
Leadership Protocol for S-Nets

Thomas C. Henderson
School of Computing

University of Utah
Salt Lake City, UT, 84112 USA

22 February 2001

Abstract

Smart Sensor Networks are collections of non-mobile devices (S-elements) which can compute, communicate and
sense the environment; they must be able to create local groups of devices (S-cliques). We propose here a protocol
to solve the leadership problem forS-Nets. We sketch the correctness of this protocol in terms of an asynchronous
network model.

1. Introduction

At one extreme, mobile robots can be provided with a wealth of on-board sensing, communication and computa-
tional resources [1, 2]; at the other extreme, robots with fewer on-board resources can perform their tasks in the
context of a large number of stationary devices distributed throughout the task environment [3]. We call the latter
approach theSmart Sensor Network, or theS-Net. We have performed simulation experiments using software (C
and Matlab), and the performance of robot tasks with and without the presence of anS-Net(i.e., a set of distributed
sensor devices) has been evaluated in terms of various measures. See [4, 5] for a more detailed account.

This approach can be exploited widely and across several scales of application; e.g., fire fighting robots. If
mobile robots are used to fight forest fires, there may be several hot spots to extinguish or control. If sensor
devices can be distributed in the environment, then their values and gradients can be used to direct the behavior of
fire fighting robots and to transport fire extinguishing materials from a depot to the closest fire source. During this
movement to and from the fire, collision avoidance algorithms can be employed. Sometimes coordinated activities
are necessary and communication models are also important.

In our previous work, we provided models for various components of the study: (1) mobile robots with on-
board sensors, (2) communication, (3) theS-Net(includes computation, sensing and communication), and (4)
the simulation environment. We have developed algorithms in the simulation environment for theS-Netwhich
perform cooperative computation and provide global information about the environment. Local and global frames
are defined and created. A method for the production of global patterns using reaction-diffusion equations has been
described and its relation to multi-robot cooperation demonstrated. In addition, we have shown how to compute
shortest paths in theS-Netusing level set techniques [7].

The results of our simulation experiments help us better understand the benefits and drawbacks of theS-Net.
We have shown that for behaviors of one mobile robot going to a temperature source, and multiple mobile robots
surrounding a temperature source, in the ideal situation (which means no noise), theS-Nettakes more time and
distance. But when noise is added in, which is more realistic, theS-Netsystem is more robust than the non-S-Net
system. For the task of multiple mobile robots going back and forth to a temperature source, there are thresholds
above which theS-Netsystem out-performs the non-S-Netsystem.

1

In this paper, we begin our conversion of the uni-processorS-Netsimulation code to embedded processor
algorithms. The set of necessary distributed algorithms includes:

• S-Cliqueformation with leader

• Coordinate frame calculation

• Gradient calculation

• Reaction-Diffusion computation

• Shortest Paths using level sets.

The first necessary algorithm is a solution to the leadership problem.
The Leadership Problem: EachS-elementhas a unique integer ID (UID) and a fixed geographic location;S-
elementshave a restricted broadcast range which defines a connectivity graph. TheS-elementsare to be grouped
into subgraphs, calledS-cliques, such that eachS-cliquehas a leader, and the leader of eachS-cliquehas the lowest
ID of all members of theS-clique.

In this paper, we describe an algorithm to solve theS-cliqueleadership problem. For a good introduction to
distributed algorithms, including solutions to variations of the leadership problem and correctness proofs, see [6].

2. Leadership Protocol

An S-netsystem will be represented as an undirected graph where each node is anS-element. The graph is undi-
rected because if oneS-elementis within range to receive communication from another, then it works both ways.
Each node can be viewed as a distinct process; in our implementation, they are Unix processes, but ultimately,
they will be distinct hardware devices.

Formal definitions can be given for the nodes, and this involves defining states, including start states, mes-
sage generating functions, and state transitions. However, only an informal description is given here. Such a
description will includebroadcast()andreceive()primitive functions with their associated messages. Abroadcast
sends a message to allS-elementswithin range. Proof methods typically involve either invariant assertions and a
demonstration that they hold, or simulations.

A simple example of a leadership algorithm is the LCR algorithm which provides a basic solution to the lead-
ership problem in a synchronous ring network; it involves each process sending its UID to its neighbors; when a
process receives an UID, it will throw it away if it is lesser than its own, resend it to its neighbors if it is larger
than its own, and declare itself the leader if it is equal to its own. Our solution is related to this idea, although not
the same.

TheS-Netleadership basic algorithm (SNL) is executed by each node, and is as follows:

Algorithm SNL:

Step 1. Broadcast own ID

Step 2. Receive from other nodes, create neighbors list

Step 3.

Create remaining nodes list (initially, neighbors)
while not done

if node’s own ID is lowest in remaining nodes list,

2

then node is leader
broadcast cliques (self and neighbors)
done

else receive broadcast list
if in list

node is not a leader
re-broadcast list
done

else remove list from remaining

Note that we assume that enough time is given to steps 1 and 2 so that each node can complete the step correctly.
This will most likely be implemented as a fixed time delay in an embedded system. Also, we assume that there
are communications protocols that are reliable enough to transmit the messages without loss of information.

3. Correctness

We outline an informal argument for the correctness of algorithmSNL. LetU = {1, 2, . . . , uidmax}. The message
alphabetM is the power set ofU , i.e.,P(U).

The state of each node includes:

• my UIDi: nodei’s unique UID (i.e.,my UIDi = i)

• broadcast: a message inM or null, initially null

• leader: a Boolean, indicating whether the node is a leader, intiallyfalse

• resolved: a Boolean, indicating whether the node has resolved as either a leader or not, initiallyfalse

Data structures used include:

• neighbors: list of S-elementneighbors, initiallynull

• remaining: list of S-elementneighbors still unresolved, initiallynull

The start state for each nodei is that initial set of values indicated above. For each node, the following messages
are possible:

• self: consists ofmy UIDi

• clique: list of UID’s that form a clique

The transition function forSNL is defined as:

% Step 1 of SNL
while (timer1 > 0)

broadcast self;
endwhile

% Step 2 of SNL
while (timer2 > 0)

3

add_to_neighbors(receive)
endwhile

remaining = neighbors;
% Step 3 of SNL
while (not resolved)

% Step 3.1
if (my_UID(i) < min(remaining))

leader = true;
resolved = true;
broadcast(my_UID(i), remaining);

endif

list = receive;
% Step 3.2
if (my_UID(i) in list)

leader = false;
resolved = true;
broadcast(list);

endif
remaining = remaining - list;

endwhile

Note that the broadcast in (3.2) has to take place so that a nodei not in the clique, but neighboring a nodej in the
clique, can know that nodej is resolved; this is necessary since the leader will not reach the non-clique nodes that
neighbor clique nodes (i.e., the broadcast from the leader node will not reach nodei).

The algorithm is supposed to achieve:

• (i) leader = true

for any node that has the lowest UID of it and its unresolved neighbors.

• (ii) leader = false

for any node that neighbors a leader.

• (iii) resolved = true

for every node.

Case (i)
Suppose that nodei has the lowest UID of it and any of its neighbors. Then when it finishes Step (2),

remaining = (neii1 UID, . . . , neiik UID)

Thus, in Step (3),
∀j my UIDi < neiij UID

Nodei then asserts itself as a leader.
Case (ii)

Suppose nodei has a neighbor which eventually asserts itself a leader, sayneiim UID. Then,

remaining = (neii1 UID, . . . , neiim UID, . . .)

4

and (3.1) is alwaysfalseas long as nodei does not assert itself as a leader. This is true becauseneiim UID will
not be removed fromremainingunless anS-elementis declared with nodeim as a member. Eventually, nodeim
will assert itself as a leader, and will broadcast a list with nodei as a member. Thus, (3.2) will be true, and nodei
will declare itself not a leader.
Case (iii)

Every node is a leader or neighbors a leader. Thus, eventually one of cases (i) or (ii) will occur, and in each
case, nodei is resolved.

4. Implementation

We have implemented this algorithm and tested it as a set of unique Unix processes that send and receive messages
through files. The receive function is written so that a limited broadcast range is respected.

As an example system, suppose that we have the following layout:

3 8
| |
| |
2---4---5---7
| |
| |
1 6

with nodes located at:

Node X-Location X-Location
1 1 1
2 1 2
3 1 3
4 2 2
5 3 2
6 4 1
7 4 2
8 4 3

We assume a broadcast range of 2.
The neighbors found for the 8-node system is described in the trace as:

Neighbors of Node 5 : 2 4 6 7 8
Neighbors of Node 3 : 2 1 2 4
Neighbors of Node 4 : 2 1 2 3 5 7
Neighbors of Node 8 : 2 5 6 7
Neighbors of Node 1 : 2 2 3 4
Neighbors of Node 6 : 2 5 7 8
Neighbors of Node 2 : 2 1 3 4 5
Neighbors of Node 7 : 2 4 5 6 8

5

The resulting leaders and cliques are described as:

Device 1 leader?: Yes
Node 4 Clique 0 : 1 2 3 4
Device 4 leader?: No
Node 3 Clique 0 : 1 2 3 4
Device 3 leader?: No
Node 2 Clique 0 : 1 2 3 4
Device 2 leader?: No
Node 5 Clique 0 : 1 2 3 4
Device 5 leader?: Yes
Node 6 Clique 0 : 5 6 7 8
Device 6 leader?: No
Node 8 Clique 0 : 5 6 7 8
Device 8 leader?: No

Thus, the correctS-cliqueswere found, and the correct leaders were determined.

5. Summary and Conclusions

We have developed a leadership protocol forS-Nets. This protocol has been demonstrated as a set of Unix pro-
cesses communicating through files.

The next set of issues include:

• Develop a formal correctness proof for the algorithm.

• Develop embedded system version of protocol.

• Develop other distributed versions of theS-Netalgorithms.

• Implement complete set ofS-devicealgorithms in physical testbed.

References

[1] Bares J E, Wettergreen D S 1999 Dante II: Technical description, results, and lessons learned.Int J Rob Res.18(7):621-
649 July

[2] Smith R, Frost A, Probert 1999 P A Sensor System for the navigation of an underwater vehicle.Int J Rob Res.18(7):697-
710 July

[3] Henderson, T C, Dekhil M, Morris S, Chen Y, Thompson W B 1998 Smart Sensor Snow.IEEE Conf IROS.Oct, pp
1377-1382

[4] Chen Y 2000 S-Nets: Smart Sensor Networks. MS Thesis, University of Utah

[5] Henderson, T C, Chen Y, 2000 Smart Sensor Networks.IEEE Conf ISER.Dec, pp 85-94

[6] Lynch N 1996Distributed Algorithms.Morgan Kaufman Pub, San Francisco

[7] Sethian J A 1999Level Set Methods and Fast Marching Methods.Cambridge University Press, Cambridge UK

6

