Static and Dynamic Structure in Design Patterns

Eric Eide Alastair Reid John Regehr Jay Lepreau
eeide@cs.utah.edu reid@cs.utah.edu regehr@cs.utah.edu lepreau@cs.utah.edu

University of Utah, School of Computing
http://lwww.cs.utah.edu/flux/

Technical Report UUCS-01-014
November 1, 2001

ABSTRACT stand and analyze.
Design patterns are a valuable mechanism for emphasizing struc- Thlzpapgr describes a coanIem_entary apfproach to r?ahzmk? péit'
ture, capturing design expertise, and facilitating restructuring of terns based on separating the static parts of a pattern from the dy-

software systems. Patterns are typically applied in the context of namic p.arts. The static partjcipants and relationships ?n a pattern
an object-oriented language and are implemented so that the pat_are realized by component instances and component interconnec-

tern participants correspond to object instances that are created an&ons that are set at compile- or link-time, while the dynamic partic-

connected at run-time. This paper describes a complementary relpants continue to be realized by objects and object references. Ex-

alization of design patterns, in which the pattern participants are pressing static pattern relationships as component interconnections
statically instantiated and connected components provides more flexibility than the conventional approach while re-

Our approach separates the static parts of the software desigrfaiNing much of the ease of understanding and analysis.

from the dynamic parts of the system behavior. This separation T9 llusirate the tradeotts pe_tween these approaches, consider
writing a network stack consisting of ecp layer, anip layer, an

makes the software design more amenable to analysis, enablingE h | Th L imol i di
more effective and domain specific detection of system design er- t _ernet ayer, etc: € usualimp emenj[atlon strategy, used in
mainstream operating systems, is for the implementation of each

rors, prediction of run-time behavior, and more effective optimiza- | i v ref hel b d below | .
tion. This technique is applicable to imperative, functional, and '2Yer to directly refer to the layer above and below it exceptin cases

object-oriented languages: we have extended C, Scheme, and Jav .here the deman.d for diversity is weI.I-understood (e.g.,' to support
with our component model. In this paper, we illustrate this ap- _|fferent network interface cards). This appro_ach co_mmlts to apar-
proach in the context of the OSKit, a collection of operating system ticular network stac!(yvhen the layers are being wiritten, mak'ng i
components written in C. _harc_i to change deC|S|or_13 later (e._g., adding low-level packet f_llter—
ing in order to drop denial-of-service packets as early as possible).
An alternative implementation strategy is to implement the lay-
1. INTRODUCTION ers using théecoratol* pattern with objects: each layer is imple-
Design patterns allow people to understand computer software in mented by an object‘that i.nVOKeS me.thOdS in objects dir_ectly above
terms of stylized relationships between program entities: a pat- and below_ it. The objects implementing ea}ch layer prow_de exactly
the same interface (e.g., methods for making and breaking connec-

tern identifies the roles of the participating entities, the responsi- i dqf di d . ket i I
bilities of each participant, and the reasons for the connections be-ONS, and for Sending and receiving packets on connec ions) allow-

tween them. Patterns are valuable during the initial development ing the designer to build a Iarg_e variety of net_work stacks. _In fact,
of a system because they help software architects outline and planget‘."g.)lr.i(st;]acks catn be reconf!gured at run-time, but that is more
the static and dynamic structure of software before the structure is eg : Idy 1an mzs_, usiers retqli_lre. h off iddl d
implemented. Documented patterns are useful for subsequent sys- urdesign and iImpiementation approach ofters a middie ground.
tem maintenance and evolution because they help maintainers un_Havmg identified the decorator pattern and having decided that the

derstand the software implementation in terms of well-understood, network stack may need_to be reconfigured, but not at rur_1-t|me,
abstract structuring concepts and goals. each decorator would be implemented as a component that imports

The conventional approach to realizing pattertd primarily an interface for sending and receiving packets and exports the same
uses classes and objects to implement participants and uses inhelj_nterface. The chome of network stack is then statically expre;sed
itance and object references to implement relationships betweenby connectlng_dlﬁerent s_ets of compon_ents t_ogether. Th_e bz_a5|s of
participants. The parts of patterns defined using classes and in-our approach is to permit system configuration and realization of

heritance are static and therefore easier to understand and analyzédjes'lgn r()jattetrrr:s ?:]omp;tllvts-anzllnk-ttllme '(|.e., gefqtrg Zoft\;varedls
However, they are less flexible because their role in patterns and in eployed) rather than aut- andrun- ime(i.e., & €eritis deploye)-
the whole system is hardwired into their implementation. In con- By matching thq expected peed for reconflguratlon against the
trast, parts of patterns that are defined using objects and referencegegree of abstraction, we achieve the following. (1) We are able to

are more dynamic, and therefore more flexible but harder to under- uild a range of different network stacks meeting both our current
' and anticipated needs. (2) Network stacks are configured using
This research was supported by the Defense Advanced Researcl separate language that hides the implementation details of each
Projects Agency and the Air Force Research Laboratory, under component. This makes it possible for the system to be reconfig-
agreement number F33615-00-C-1696. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental 'Unless otherwise noted, the names of specific patterns refer to
purposes notwithstanding any copyright annotation hereon. those presented in Gamma et al’ssign Patterngatalog [L2].

mailto:eeide@cs.utah.edu
mailto:reid@cs.utah.edu
mailto:regehr@cs.utah.edu
mailto:lepreau@cs.utah.edu
http://www.cs.utah.edu/flux/

