations, and each of these was
evaluated for all 180 detectors. The calculations were per-
formed for 100 different dipoles. The mean correlation coeffi-
cient between the calculated total magnetic field for numeric
and for analytic solutions was 0.991 + 0.014, with no data
points correlating at less than 0.914. Figure 3 indicates the
correlation coefficient for each dipole.

Using the same 100 dipoles, only the radial component of
the numeric solutions with and without the volume currents
was compared to the radial component of the analytic solu-
tions. The correlation coefficient for each dipole appears in
Figure 4; all coefficients were greater than or equal to 0.998.
The minimal difference between solutions with volume cur-
rents and without volume currents indicates that the radial
component of the magnetic field due to the volume currents
is close to zero in the sphere.

The numeric solutions with and without the volume cur-
rents for the total magnetic field for the same 100 dipoles
were also compared to the analytic solutions. The mean
correlation coefficient with the volume currents was 0.991 +
0.014, and without volume currents was 0.900 &+ 0.066; the
coefficient for each dipole with the volume currents and with-
out the volume currents appears in Figure 5. A large discrep-
ancy in accuracy between solutions including volume cur-
rents and those without volume currents is apparent when
calculating the total magnetic field that was not evident
when measuring the radial component alone. For each in-
dividual dipole, the correlation coefficient for solutions with
the volume currents invariably was higher than was the co-
efficient for those without the volume currents.

Realistic Head Forward Simulation

Next, the numeric finite element method of MEG forward
simulation was used on a realistic head model consisting of
72,745 nodes, 406,493 elements, and 64 detectors placed over
the head. This model was constructed from a volume mag-
netic resonance image (MRI) scan and consisted of six con-
ductivity values: air (o = 0.0 S/m), skin (¢ = 1.0 S/m),
bone (¢ = 0.05 S/m), CSF (0 = 4.62 S/m), gray matter (o
= 1.0 S/m), and white matter (o = 0.43 S/m)*°.

A dipole with moment (0,0,-1200) was located at
(79,177,131), corresponding to the right posterior frontal
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Figure 1: Analytic solution of magnitude of magnetic field
at detectors for dipole at (0.8,0.5,0) with moment (1,-0.5,0)

cerebrum. At 61% of the detectors (39 out of 64), the nor-
mal component of the magnetic field due to the volume cur-
rents was of the same order of magnitude or larger than the
normal component of magnetic field due to the primary cur-
rent. At 16% of the detectors (10 out of 64), the normal
component of the magnetic field due to the volume currents
was at least an order of magnitude greater than the mag-
netic field due to the primary current. Figure 6 shows the
magnitude of the magnetic field normal to the detector at
each of the detector positions with the magnetic field due to
the combined volume currents and primary currents, with
the magnetic field due to the primary currents alone, and
with the magnetic field due to the volume currents alone.
Detectors numbered 1-18 measure fields over the left frontal
region, detectors numbered 19-29 were localized over the left
occipital parietal region and were the most remote from the
dipole, detectors numbered 30-41, were placed over the right
parietal occipital region, and detectors numbered 42-64 were
localized over the right frontal region and were the closest
to the placement of the dipole in this model.

A dipole was also placed at (150,150,50), in the left pari-
etal lobe, with moment (0,0,-1200). At 77% of the detectors
(49 of 64), the normal component of the magnetic field due
to the volume currents was of the same order of magnitude
or larger than the normal component of the magnetic field
due to the primary current. At 13% of the detectors (8 of
64), the normal component of the magnetic field due to the
volume currents was at least an order of magnitude greater
than the magnetic field due to the primary current. Figure 7
shows the magnitude of the magnetic field normal to the de-
tector at each of the detector positions with the magnetic
field due to the combined volume currents and primary cur-
rents, with the magnetic field due to the primary currents
alone, and with the magnetic field due to the volume cur-
rents alone. The detectors for this simulation were at the
same position as were the detectors for the simulation with
the dipole in the right posterior frontal cerebrum.
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Figure 2: Numeric solution of magnitude of magnetic field
at detectors for dipole at (0.8,0.5,0) with moment (1,-0.5,0)

Realistic Head Inverse Simulation

The normal component of the magnetic field was calculated
at each detector for a specific dipole using a forward simu-
lation; the detectors’ magnetic field data for this dipole, but
not the dipole’s location, was then used as the “measured”
data with which to run an inverse MEG simulation. The in-
verse simulation was performed by positioning a test dipole
in one element of the finite element head mesh, finding the
optimal magnitude and orientation for the dipole in that ele-
ment using linear least squares optimization, and then com-
puting the error between the forward solution for the test
dipole and the “measured” data!®!®. The test dipole was
then moved to different positions in the mesh until a posi-
tion was found where the error between the forward solution
for the test dipole and the “measured” data was minimized.
Rather than calculating the error between the forward so-
lution for each test dipole position and the “measured” so-
lution in each element, we used the downhill simplex® opti-
mization search technique which requires the evaluation of
fewer elements to find the position where the minimum er-
ror occurs between the forward calculated solution and the
“measured” solution.

Figure 8 shows the calculated location of the dipole for
an inverse MEG simulation using our realistic head model
with the simulated “measured” data being for a dipole at
the location (79,177,131) in the right posterior frontal area.
Ten inverse simulations were run with the same “measured”
data as was used in Figure 8 but by starting the search at
different positions within the head. 90% (9 of 10) of these
simulations localized the dipole source to within 5mm of the
correct location, with the closest distance being Omm away
from the correct location and the greatest distance being
18mm. The average error in correctly identifying the dipole
location in the 10 trials was 4.0 & 5.1mm.

Finally, inverse MEG simulations were performed on data
“measured” at detectors for 10 different dipole locations
within our realistic head model. Two sets of simulations
were run; one set took into account the magnetic fields due
to both the primary and volume currents, and the other set
used only the magnetic field resulting from the primary cur-
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Figure 3: Correlation coefficient of numeric to analytic cal-
culations for total magnetic field versus distance from dipole
to sphere center (100 randomly placed and oriented dipoles)
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Figure 4: Correlation coefficient versus distance form dipole
to sphere center for radial component of magnetic field (100
randomly placed and oriented dipoles): crosses indicate nu-
meric solution with volume currents, and stars indicate nu-
meric solution without volume currents
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Figure 5: Correlation coefficient versus distance from dipole
to sphere center for total magnetic field (100 randomly
placed and oriented dipoles): crosses indicate numeric so-
lution with volume currents, and stars indicate numeric so-
lution without volume currents
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Figure 6: Normal component of the magnetic field for each
detector with dipole in right posterior frontal cerebrum:
crosses indicate numeric solution with volume currents and
primary currents, stars indicate numeric solution with pri-
mary currents alone, circles indicate numeric solution with
volume currents alone
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Figure 7: Normal component of the magnetic field for each
detector with dipole in left parietal lobe of the brain: crosses
indicate numeric solution with volume currents and primary
currents, stars indicate numeric solution with primary cur-
rents alone, circles indicate numeric solution with volume
currents alone

rent and ignored that due to the volume current (Table 1).
Figure 9 shows the dipole source localization point for the
inverse solution obtained using the “measured” data for a
dipole at location (150,150,50) in the left parietal lobe of
the brain; the magnetic fields for both the primary and vol-
ume currents were used in this simulation. Figure 10 shows
the dipole source localization point for the inverse solution
obtained using the same “measured” data as was used in
Figure 9, except that the simulation in Figure 10 does not
include the magnetic field due to volume currents in the cal-
culation. In the ten dipole source localizations, 70% (7 of
10) of the localizations performed without volume currents
resulted in a solution inaccurate by 7mm or greater, whereas
90% (9 of 10) of the localizations performed using the mag-
netic fields due to both primary and volume currents were
within 6mm of the correct dipole location. The average error
in correctly identifying the dipole location for trials which
included the magnetic field due to volume currents was 3.2
+ 2.2mm; the average error for trials not taking into ac-
count the magnetic field due to volume currents was 23.8 +
27.0mm.

Discussion

The tests performed with the spheres and the comparison of
the results with those obtained using the analytic solutions
show that our numeric model works accurately. The RMS
error due to the dipole placed at the origin with moment
(0,0,1) was only 1.12x10~*7T; this discrepancy is due to the
finite element approximation error. Further confirmation of
the numeric model’s accuracy is the results obtained with
the dipole at (0.8,0.5,0) with moment (1,-0.5,0) (Figures 1
and 2). The detectors closest to the dipole location have the
highest magnitude of magnetic field, whereas those farther
away have a smaller magnitude, as would be expected. The
numeric and analytic solutions correlate hightly (coefficient
= 0.998).

The mean correlation coefficient of the 100 randomly

placed and oriented dipoles, 0.991 + 0.014, further indicates
the accuracy of our model. As can be seen in Figure 3, only
4 of the 100 dipoles have a correlation coefficient less than
0.946. The errors that do occur stem from finite element
approximation.

Figure 4 shows the correlation coefficient of our model
with the analytic solution when calculating the normal com-
ponent of the magnetic field generated by randomly placed
and oriented dipoles in a sphere. The error with and with-
out the volume currents is the same except for 11 detectors;
the differences at these 11 detectors, the smallest of which
is a correlation coefficient of 0.998, are based solely on fi-
nite element approximation error and increase as the dis-
tance from the center of the sphere increases because the
spherical mesh employed was only an approximation con-
taining an imperfect jagged boundary. The virtually iden-
tical results obtained with and without taking into account
the volume currents is expected because, as demonstrated in
Himaéldinen et al.?, the normal component of the magnetic
field for a sphere results from only the tangential component
of the primary current.

In contrast to calculations involving only the normal com-
ponent of the magnetic field, Figure 5 clearly indicates the
importance of volume currents in total magnetic field cal-
culations. The correlation coefficient when comparing the
magnetic fields calculated with both primary and volume
currents to the analytic solution averaged 0.991 + 0.014,
with 96% of the dipoles above 0.946. The correlation co-
efficient for the solution without volume currents averaged
0.900 =+ 0.066, with 79% of the dipoles having a correlation
coefficient less than 0.946.

The above tests demonstrate that our numeric model is
reasonably accurate and that the small inaccuracies that do
occur result from finite element approximation. Using a nu-
meric finite element method on a homogeneous, isotropic
sphere is only a test case, however; the true usefulness of this
technique becomes apparent when the method is applied to a
realistic head which incorporates varying conductivities and
for which an analytic solution is not available. The realis-
tic model reemphasizes the importance of including volume
currents in MEG calculations, as at least 61% of the detec-
tors in our model measured magnetic fields due to volume
currents that had magnitudes as large as or greater than the
magnetic fields due to primary currents, and at least 13% of
the detectors measured magnetic fields due to volume cur-
rents that were over an order of magnitude greater than the
magnetic fields due to primary currents.

Figures 6 and 7 show the importance of using return cur-
rents when calculating magnetic field strengths in realistic
head models. In Figure 6, the increase in absolute magnitude
of the calculated magnetic field occurred at detector num-
bers 42-64 which were located on the right posterior frontal
portion of the head and were closest to the dipole location.
Similarly, the increase in the absolute magnitude of the cal-
culated magnetic field at detector numbers 10-29 in Figure 7
reflect the fact that these detectors were located on the left
parietal portion of the head and were closest to the dipole
in this trial. In accord with the Biot-Savart law (4), the
positive or negative magnitude of the magnetic field at each
detector depends on the position of the detector with respect
to the dipole. Figures 6 and 7 show that, for detectors close
to the location of a dipole, the magnitude of the magnetic
field would be calculated incorrectly for both positive and
negative orientations if only the magnetic fields due to the
primary currents were included. For detectors remote from
the dipole, such as detectors numbered 19-29



Trial Number Dipole Coordinates & Location in Brain Error With Volume Currents Magnetic Field Error Without Volume Currents Magnetic Field

1 (79,177,131) — Right Posterior Frontal Smm 12mm
2 (150,150,50) — Left Parietal 3mm 62mm
3 (100,150,100) — Right Temporal Imm 8mm
4 (150,170,150) — Left Frontal 6mm 8mm
5 (100,150,100) — Right Temporal 7mm 46mm
6 (79,150,50) — Right Parietal 2mm 76mm
7 (100,220,100) — Right Precentral Gyrus 4mm 4mm
8 (100,110,50) — Right Occipital Imm 14mm
9 (142,224,112) — Left Mid Frontal 2mm 4mm
10 (70,200,112) — Right Mid Frontal Imm 4mm

* — had different orientation from previous right temporal dipole

Table 1: Dipole coordinates and position in brain, error in inverse localization calculations including the magnetic field due
to volume currents, and error in inverse localization calculations excluding the magnetic field due to volume currents

- _'\'
i

Figure 8: Dipole location calculated by inverse MEG simulation using “measured” data obtained from dipole positioned at
(79,177,131) in the right posterior frontal area



Figure 9: Dipole location calculated by inverse MEG simula-
tion using “measured” data obtained from dipole positioned
at (150,150,50) in the left parietal area, using magnetic fields
due to both primary and volume currents

in Figure 6, calculations using both the volume and primary
currents yielded a result closer to the expected near zero
field strength than do calculations using primary currents
alone. In Figure 7, detectors remote from the dipole loca-
tion, such as detector numbers 37-51, generally have positive
magnetic fields due to volume currents and negative fields
resulting from primary currents. If the volume currents were
not included in the calculation for these detectors, the total
magnetic field measured at these detectors would appear to
be negative rather than close to zero as would be expected
for detectors in the right frontal region of the brain and a
left parietal dipole.

Ten inverse simulations performed on the same “mea-
sured” data but with different starting points were per-
formed to demonstrate that our inverse model works accu-
rately and could consistently find the same solution regard-
less of the initial placement of the test dipole in the inverse
downhill simplex simulation. This fact was demonstrated
by the simulation correctly identifying the dipole position
within an average error of 4.0 = 5.1mm with 90% of the sim-
ulations localizing the dipole source to within 5mm of the
correct location and one simulation being as close as Omm.
A large error (18mm) occurred only in one trial in which
the downhill simplex method localized a result to a relative,
rather than an absolute, minimum in its calculations.

The inverse MEG simulations with dipoles at various posi-
tions within the realistic head model reemphasize the impor-
tance of including the magnetic field due to volume currents
in calculations designed for dipole source localization. 70%
of the localizations performed without using the magnetic
field due to volume currents obtained a solution inaccurate
by 7Tmm or greater, whereas 90% of the localizations per-
formed including the magnetic fields due to both the primary
and volume currents were within 6mm of the correct dipole
location. Indeed, two simulations not using volume currents
inaccurately localized the dipole to the wrong side of the
head (trials 2 and 6 in Table 1). Figures 9 and 10 further il-

Figure 10: Dipole location calculated by inverse MEG sim-
ulation using “measured” data obtained from dipole posi-
tioned at (150,150,50) in the left parietal area, using mag-
netic fields due to primary currents alone

lustrate this point by showing trial number 2 where a dipole
that should be localized to the left parietal lobe, as shown in
Figure 9 from a simulation using the magnetic fields due to
both primary and volume currents, was localized to the right
frontal lobe (Figure 10) in a simulation which did not use the
magnetic field due to volume currents. These results demon-
strate that if the magnetic field due to the volume currents
is not used in inverse simulations, dipole source localization
may be very inaccurate. The necessity for including the
magnetic field due to volume currents in inverse simulations
in our model may seem obvious since the magnetic field due
to volume currents was included in the forward simulation
“measured” data. Yet, the importance of considering vol-
ume currents in inverse simulations is not diminished just
because our model explicitly uses volume currents to cal-
culate its “measured” data; Maxwell’s equations (1,2,3) and
the Biot-Savart law (4), which are fundamental to describing
the magnetic fields emanating from a dipole in any realistic
head model, intrinsically consider the magnetic field due to
volume currents. Indeed, as these equations similarly apply
to neuronal activity in actual human brain, attempts to lo-
calize a neural dipole in a human brain from MEG data will
require the use of the magnetic field due to volume currents
in the calculations.

In homogeneous spheres, the contribution of volume cur-
rents to the magnetic field measured normal to the detectors
may be ignored, but in any other situation the volume cur-
rents cannot be disregarded. The head is not a sphere, and
the volume currents do effect the magnetic field measured
by MEG in a realistic inhomogeneous model. The inclusion
of the magnetic field due to volume currents gives more ac-
curate solutions to the forward MEG problem and helps to
more precisely localize neural sources in inverse MEG prob-
lems.



Future Work

In the near future, we plan to continue to investigate the im-
portance of using realistic finite element head models, rather
than spherical models, for forward and inverse MEG simu-
lations. We also plan to study quantitatively the effect of
various conductivity values within the head on normal com-
ponents of the magnetic field as measured by MEG, and
how these conductivities influence both forward and inverse
MEG simulations.
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