
Static and Dynamic Structure in Design Patterns

Eric Eide
eeide@cs.utah.edu

Alastair Reid
reid@cs.utah.edu

John Regehr
regehr@cs.utah.edu

Jay Lepreau
lepreau@cs.utah.edu

University of Utah, School of Computing
http://www.cs.utah.edu/flux/

Technical Report UUCS–01–014
November 1, 2001

ABSTRACT
Design patterns are a valuable mechanism for emphasizing struc-
ture, capturing design expertise, and facilitating restructuring of
software systems. Patterns are typically applied in the context of
an object-oriented language and are implemented so that the pat-
tern participants correspond to object instances that are created and
connected at run-time. This paper describes a complementary re-
alization of design patterns, in which the pattern participants are
statically instantiated and connected components.

Our approach separates the static parts of the software design
from the dynamic parts of the system behavior. This separation
makes the software design more amenable to analysis, enabling
more effective and domain specific detection of system design er-
rors, prediction of run-time behavior, and more effective optimiza-
tion. This technique is applicable to imperative, functional, and
object-oriented languages: we have extended C, Scheme, and Java
with our component model. In this paper, we illustrate this ap-
proach in the context of the OSKit, a collection of operating system
components written in C.

1. INTRODUCTION
Design patterns allow people to understand computer software in
terms of stylized relationships between program entities: a pat-
tern identifies the roles of the participating entities, the responsi-
bilities of each participant, and the reasons for the connections be-
tween them. Patterns are valuable during the initial development
of a system because they help software architects outline and plan
the static and dynamic structure of software before the structure is
implemented. Documented patterns are useful for subsequent sys-
tem maintenance and evolution because they help maintainers un-
derstand the software implementation in terms of well-understood,
abstract structuring concepts and goals.

The conventional approach to realizing patterns [12] primarily
uses classes and objects to implement participants and uses inher-
itance and object references to implement relationships between
participants. The parts of patterns defined using classes and in-
heritance are static and therefore easier to understand and analyze.
However, they are less flexible because their role in patterns and in
the whole system is hardwired into their implementation. In con-
trast, parts of patterns that are defined using objects and references
are more dynamic, and therefore more flexible but harder to under-

This research was supported by the Defense Advanced Research
Projects Agency and the Air Force Research Laboratory, under
agreement number F33615–00–C–1696. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation hereon.

stand and analyze.
This paper describes a complementary approach to realizing pat-

terns based on separating the static parts of a pattern from the dy-
namic parts. The static participants and relationships in a pattern
are realized by component instances and component interconnec-
tions that are set at compile- or link-time, while the dynamic partic-
ipants continue to be realized by objects and object references. Ex-
pressing static pattern relationships as component interconnections
provides more flexibility than the conventional approach while re-
taining much of the ease of understanding and analysis.

To illustrate the tradeoffs between these approaches, consider
writing a network stack consisting of aTCP layer, anIP layer, an
Ethernet layer, etc. The usual implementation strategy, used in
mainstream operating systems, is for the implementation of each
layer to directly refer to the layer above and below it except in cases
where the demand for diversity is well-understood (e.g., to support
different network interface cards). This approach commits to a par-
ticular network stack when the layers are being written, making it
hard to change decisions later (e.g., adding low-level packet filter-
ing in order to drop denial-of-service packets as early as possible).

An alternative implementation strategy is to implement the lay-
ers using theDecorator1 pattern with objects: each layer is imple-
mented by an object that invokes methods in objects directly above
and below it. The objects implementing each layer provide exactly
the same interface (e.g., methods for making and breaking connec-
tions, and for sending and receiving packets on connections) allow-
ing the designer to build a large variety of network stacks. In fact,
network stacks can be reconfigured at run-time, but that is more
flexibility than most users require.

Our design and implementation approach offers a middle ground.
Having identified the decorator pattern and having decided that the
network stack may need to be reconfigured, but not at run-time,
each decorator would be implemented as a component that imports
an interface for sending and receiving packets and exports the same
interface. The choice of network stack is then statically expressed
by connecting different sets of components together. The basis of
our approach is to permit system configuration and realization of
design patterns atcompile-and link-time (i.e., before software is
deployed) rather than atinit- andrun-time(i.e., after it is deployed).

By matching the expected need for reconfiguration against the
degree of abstraction, we achieve the following. (1) We are able to
build a range of different network stacks meeting both our current
and anticipated needs. (2) Network stacks are configured using
a separate language that hides the implementation details of each
component. This makes it possible for the system to be reconfig-

1Unless otherwise noted, the names of specific patterns refer to
those presented in Gamma et al.’sDesign Patternscatalog [12].

1

mailto:eeide@cs.utah.edu
mailto:reid@cs.utah.edu
mailto:regehr@cs.utah.edu
mailto:lepreau@cs.utah.edu
http://www.cs.utah.edu/flux/

