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Abstract

We present an enumerative model-checker PV that uses a new partial order reduction al-
gorithm called Twophase. This algorithm does not use the in-stack check to implement
the proviso, making the combination of Twophase with on-the-fly LTL-X model-checking
based on nested depth-first search, as well as with selective state caching very straightfor-
ward. We present a thorough evaluation of PV in terms of several criteria including states,
memory, search depth, and runtimes. Our very encouraging results, often orders of magni-
tude better, are objectively explained in this paper. We also explain the different selective
state caching methods supported by PV as well as its user interface geared towards verify-
ing cache coherence protocols for conformance against formal memory models. We offer
the source code of PV as well as our examples through our webpage.
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Abstract. We present an enumerative model-checker PV that uses a new
partial order reduction algorithm called Twophase. This algorithm does not
use the in-stack check to implement the proviso, making the combination
of Twophase with on-the-y LTL-X model-checking based on nested depth-
�rst search, as well as with selective state caching very straightforward. We
present a thorough evaluation of PV in terms of several criteria including
states, memory, search depth, and runtimes. Our very encouraging results,
often orders of magnitude better, are objectively explained in this paper. We
also explain the di�erent selective state caching methods supported by PV,
as well as its user interface geared towards verifying cache coherence pro-
tocols for conformance against formal memory models. We o�er the source
code of PV as well as our examples through our webpage.

1 Introduction

PV is an enumerative model-checker developed by our group. While similar to
SPIN1in many ways, it also di�ers in many respects, the important one being the use
of a di�erent partial order reduction algorithm in PV called Twophase [Nal98,NG01].
Twophase implements the ample set calculation and the proviso condition (that pre-
vents the ignoring problem) in a di�erent, and much simpler way. In particular,
Twophase does not use the in-stack check method to implement the proviso. This
paper presents the traditional in-stack checking based algorithm and the Twophase
algorithm, and compares them along three axes: their overall behavior, the ease
of combining with nested DFS based model-checking and selective state caching,
and empirical performance. Overall features of the PV tool are also discussed. The
results reported in this paper are briey discussed in the following paragraphs.

From our presentation of the two kinds of partial order reduction algorithms,
it will be evident that algorithms based on in-stack checking have a tendency to
leave processes hanging in their penultimate states, instead of fully resetting them
to the \top level." This tendency can contribute to state explosion. We illustrate
this phenomenon on both contrived as well as realistic examples.

? Supported by NSF Grants CCR-9987516 and CCR-0081406, and a gift from the Intel
Corporation

1 In this paper, \SPIN" refers to Version 3.4.3.



It is known that combining partial order reduction algorithms that use in-stack
checking with nested depth-�rst search used to realize on-the-y LTL-X model-
checking [CVWY90] is quite tricky [HPY96]. Many precautions are necessary to
ensure that the outer as well as inner DFS select processes for expansion in a \com-
patible manner" (see [HPY96] to know how subtle this can be). To ensure such
compatibility, some information pertaining to how processes were expanded dur-
ing the outer DFS must be conveyed to the inner DFS (typically recorded in state
vectors). We conjecture that if, on top of all this, selective state caching is to be sup-
ported, additional precautions are needed. In contrast, Twophase combines partial
order reduction and nested DFS without any such problems as in-stack checking is
simply absent. In addition, PV provides two di�erent mechanisms for selective state
caching that are extremely straightforward to argue correct, as well as implement.

In terms of empirical studies, our results on 16 widely di�erent examples (many
coming from outside sources) studied here show that PV can yield a signi�cant ad-
vantage over SPIN on most of these examples even without selective state caching
or dead variable resetting. When these optimizations are turned on, PV ends up
performing better in all cases. In the circular linked list protocol example due to
Park and Dill [PD96], PV stores 22% of the states stored by SPIN with partial order
reduction enabled and selective state caching disabled (2,243,483 versus 10,078,500
states). With selective state caching and partial order reduction but not dead vari-
able resetting, PV stores 10% of the states2(1,042,522 states). With dead variable
resetting and partial order reduction but not selective state caching, the �gures are
11.6% (1,175,491 states), and with all enabled, the �gures are 4.7% (477,570 states).
In the leader election protocol taken from [CGP00], PV stores 67% of the number
of states stored by SPIN. The maximum search depth, the number of transitions,
the amount of memory consumed, and the run times are as follows. For the circu-
lar linked list example, PV uses 1.7% of the memory used by SPIN (30M/1,757M)
and generates 0.5% of the search depth (19,745/3,561,948), and for leader election,
the �gures are 16% (62M/376M) for memory, and 46% (132/281) for depth. In the
version of the leader election protocol in the SPIN 3.4.3 distribution, SPIN stores
97 states while PV stores 106 states with partial order reduction alone, and merely
9 states with partial order reduction and a `save none' option of selective caching
discussed later. The pftp protocol in this distribution is handled by SPIN in 47,356
states while PV takes 252,531 with only partial order reduction, and 31,514 states
with all optimizations.

The original motivations for Twophase, the proof of its correctness, as well as
performance on some real-world examples have been reported in [Nal98,NG01] as
well as briey in [NG98]. This is the �rst paper that presents a comprehensive study
of PV, and points out, backed by extensive experimental data, why algorithms that
implement the proviso without in-stack checks must be studied more thoroughly
in the model-checking community and used whenever appropriate. We invite the
readers to critically examine our results, our examples, as well as the PV code3.

2 With selective state caching, not all generated states will be stored.
3 But for a hashing routine borrowed from an early version of SPIN, PV has been written
from scratch, in C, by Nalumasu. Its code has been stable over the last three years.
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PV is written in under 5K lines of C, and runs on Solaris and Linux systems. PV's
source, algorithms, and data structures have been documented and are available for
easy viewing in Hypertext format. PV as well as the examples discussed in this
paper are available from our website. We also point out new features of PV in the
area of supporting veri�cation of shared memory protocols against formal memory
model speci�cations using test model-checking [NGMG98,GMNG98], its enhanced
subset of Promela, as well as its implementation. In particular, a user interface called
XPV has been implemented by adapting the XSPIN Tcl/Tk code. The version of
XPV (called xpv01) supports an interface called MPV for shared memory system
veri�cation, currently generating test automata for Sequential Consistency, PRAM,
and read/write orderings. PV has been successfully used in a number of in-house
projects, such as the Utah Avalanche processor project [CKK96].

1.1 Overview of Twophase

Basically, PV e�ects partial order reductions only when the ample-set size is one.
In fact, Twophase follows all the conditions [GKPP95,Val96,Pel96b] necessary to
preserve the class of CTL�-X assertions. However, the implementation of Twophase
uses the on-the-y model-checking algorithm of [CVWY90], and hence handles only
LTL-X assertions. During the execution of Twophase using depth-�rst state traver-
sal, whenever a list of states s0; : : : ; sk, each having a singleton ample-set, are tra-
versed, we say that PV is executing its phase-1. During phase-1, it must be ensured
that the reduction is not being overly aggressive. That is, a cycle of phase-1 states
must not be formed such that the cycle contains a state in which some transition
� is enabled, but is never included in ample(s) for any state s on the cycle. This
is called the reduction proviso, or simply \the proviso." SPIN implements the pro-
viso via an in-stack check, as described in [CGP00, Page 155, C3

0

]. However, PV
does not implement the proviso in this manner. Instead, it accumulates s0; : : : ; sk
in an auxiliary list and checks for a revisitation into this auxiliary list4. When a
revisitation into the auxiliary list occurs, PV switches to another process, does its
phase-1, and so on till all processes have been examined for partial order reduction
possibilities. It then ends its phase-1 and (i) adds the auxiliary list into the hash
table, and (ii) does a phase-2 step where full state expansion is e�ected. There-
after, two-phase is recursively applied to every con�guration generated by phase-2.
Based on the above discussion as well as details to appear in Section 2, we point
out two important features of Twophase: (i) processes are not left hanging in their
penultimate states, but are forced to be reset to their top-level states; (ii) there
is no problem combining on-the-y model checking and partial-order reduction.
The main problem with in-stack checking based algorithms is that when the states
generated depend on the stack state, it is diÆcult to guarantee that a given state
always generates the same subgraph beneath it whether it is expanded as part of
outer DFS or an inner DFS during a nested depth-�rst search [CVWY90]. However,
thanks to the fact that the �rst phase of Twophase does not depend on the stack

4 Actually, a much cheaper way to e�ect this check is used, as elaborated later.
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state, this guarantee is trivially provided. Also, Twophase can be combined easily
with selective-caching.

Section 2 elaborates on the Twophase algorithm as well as how it is combined
with selective caching. Section 3 provides a detailed experimental study. Section 4
elaborates on the implementation details of PV and the version of Promela it sup-
ports. Section 5 provides conclusions as well as future plans.

2 The Twophase Partial Order Reduction Algorithm

2.1 Background and Related Work

In [GW92,GP93,God95], a partial order theory based on traces to preserve safety
properties is presented. This work uses a slight variation of the proviso. In [Pel96a],
a partial order reduction algorithm based on ample sets and the proviso is pre-
sented. In [HP94], an algorithm very similar to (and based on the algorithm of
[Pel96a]) is given. The algorithm in [Pel96a] is discussed in Section 2.2. In all these
algorithms, the proviso is realized using an in-stack check. Valmari [Val92,Val93]
has presented a technique based on stubborn sets to construct a reduced graph to
preserve the truth value of all stutter-free LTL formulae. The Twophase algorithm
was originally conceived [NG96] in the context of verifying real distributed shared
memory protocols used in the Avalanche processor [CKK96]. We �rst proved that
Twophase preserved stutter-free safety properties [NG97a], and later extended the
proof to LTL-X [Nal98]. In our past publications [NG97b], we have compared the
performance of PV against PO-PACKAGE [God95] on several examples and found
that PV outperforms PO-PACKAGE, since the latter is also based on the in-stack
check based implementation of the proviso.

We assume a process-oriented modeling language with each process maintaining
a set of local variables that it alone can access, global variables that every process
can access, and channels that may be tagged as explicit send (xs) or explicit receive
(xr). The set of values of local variables forms the local state of a process. For
convenience, each process is assumed to contain a distinguished local variable called
program counter. A concurrent system (\system") consists of a set of processes, a
set of global variables, and point-to-point channels of �nite capacity to facilitate
communication among the processes. The global state (\state") consists of local
states of all the processes, values of the global variables, and the contents of the
channels. S denotes the set of all possible states (\syntactic state") of the system,
obtained by taking the cartesian product of the range of all variables (local variables,
global variables, program counters, and the channels) in the system. The range of
all variables (local, global, and channels) is assumed to be �nite, hence S is also
�nite.

Each process has a program counter (\pc") which is associated with a �nite
number of transitions. A transition of a process P can read/write the local variables
of P , read/write the global variables, send a message on the channel on which it is
a sender, and/or receive a message from the channel for which it is a receiver. A
transition may not be enabled in some states (for example, a receive action on a
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channel is enabled only when the channel is nonempty). If a transition t is enabled
in a state s 2 S, then the next state is uniquely de�ned. Nondeterminism can be
simulated by having multiple transitions from a given program counter. t, t

0

are
used to indicate transitions, s 2 S to indicate a state in the system, t(s) to indicate
the state that results when t is executed from s, P to indicate a sequential process
in the system, and pc(s,P ) to indicate the program counter (control state) of P in s,
and pc(t) to indicate the program counter with which the transition t is associated.
Some more de�nitions used in this paper are as follows.

local: A transition (a statement) is said to be local if it does not involve any global
variable.

global: A transition is said to be global if it involves one or more global variables.
Two global transitions of two di�erent processes may or may not commute (as
far as the properties being veri�ed go), whereas two local transitions of two
di�erent processes always commute.

internal: A control state (program counter) of a process is said to be internal if
all the transitions associated with it are local transitions.

unconditionally safe: A local transition t is said to be unconditionally safe if, for
all states s 2 S, if t is enabled (disabled) in s 2 S, then it remains enabled
(disabled) in t

0

(s) where t
0

is any transition from another process. Note that if
t is an unconditionally safe transition, by de�nition it is also a local transition.
From this observation, it follows that executing t

0

and t in either order would
yield the same state, i.e., t and t

0

commute. This property of commutativity
forms the basis of partial order reduction.

Note that channel communication statements are not unconditionally safe: if
a transition t in process P attempts to read and the channel is empty, then
the transition is disabled; however, when a process Q writes to that channel,
t becomes enabled. Similarly, if a transition t of process P attempts to send a
message through a channel and the channel is full, then t is disabled; when a
process Q consumes a message from the channel, t becomes enabled.

conditionally safe: A conditionally safe transition t behaves like an uncondition-
ally safe transition in some of the states characterized by a safe execution con-
dition p(t) � S. More formally, a local transition t of process P is said to be
conditionally safe whenever, in state s 2 p(t), if t is enabled (disabled) in s,
then t is also enabled (disabled) in t

0

(s) where t
0

is a transition of a process
other than P . In other words, t and t

0

commute in states represented by p(t).

Channel communication primitives are conditionally safe. If t is a receive opera-
tion on channel c, then its safe execution condition is \c is not empty." Similarly,
if t is a send operation on channel c, then its safe execution condition is \c is
not full."

safe: A transition t is safe in a state s if t is an unconditionally safe transition or
t is conditionally safe whose safe execution condition is true in s, i.e., s 2 p(t).

deterministic: A process P is said to be deterministic in s, written determinis-
tic(P, s), if the control state of P in s is internal, all transitions of P from this
control state are safe, and exactly one transition of P is enabled.
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The partial order reduction algorithms such as [Val92,Pel96a,HP94,God95] use
the notion of ample set based on safe transitions. Twophase, on the other hand, uses
the notion of deterministic|singleton ample sets|to obtain reductions.

model_check()

f Vr := �; /* Hash table */

dfs_po(initial_state)

g

dfs_po(s)

f push(s,stack);

Vr := Vr + fsg;
foreach transition t in ample(s)

if t(s) 62 Vr then

dfs_po(t(s));

endif;

endforeach;

pop(stack);

g

ample(s) /* refers to stack in dfs_po() */

f for each process P do

acceptable := true;

T := all transitions t of P

such that pc(t) = pc(s,P);

foreach t in T do

if(t is global) or

(t is enabled and

(t(s) 2 stack) ) or

(t is conditionally safe

and s 62 p(t)) then

acceptable := false;

endif

endforeach;

if acceptable and T has at least one

enabled transition

return enabled transitions in T;

endif;

endforeach;

/* No acceptable subset of transitions found */

return all enabled transitions;

g

Fig. 1. In-stack checking based partial order reduction algorithm

2.2 In-stack check Based Partial Order Reduction Algorithms

Partial order reduction algorithms that implement the reduction proviso via an in-
stack check have a pseudo-code similar to that shown in Figure 1 [HP94,Pel96a].
However, in many practical protocols, the reductions are not as e�ective as they can
be. The reason can be traced to the implementation of the proviso using in-stack
checking. This is motivated using the system shown in Figure 2. Figure 2(a) shows a
system consisting of two sequential processes P1 and P2 that do not communicate at
all; i.e., �1 : : : �4 commute with �5 : : : �8. The total number of states in this system is
9. The optimal reduced graph for this system contains 5 states, shown in Figure 2(b).

Figure 2(c) shows the state graph generated by the partial order reduction al-
gorithm in Figure 1. This graph is obtained as follows. The initial state is <s0,s0>.
ample(<s0,s0>) may return either f�1; �3g or f�5; �7g. Without loss of generality, as-
sume that it returns f�1; �3g, resulting in states <s1,s0> and <s2,s0>. Again, without
loss of generality, assume that the algorithm chooses to expand <s1,s0> �rst, where
transitions f�2g of P1 and f�5; �7g of P2 are enabled. �2(<s1,s0>) = <s0,s0>, and

6



s0 s0

s1 s2 s1 s2

(s0,s0)

(s1,s0)

(s2,s0) (s0,s1)

(s0,s2)

τ1 τ3 τ5 τ7

τ2 τ4 τ6 τ8

(a) System

P1 P2

(b) Optimal Graph

(c) Search
order by
dfs_po

(s2,s0)

(s2,s1)

(s0,s1)

(s1,s1)

(s1,s0)

(s0,s0)

(s2,s2)

(s0,s2)

(s1,s2)

Fig. 2. A simple example, its optimal reduced graph,
and the reduced graph generated by dfs po

when dfs po(<s1,s0>) is called, stack=f<s0,s0>g. As a result ample(<s1,s0>) can-
not return f�2g; it returns f�5; �7g. Executing �5 from (<s1,s0>) results in <s1,s1>,
the third state in the �gure. Continuing this way, the graph shown in Figure 2(c)
is obtained.

2.3 The Twophase Algorithm

As the previous contrived example shows, the size of the reduced graph generated
by an algorithm based on in-stack checking can be quite high. We believe that
this phenomenon carries over into the models of realistic reactive systems also. For
example, in many, or even most, reactive system models, a transaction typically
involves a subset of processes. Take a server-client model of computation: a server
and a client may communicate without any interruption from other servers or clients
to complete a transaction; after the transaction is completed, the state of the system
is reset to the initial state. If the partial order reduction algorithm uses the in-
stack check, state resetting cannot be done, as the initial state will be in the stack
until the entire reachability analysis is completed. Since at least one process is
not reset, the algorithm generates unnecessary states, which then multiplies out
with the states of the remaining processes. This was illustrated by the example
in Figure 2. Figure 4 shows the performance obtained by running seven automata
similar to P1 of Figure 2 in parallel. SPINunopt corresponds to a run with dataow
optimizations, dead variable resetting, and statement merging turned o�. The only
purpose of turning o� these ags is to show the potential for state-explosion due to
the in-stack check. This point will be made again in Figure 5. The optimized SPIN
run generates 1 state in this extremely contrived example.
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model_check()

f Vr := �; /* Hash table */

Twophase(initial_state);

g

phase1(in)

f local olds, s, list;

s := in;

list := fsg;
foreach process P do

while (deterministic(s, P))

/* Let t be THE enabled

transition in P at s

*/

olds := s;

s := t(olds);

if (s 2 list)

goto NEXT_PROC;

endif

list := list + fsg; 1

endwhile;

NEXT_PROC: skip

endforeach;

return(list, s);

g

Twophase(s)

f local list;

/* Phase 1 */

(list, s) := phase1(s);

/* Phase 2: Classic DFS */

if s62Vr then

Vr := Vr + all states in list + fsg;
foreach enabled transition t do

if t(s) 62 Vr then

Twophase(t(s));

endif;

endforeach;

else

Vr := Vr + all states in list;

endif;

g

Fig. 3. The Twophase algorithm

We also ran seven instances of another process called worst.pr that simply
represents a binary fork that dead-ends, as given by the code:

active [N] proctype worst()

{ byte b = 1; if :: b = 2; :: b = 3; fi; end: 0; }

Twophase with dead variable resetting optimization turned o� will take 3N states
as evidenced by the data in our table (2187 = 37) while SPINunopt will take 2(N+1)

states as again evidenced by the data in our table. All other SPIN runs reported in
this paper are with these optimizations activated. Section 3 will demonstrate that
in realistic systems also the number of extra states generated due to the proviso can
be high.

The proposed algorithm is described in Figure 3. In the �rst phase (phase1),
Twophase executes deterministic processes resulting in a state s. In the second
phase, all enabled transitions at s are examined. Note that phase1 is more general
than the notion of coarsening actions (for example, implemented as a d_step in
SPIN). In coarsening, two or more actions of a given process are combined together
to form a larger \atomic" operation while in phase1, actions of multiple processes
are executed. Section B provides a correctness sketch of Twophase.
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Protocol File Name Tools Used States Hashing Transitions Memory Depth Time

best.pr PV (no DVR, SaveNone) 15 30 28 2.15962 1 0.06

SPIN 1 N/A 29 1.49300 0 0.06

SPINunopt 2187 N/A 9517 1.49300 1457 0.12

worst.pr PV (DVR on) 128 1794 896 2.36897 8 8

PV (DVR o�) 2187 20414 10206 2.41006 8 17

SPIN 8 N/A 15 2.54200 7 1

SPINunopt 255 N/A 255 2.54200 7 2

Fig. 4. Runs of best.pr and worst.pr

2.4 Selective caching

Under the `Save All' option of PV, every state s is added to list in the line marked
1 in phase1 (and hence also into the main hash table Vr in Twophase). This
corresponds to selective state caching being turned o�. Under the `Save Backedges'
option, not all states are added to list. The reason for maintaining list is to ensure
that the while loop terminates. This guarantee can still be provided if instead of
adding s to list unconditionally, it is added only if \s<olds," where < is any
total ordering on S. (PV uses bit-wise comparison as <.) Finally, under the `Save
None' option, phase1 simply banks on the fact that the deterministic zone of most

\typical" processes will eventually end, and adds no state at all into list at 1 . The
penalty is that there is a clear risk of looping forever in phase-1. In later sections,
we demonstrate that Save None is actually able to handle all our examples without
looping, and hence also with maximal savings.

2.5 Demonstration of the In-stack Proviso and Selective Caching

Consider the three extremely simple examples referred to as basic.pr, local.pr,
and global.pr in Figure 5. Results for these examples also appear in this �gure.
The captions used in this table are as follows. \SSC" refers to the selective state
caching method (with SaveAll indicating that SSC is turned o�). \States" refers
to the number of states stored by each tool. \Hashing" refers to the number of
calls to the hashing function. \Transitions" refers to the total number of transitions
generated in searching the graph. \Memory" refers to the total physical memory
used. \Depth" refers to the maximum DFS search depth. \Time" refers to CPU
time in seconds used for the veri�cation.

In basic.pr, SPIN takes 65,793 states to �nish the search. This is mainly be-
cause of the following reason. Both processes P and Q are eligible for execution.
However, moving one process sequentially soon causes the in-stack check to suc-
ceed, forcing a move of the other process. This repeats till all combinations of x
and y are generated, as can be con�rmed by running under SPIN and tracing the
variable values. This is clearly not needed: so long as each local variable is individu-
ally taken through all its values, all properties with respect to it can be established.
Again, not being able to \reset" one process fully seems to be the underlying reason.
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basic.pr local.pr global.pr

-------- -------- ---------

byte y; /* global var */

proctype P() proctype P() proctype P()

{ byte x; { byte x; { byte x;

do do do

:: x++ :: x++ :: x++

od } od } od }

proctype Q() proctype Q() proctype Q()

{ byte y; { byte y; {

do do do

:: y++ :: y++; :: y++;

assert(0) assert(0)

od } od } od }

init init init

{ run P(); { run P(); { run P();

run Q(); } run Q(); } run Q(); }

Protocol
File
Name Tools SSC States Hashing Transitions Memory Depth Time

basic.pr PV SaveAll 1020 1544 1538 2.27149 1 0.20

PV SaveBackEdge 1020 1544 1538 2.27149 1 0.20

PV SaveNone 1 1 418556112 2.26741 0 90-abort

SPIN N/A 65793 N/A 66053 5.93100 65792 1.46

local.pr PV SaveAll 1 1 1 2.26741 0 0.10

PV SaveBackEdge 2 2 1 2.24742 0 0.10

PV SaveNone 1 1 1 2.26741 0 0.10

SPIN N/A 258 N/A 259 2.54200 257 0.09

global.pr PV SaveAll 257 66307 66049 2.26844 256 3.50

PV SaveBackEdge 257 66307 66049 2.26844 256 2.70

PV SaveNone 1 1 250639144 2.26741 0 60-abort

SPIN N/A 514 N/A 516 2.54200 513 0.14

Fig. 5. In-stack proviso and selective caching variants illustrated
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While such sequences of purely local variable accesses do not arise in practice, our
later examples tend to show a similar behavior.

In PV, with SaveAll as well as SaveBackEdge, only 1,020 states are generated
(thus all combinations of x and y are not explored). Consider SaveAll for an expla-
nation. Twophase selects process Q for execution �rst (the implementation is such
that the last process is the �rst in the scheduler's process list). It keeps executing
the y++ of Q without ping-ponging into P until the s in list check in phase-1 of
Figure 3 succeeds. It then goes to process P, and executes P without ping-ponging
into Q. With SaveNone, PV loops as expected (we abort the run after 90 seconds).

Consider the example local.pr. In this, PV �nishes even under SaveNone, since
it runs process Q �rst, and hence catches the assertion violation. Had we changed
the textual order of the processes, P would have been run �rst, causing looping
under SaveNone.

The only di�erence between global.pr and local.pr is in that y is a global
variable in the former. global.pr works as follows. The two-phase algorithm no
longer �nds Q to have a deterministic move, as y is now global. It then moves over
to execute P in phase-1. Unfortunately, here, SaveNone gets stuck.

In summary, whenever a run with SaveNone terminates, its results are exact.
SaveBackEdge gives results close to SaveNone, and SaveAll (selective caching is
turned o�) is still far more eÆcient than SPIN's executions on our examples. All
our examples terminated under SaveNone.

3 Detailed Experimental Evaluation of PV

We have run many examples under SPIN and PV with very minor variations in the
input �le for syntactic compatibility as explained fully in Section 4. All syntactic
variations were to translate atomics into lock/unlock of PV and to change the
syntax of run statements. These di�erences do not a�ect the number of states
generated. The results appear in Figure 6 and Figure 7 (in log-scale). All the PV runs
in this table use the SaveBackEdge option with automatic dead variable resetting.
A brief explanation of each example is as follows, with the number of source lines
given in parentheses as a crude measure of size.

� client server orig.pr (105) mimics client/server interactions between two
clients and two servers, while client server3 orig.pr (188) is between three
clients and servers.

� inv.pr (520) and mig.pr (326) are directory-based cache coherence protocols
proposed for the Utah Avalanche multiprocessor [CKK96].

� rowo-1.pr (291) incorporates a highly simpli�ed model of the the HP Runway
bus, and veri�es the bus for read and write orderings by administering \clev-
erly constructed" read and write instruction sequences via a non-deterministic
automata playing the role of CPUs, as described in [NGMG98].

� Circular Linked List.pr (257) manages a one-way linked list in which cells
may add or remove themselves concurrently as described in [PD96].

� Leader Election.pr (115) is from [CGP00, Page 167].
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� All examples under Partial Store Order and Total Store Order are roughly
140 lines long and test for memory orderings for 1 or 2 addresses with respect
to operational de�nitions of these memory models.

� pftp.pr (205) was run straight from the SPIN distribution; in leader spin.pr

(89), only the run statement was changed.

All of the veri�cation runs, except where noted were run on a dual processor
250MHz Ultra Sparc II machine with 768Meg of physical memory. The Circular
Linked List speci�cation (y) required memory resources beyond that available on
our dual processor machine. This run, for both tools, was run on a four processor
450MHz Ultra Sparc machine with 4092Meg of physical memory. The SPIN model
checker �nds a bug in the protocols marked with \*" when there is actually no bug
in them. We traced this bug to SPIN's erroneous evaluation of Boolean expressions,
and these bugs are being reported. PV evaluates the protocol correctly. We report
all ag options used in these runs in Appendix A.1. In particular, SPIN was run
with statement merging, while PV does not have this feature available.

To demonstrate the e�ectiveness of the partial order reduction algorithm relative
to selective state caching and dead variable resetting, a permutation of these options
have been studied with the results shown in Figure 8.

SSC indicates the use of our selective state caching heuristic. Under SSC, \Yes"
means selective state caching with SaveBackEdge, \No" means \SaveAll", and \Un-
safe" means \SaveNone". DVR indicates the use of Dead Variable Resetting and
automatic resetting with \Yes" meaning the use of this facility and \No" meaning
otherwise. All of the veri�cation runs were performed on a dual processor 250MHz
Ultra Sparc II machine with 768Meg of physical memory. Flag options are in Sec-
tion A.2.

4 Implementation Details of PV

PV uses an extended subset of Promela. One main reason for the subsetting was
to built a functional model checker to test the e�ectiveness of Twophase, with-
out the overhead of building a model checker fully compatible with the existing
Promela de�nition. Also, we did not understand certain constructs such as atomic
and timeout as well as we had hoped for. PV supports enumerated types de�ned
using typedef enum a, b, c, d T;. In addition to never claims, invariants are
supported. Invariants are speci�ed as invariant INVARIANT NAME expression.

More speci�cally, PV does not support the following constructs: else, timeout,
synchronous channels (channels with zero size), atomic/d step, and mtype. SPIN
provides an implicit parameter pid, while PV does not. PV supports locks as
well as semaphores in lieu of atomics. While not as general as atomics, we �nd
locks as well as semaphores to be simpler as well as more suited to our domain of
examples. lock, and sema are two new data types. The di�erence is that semaphore
is the classic counting semaphore with operations lock() and unlock() (which are
sometimes referred to as P() and V() in literature). Lock, on the other hand, is
a binary semaphore with the restriction that unlock() can be done by only the
process that currently holds the lock.
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Protocol File Name Tool States Hashing Transitions Memory Depth Time

client server orig.pr (a) PV 79 222 240 2.30997 17 0.2

SPIN 76 N/A 116 2.54200 75 0.1

client server3.orig.pr (b) PV 1411 5402 6768 2.44607 162 1.1

SPIN 1947 N/A 4281 2.74700 1272 0.3

inv.pr (c) PV 27680 60470 101184 3.09183 1094 4.6

SPIN 388034 N/A 722467 52.92700 105603 23.3

mig.pr (d) PV 12054 24686 44248 2.63867 639 1.8

SPIN 24410 N/A 47676 4.38500 5858 1.6

rowo-1.pr (e) PV 2412 3870 11699 2.47784 131 0.9

SPIN 192336 N/A 278179 62.56000 11182 24.2

Circular Linked List.pr (f) y PV 477570 1723268 1487501 29.12370 19745 271.8

SPIN 10078500 N/A 22312700 1757.42700 3561948 1281.6

Leader Election.pr (g) PV 684112 6252358 7797612 62.24800 132 2460.0

SPIN 1016380 N/A 3623060 376.93100 281 714.6

Leader spin.pr (h) PV 26 29 105 2.32907 5 0.1

SPIN 91 N/A 91 2.54200 102 0.1

pftp.pr (i) PV 31964 87842 98498 4.59044 439 13.0

SPIN 47356 N/A 64970 8.58400 1923 3.6

Partial Store Order

(CMP,POS) 2 address.pr (j) PV 1037 15008 5002 2.38997 465 1.6

SPIN 2362 N/A 9576 2.64400 510 0.4

Total Store Order

(CMP,POS) 1 address.pr PV 102 656 327 2.30866 16 0.2

SPIN 106 N/A 332 2.54200 37 0.1

(CMP,POS) 2 address.pr (k) PV 1260 11468 3822 2.33658 319 1.1

SPIN 2987 N/A 9157 2.64400 261 0.2

(CMP,POS,WA) 1 address.pr PV 676 5432 1810 2.31710 50 0.5

SPIN 680 N/A 1815 2.54200 75 0.1

(CMP,POS,WA) 2 address.pr* (l) PV 23253 202958 67652 2.91780 523 16.3

SPIN 51141 N/A 154687 5.00000 645 7.3

(CMP,RO,WOS) 1 address.pr (m) PV 102 866 288 2.30866 16 0.2

SPIN 106 N/A 293 2.54200 37 0.1

(CMP,RO,WOS) 2 address.pr* (n) PV 2345 20729 6909 2.36286 435 1.4

SPIN 7577 N/A 23854 2.84900 529 1.5

Fig. 6. PV runs with SaveBackEdge and Dead Variable Resetting versus SPIN
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Protocol File Name Tool SSC DVA States Hashing Transitions Memory Depth Time

client server orig.pr PV SaveBackEdge Yes 79 222 240 2.30997 17 0.1

PV SaveBackEdge No 79 222 240 2.30997 17 0.1

PV SaveAll Yes 117 326 240 2.31115 17 0.1

PV SaveAll No 117 326 240 2.31115 17 0.1

PV SaveNone Yes 77 170 240 2.30991 17 0.1

SPIN N/A N/A 76 N/A 116 2.54200 75 0.2

client server3.orig.pr PV SaveBackEdge Yes 1411 5402 6768 2.44607 162 0.9

PV SaveBackEdge No 1411 5402 5402 2.44607 162 0.9

PV SaveAll Yes 2296 8606 6768 2.51090 162 1.5

PV SaveAll No 2296 8606 6768 2.51090 162 1.3

PV SaveNone Yes 1360 3674 6768 2.44281 162 1.2

SPIN N/A N/A 1947 N/A 4281 2.74700 1272 0.3

inv.pr PV SaveBackEdge Yes 27680 60470 101184 3.09183 1094 4.9

PV SaveBackEdge No 79912 167001 280495 4.56318 2472 13.2

PV SaveAll Yes 60736 127670 101184 4.02774 1094 8.6

PV SaveAll No 170138 354147 280495 7.11293 2472 21.8

PV SaveNone Yes 24626 52970 101184 3.00605 1094 4.1

SPIN N/A N/A 388034 N/A 722467 52.92700 105603 23.3

mig.pr PV SaveBackEdge Yes 12054 24686 44248 2.63867 639 1.9

PV SaveBackEdge No 12054 24686 44248 2.63867 639 2.2

PV SaveAll Yes 28580 55114 44248 3.10026 639 3.5

PV SaveAll No 28586 55114 44248 3.10038 639 4.0

PV SaveNone Yes 10304 21730 44248 2.59548 639 1.8

SPIN N/A N/A 24410 N/A 47676 4.38500 5858 1.6

rowo-1.pr PV SaveBackEdge Yes 2412 3870 11699 2.47784 131 0.8

PV SaveBackEdge No 6375 10180 31622 2.76256 277 2.0

PV SaveAll Yes 9760 13366 11699 3.00175 131 1.9

PV SaveAll No 24486 36014 31622 4.05224 277 6.0

PV SaveNone Yes 2352 3332 11699 2.47400 131 1.0

SPIN N/A N/A 192336 N/A 278179 62.56000 11182 24.2

Circular Linked List.pr PV SaveBackEdge Yes 477570 796740 1487501 30.88370 19745 48.3

PV SaveBackEdge No 1042522 1723268 3377565 63.05100 58302 107.2

PV SaveAll Yes 1175491 1885872 1487501 69.57070 19745 98.3

PV SaveAll No 2243483 4239200 3377565 130.00000 58302 226.0

PV SaveNone Yes 477570 796740 1487501 30.8837 19745 51.6

SPIN N/A N/A 10078500 N/A 22312700 1757.42700 3561948 1189.2

Leader Election.pr PV SaveBackEdge Yes 684112 5568246 7797612 62.24800 132 690.0

PV SaveBackEdge No 684112 5568246 7797612 62.24800 132 684.7

PV SaveAll Yes 1134651 10923792 7797612 101.41300 132 1020.2

PV SaveAll No 1134651 10923792 7797612 101.41300 132 1041.9

PV SaveNone Yes 684112 6252358 7797612 62.24800 132 675.0

SPIN N/A N/A 1016380 N/A 3623060 376.93100 281 714.6

Leader spin.pr PV SaveBackEdge Yes 26 29 105 2.32907 5 0.1

PV SaveBackEdge No 26 29 105 2.32907 5 0.1

PV SaveAll Yes 106 111 105 2.33279 5 0.1

PV SaveAll No 106 111 105 2.33279 5 0.1

PV SaveNone Yes 9 10 105 2.32826 5 0.1

SPIN N/A N/A 91 N/A 91 2.54200 108 0.1

pftp.pr PV SaveBackEdge Yes 31964 87842 98498 4.59044 439 13.0

PV SaveBackEdge No 139186 421904 487545 12.29940 643 61.3

PV SaveAll Yes 61774 129711 98498 6.70826 439 17.8

PV SaveAll No 252531 638043 487545 20.37850 643 87.7

PV SaveNone Yes 31514 62424 98498 4.55474 439 10.0

SPIN N/A N/A 47356 N/A 64970 8.58400 1923 3.6

Fig. 8. Relative E�ect of the Optimizations
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In PV, run statements may appear only within init sections. Further, init
sections can contain only run statements. To run multiple instances of a process,
we allow the iterator construct shown below:

run [i1<n1][i2<n2][i3<n3]... proc name(parameters)

For instance, the run statement used in leader spin.pr was

run[proc<N] node (q[proc], q[(proc+1)%N], (N+I-proc-1)%N+1)

Here, n1, n2, n3 are compile time evaluable constants. The parameters may in-
volve the variables i1, i2, i3, ....

PV uses cc -E to implement the C preprocessor functionality. A di�erent pre-
processor can be speci�ed via option -c, for example "-c/usr/lib/cpp". This pre-
processor must remove the comments from the �le (which all C preprocessors do by
default). PV de�nes a new pre-processors symbol UV . With this, one can write �les
that work with both PV and SPIN. Most of our experiments reported here were
performed based on common source Promela programs with di�erences customized
using the UV ag. In some cases, distinct, but only slightly di�erent, source �les
were used.

An example of simulating lock and unlock in SPIN is as follows (di�erences in
the init section can also be similarly treated):

-- declarations -- usage

#ifdef _UV_

# define LOCK lock LOCK l;

#else proctype p() {

...

/* Simulate 'lock' in SPIN */ lock(l);

# define LOCK bit unlock(l);

# define lock(x) atomic{x==0 -> x=1;} ... }

# define unlock(x) x = 0;

#endif

5 Conclusions

In this paper, we present a thorough case study of our enumerative model-checker
PV that is similar to SPIN in many ways. PV is based on our partial order reduction
algorithm called Twophase that implements the ample set calculation and the pro-
viso condition that prevents the ignoring problem without using the in-stack check
that is currently the most widely used method. By design, Twophase guarantees
that the state graph starting at a given state is the same in dfs1 and dfs2 of the
on-the-y LTL-X checking algorithm of [CVWY90]. This makes the combination
of Twophase with on-the-y model-checking as well as selective caching consider-
ably simpler in PV. PV also supports several variants of selective caching, supports
automatic dead variable resetting, and a user interface geared towards verifying
shared memory systems against formal memory models. PV accepts an enhanced
subset of Promela, is well documented through a hypertext document, has been in
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active use over the past four years, and is available along with all examples reported
here from our website. On our list of examples, PV o�ers signi�cant state, mem-
ory, runtime, and search-depth advantages over SPIN. Many more examples were
run over the past four years, and in a majority of them, PV outperformed SPIN.
We hope that these results will prompt a critical study of PV by other groups,
prompt its wider use, and lead to the incorporation of our ideas (or source code) in
other tools. One critical enhancement to be soon undertaken is support for the full
Promela language, so that we may freely run many existing SPIN benchmarks that
we cannot currently run. We also plan to add bit-state hashing as well as enhance
the user interface of PV and XPV considerably. Several new features PV are under
consideration, especially in the area of formal veri�cation of conformance to shared
memory models.
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A Flags and other Options

A.1 Basic Runs

� The ags used with PV and SPIN for various runs are as follows. To generate
the C code, we used -X -a.

� The ags used to compile each of the PV runs, with the exception of the rowo-
1.pr, speci�cation were:
-DSAVE BACK EDGE -DPOSIX SOURCE -DELIM DEAD -DALGORITHM1 -DREDUCE

-DNOFAIR.

The rowo-1.pr speci�cation required the addition of the -DSKIP XRXS ag in
both PV and SPIN, as this usage was determined using auxiliary reasoning to
be safe.

� The ags used to compile each of the SPIN runs were
- DPOSIX SOURCE -DMEMLIM=mem -DSAFETY -DNOCLAIM -DXUSAFE -DNOFAIR

where mem indicates the physical memory limit speci�ed at compile time. PV
takes this parameter at run time.

� Run time ags for SPIN and PV varied as necessary to complete the various
veri�cation run. PV's ags are as follows:
-d(maximum allowable search depth) -m(physical memory limit)M -h(hash table size)

-e1.

SPIN's ags are: -m(maximum allowable search depth) -w(hash table size) -A -c1.

� The maximum allowable search depth was adjusted up to be within the nearest
factor of 10 for each veri�cation run (this makes SPIN's memory usage statistics
quite accurate).

� The default hash table parameter setting of SPIN (19) and of PV (18) were
used.

A.2 SSE and DVR ags

The compilation ags di�ered depending upon the option desired. All of the veri�-
cations were run with the same ags, except for rowo-1.pr which also requires the
-DSKIP XRXS ag. The permutation worked out as follows:

� SSC and DVR:
-DSAVE BACK EDGE -DELIM DEAD -DPOSIX SOURCE -DALGORITHM1 -DREDUCE

-DNOFAIR

� SSC only:
-DSAVE BACK EDGE -DPOSIX SOURCE -DALGORITHM1 -DREDUCE -DNOFAIR

� DVR only:
-DSAVE ALL -DELIM DEAD -DPOSIX SOURCE -DALGORITHM1 -DREDUCE -

DNOFAIR

� Without SSC and DVR:
-DSAVE ALL -DPOSIX SOURCE -DALGORITHM1 -DREDUCE -DNOFAIR

The run time ags for the PV system are as shown above.
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B A Correctness sketch of Twophase

The term proviso is used to refer to condition �A5 of [Val96, Page 222], which, roughly
speaking, states that every action enabled in a state s of the reduced state space is
present in the stubborn set of a state s0 of the reduced state-space reachable from s.
The Twophase algorithm implements the proviso condition �A5 as follows. When it
encounters a new state x, it expands the state using only deterministic transitions
in its �rst phase (both these notions will be de�ned shortly), resulting in a state y.
Deterministic transitions, equivalent to singleton ample sets [Pel96a], are those that
can be taken at the state without e�ecting the truth of the property being veri�ed.
Then in the second phase, y is expanded completely. The need to cross-over from
the �rst-phase to the second phase can be detected using a di�erent (and much
simpler) strategy than an in-stack check.

The correctness of Twophase follows from previous results. In particular, The-
orem 6.3 of [Val96] states that if conditions �A5 and �A8 hold, the reduced and the
unreduced transition systems are branching-bisimilar. Here, condition �A5 states
that every action enabled in a state s of the reduced state space is eventually in
the stubborn set of a state s0 of the reduced state-space that is reachable from s.
This condition is easily satis�ed by Twophase: those states attained at the end of
phase1 are fully expanded in phase2 (fe in Figure 3 under Twophase records all
those states that are fully expanded). Condition �A8 states that for every state s in
the reduced state space, either its stubborn set contains all actions or there is an
internal action a such that the stubborn set of s has exactly a enabled in s and fur-
ther a is super-deterministic in s. The exact de�nition of super-determinism in the
context of [Val96] may be found in that reference; in our context, super-determinism
is what we de�ned as deterministic on Page 5. The correctness of Twophase can be
understood also in terms of the proof in [Pel96b]. A proof of correctness of Twophase
from �rst principles may be found in [Nal98].
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