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Abstract must be supported by the security mechanisms of the oper-

Operating systems must be flexible in their support fo‘?ltlng system.

security policies, i.e., the operating system must provide SUPPorting flexibility in the operating system is a hard
sufficient mechanisms for supporting the wide variety oProPlem that goes beyond just the supporting of multiple
real-world security policies. Systems claiming to providd©licies. The system must be capable of supporting fine-
this support have failed to do so in two ways: they either fa@gr@inéd access controls on low-level objects used to per-
to provide sufficient control over the propagation of acces9"™m higher-level functions controlled by the security pol-
rights, or they fail to provide enforcement mechanisms t&Y- Additionally, the system must ensure that the propa-
support fine-grained control and dynamic security policiegation of access rights is in accordance with the security
In this paper we present an operating systems security arcRRIICY- Lastly, policies are not, in general, static. To cope
tecture that solves both of these problems. The first probleWjth Policy changes or dynamic policies, there must be a fa-
is solved by ensuring that the security policy (through a corfility for the revocatlon_of previously granted access rlghts.
sistent replica) is consulted for every security decision. ThEther systems that claim to support policy flexibility fail to
second problem is solved through mechanisms that are @deduately address at least one of these three areas.
rectly integrated into the service-providing components of This paper describes an operating system security archi-
the system. The architecture is described through its préecture that demonstrates the feasibility of policy flexibility.
totype implementation in the Flask microkernel-based OJ his is done by presenting its prototype implementation, the
and the policy flexibility of the prototype is evaluated. WeFlask microkernel-based OS, that successfully overcomes
present initial evidence that the architecture’s performandge hard problems of policy flexibility where other systems
impact is modest. Moreover, our architecture is applicableave failed. The cleaner separation of mechanism and pol-
to many other types of operating systems and environmen;lc.I@;y sbplecifie? ifll( thel sgcurity architectulre facilitates p0|ilfy
. exibility. Flask includes a security policy server to make

1 Introduction access control decisions and a policy-flexible enforcement

A phenomenal growth in connectivity through the Interframework in the microkernel and other object managers in
net has made computer security a paramount concern, lthe system. Although the prototype system is microkernel-
no single definition of security suffices. Different comput-based, the security mechanisms do not depend on a micro-
ing environments, and the applications that run in thenkernel architecture and will easily generalize beyond it.

have different security requirements. Because any notion The resulting system provides policy flexibility. It sup-
of security is captured in the expression of a security policyorts a wide variety of policy types. It controls the prop-
there is a need for many different policies, and even marggation of access rights by ensuring that the security pol-
types of policies [1, 45, 49]. To be generally acceptablggy, through a consistent replica, is consulted for every ac-
any computer security solution must be flexible enough tgess decision. Enforcement mechanisms directly integrated
support this wide range of security policies. This flexibilityinto the service-providing components of the system en-
This research was supported in part by the Defense Advanced R@—ble ﬂne'gramed access CpntrOIS a”‘?' dynamlc pOIICy sup-
search Projects Agency, monitored by the Department of the Army und@Ort that allows the revocation of previously granted access
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related work is described. The Flask security architecture This definition seems limiting in three areas. It allows
is then presented. This is followed by a discussion on theome operations to proceed outside of the control of the se-
design and implementation of the prototype system, incluaurity policy, places limitations on the operations available
ing an evaluation of the policy flexibility of the system. Theto be injected by the security policy, and permits some sys-
paper concludes with a section discussing the performantam state to exist beyond the scope of the security policy.
impact and what was done to mitigate it. In actuality, however, each of these apparent limitations is
in fact a desirable property since many of the internal op-
) o erations and state of any system are of no apparent use or
2 Policy Flexibility concern to any security policy. Section 7.1 will discuss how

When first attempting to define security policy flexibil-these limitations were interpreted for the Flask system.

ity, it is tempting to generate a list of all known security Security policies may be classified according to certain
policies and define flexibility through that list. This ensuregharacteristics, including such things as: the ability to re-
that the definition will reflect a real-world view of the de-Voke previously granted accesses, the type of input required
gree of flexibility. Unfortunately, this simplistic definition to make access decisions, the sensitivity of policy decisions
is unrealistic because this list cannot be generated. Re#f-the external factors, and the transitivity of access deci-
world security polices in computer systems are limited bgions [45]. Supporting policy flexibility requires that a sys-
the facilities currently provided in such systems, and it i$¢ém be capable of supporting security policies with a va-
not a|WayS clear how Security po|icies enforced in the “perfjety of these characteristics. The remainder of this section
cil and paper” world translate to computer systems, if él_OCUSGS on the most difficult of these to provide, revocation.
all [3, 49]. As such, a more useful definition is needed. An essential element of policy flexibility is that all con-

It is more useful to define security policy flexibility by trolled operations are controlled according to the current
viewing a computer system abstractly as a state machifgcurity policy, which means that there must be effective
performing atomic operations to transition from one statatomicity in the interleaving of policy changes and con-
to the next. Within such a model, a system could be consi@olled operations. A system that enforces access rights
ered to provide total security policy flexibility if the security that are not current can hardly be considered to be policy
policy can interpose atomically on any operation performefiexible, since even the simplest security policies undergo
by the system, allowing the operation to proceed, denyinghange (e.g., as user authorizations change). The funda-
the operation or even injecting operations of its own. Iinental difficulty in achieving this atomicity is ensuring that
such a system, the security policy can make its decisioff§rmissions can be revoked after they are granted.
using knowledge of the entire current system state. BecauséWhen a permission is to be revoked, it is necessary for
it is possible to interpose on all access requests, it is possite system to ensure that any service controlled by the per-
ble to modify the existing security policy and to revoke anymission will be no longer provided by the system unless
previously granted access. the permission is granted again later. Revocation can be a

This second definition more correctly captures th&ery difficult property to satisfy because permissions, once
essence of policy flexibility, but practical considerationgranted, have a tendency to migrate throughout the system.
force a slightly more limited point of view. It is unlikely The revocation mechanism must guarantee that all of these
that a real system could base security policy decisions féfigrated permissions are indeed revoked.
all possible operations on the entire current system state. In-A basic example of a migrated permission surfaces in
stead, a more reasonable expectation is that a system be adlbféx. The permission check to write to a file is done when
to control certain operations based on that portion of thinat file is opened, but the granted permission is stored in a
current system state that is relevant to that operation wifile description, and write access in that description is per-
respect to the security policy. This yields a new definitiomission to write to the file. Revoking the right to write to
of security policy flexibility which is used throughout this that file by revoking the right to open it may not have the
paper: A system is considered to provide total security potiesired effect unless the migrated permission in the file de-
icy flexibility if the security policy can interpose atomically scription can also be revoked. This type of situation is not
on any of a defined set of controlled operations, allowingncommon, and migrated permissions can be found in other
the operation to proceed, denying the operation or even iplaces throughout a system including: capabilities, access
jecting certain operations of its own. In such a system, thights in page tables, open IPC connections, and operations
security policy can make its decisions using knowledge afurrently in progress. More complicated systems are likely
a defined portion of the current system state. The degreetofyield more places to which permissions can migrate.
flexibility in a system will naturally depend upon the com- Wwhen a revocation of a permission is deemed neces-
pleteness of defined set of controlled operations. Furthesary by the security policy, the revocation mechanism must
more, the granularity of the controlled operation affects thRnow how that permission has migrated through the sys-
degree of flexibility because it impacts the granularity afem. For this to be possible, it is essential that the service
which sharing can be controlled. a permission controls be explicitly defined. For instance,



write permission to a file may control a request to openf these specific policies. And for some of the policies that
a memory-mapped file with write permission. As in thewere supported, such as confinement, the solution was so
preceding example, the important operation for revokingmiting as to be impractical [52, Ch. 7].
that permission may be the actual writing to the file rather The Hydra approach was taken even further by the
than the opening of the file. On the other hand, in a locateyKOS system [41], which introduced the concept of a
caching file system the important operation for write peffactory [21] to solve the mutual exclusion problem and the
mission may not actually be writes to the cache (as long &eySAFE [30] system which was intended to support mul-
itis private) but flushes of the cache back to the file servetilevel security. Much of the security philosophy and mech-
In most cases, revocation can be accomplished simply anisms of the KeyKOS system are being carried forward
altering a data structure. However, revocation requests imto the EROS [48] system.
volving migrated permissions associated with an operation Unfortunately, the ability of Hydra and KeyKOS to sup-
in progress are more complicated. The revocation mecRort several security policies has been interpreted as demon-
anism must be able to identify all in-progress operationstrating that capability based systems are naturally suited to
affected by such revocation requests and deal with each gfoviding policy flexibility. Indeed, capability-based sys-
them in one of three possible ways. The first is to abokems have been described as policy-flexible even though
it immediately, returning an error status. Alternatively, |tthey provide few or none of the enhancements that were
could be restarted allowing a permission check for the rgncorporated into Hydra and KeyKOS. This ignores the fact
tracted permission to be generated. The third option is i@at these mechanisms were embedded into the basic func-
just wait for it to complete on its own. In general, onlytion of the capability system of each system, and were ab-
the first two are safe. Only when the system can guaragplutely necessary for those systems to support many of the
tee that the request can complete without Causing the re\&curity po|icies that '[hey were Capab|e of Supporting_
cation request to block indefinitely (e.qg., if all appropriate Despite their popularity, capability mechanisms are

data structures have already been locked and there are Ny suited to providing policy flexibility. The basic func-

external dependencies) may the third option be taken. THig, of 4 capability mechanism is to allow the holder of a

is critical bepause blocking the revocation e.ffect.ivel)./ de”ieéapability to control the direct propagation of that capabil-
the revocation request and causes a security violation. ity, whereas a critical requirement for supporting security
As a final note, policy flexibility may not demand thatpolicies is the ability to control the propagation of access
all permissions be revocable. For instance, there may Rights in accordance with the policy. The mechanisms that
permissions that are necessary for the system to be evgi provided by Hydra and KeyKOS to support various poli-
minimally functional. cies are all intended to limit the propagation of access rights
in various ways. The resulting systems still generally only
. . satisfy the specific policies that they are designed to satisfy,
3 Insufficiency of Popular Mechanisms and at the cost of significant complexity that diminishes the
This section discusses two popular mechanisms that aiiraction of a capability model in the first place.
often employed within systems purporting to be policy- Primarily with an interest in solving the problem of
flexible, and the reasons why both are limiting to policysupporting a multilevel security policy within a capa-
flexibility in normal usage. However, each has benefits dedility based system, a few capability based systems
spite their limitations, and both can be used within Flask ife.g., SCAP [27], ICAP [19], Trusted Mach [4]) intro-
a restricted way that allows some of their benefits withouduced mechanisms that validated every propagation or use

the policy limitations. of a capability against the security policy. Kain and
Landwehr [25] developed a taxonomy to characterize such
3.1 Capability Based Systems systems. In these systems, the simplicity of the capability

The goal of a single operating system mechanism C(,j‘pad'féechanism is retained, but capabilities serve only as a least
\Brlvilege mechanism rather than a mechanism for recording

of supporting a wide range of security policies is not a ne . . . o :
goal; the Hydra operating system developed in the 1970%nd propagating the security policy. This is a potentially
' aluable use of capabilities. However, the designs for these

introduced a security model explicitly based upon the sepg- X : ) i
ration of access control mechanisms from the definition O§ystems do not define the mechanisms by which the security

a security policy [31, 52]. Hydra was a capability base(;j)olicy is queried to validate capabilities, and those mecha-

system, though the developers of the system recognized {figms are essential to providing policy flexibility. The Flask

limitations of a simple capability model and introduced Sevgrchltecture described in this paper could be employed to

eral enhancements to the basic capability mechanisms in?pwde the security decisions needed to validate the capa-

der to satisfy a specific collection of security policies. Th |I|tt|es N thesde .systenlls. tlr?' the Flask prototype, the archi-
result was that while Hydra could support several interes ecture 1S used in exactly this way.
ing security policies, there were no general mechanisms or

principles that could be invoked to support policies outside



3.2 Intercepting Requests segment descriptors. Redell and Fabry [43], Karger [26]

Another mechanism commonly used in systems claimingnd Gong [19] all describe approaches for revoking previ-
to be policy flexible is to intercept requests or to otherwis@Usly granted capabilities, though none were actually im-
interpose a layer of security code between all applicatiorideémented. Spring [50] implemented a capability revoca-
and the operating system (e.g., Kernel Hypervisors [38]i,on technique, though only the capabilities were revoked,
SPIN [20]), or between particular applications or sets ofiot migrated permissions. Revocation of memory permis-
applications (e.g., L3/L4 [32], Lava [24], KeySAFE [30]). sions is naturally provided by microkernel based systems
This may be done in capability systems or non-capability/ith external paging support, such as Mach [34], though
systems, and when applied to an operating system the ggvocation is not extended to other permissions. DTOS
curity layer may lie within the operating system itself (as irProvided the security server with the ability to remove per-
Spring [37]) or in a component outside of the operating Sygnissions previously granted and stored in the microkernel’s
tem to which all requests are redirected (as in Janus [18])Permission cache. However, except for memory permis-

There are several very attractive aspects of this approa(?ijlc.mS where Mach’s m_echams_ms could be _use;d, DTOS did
Security code is localized, making it easier to generate aftpt Provide for revocation of migrated permissions [40].
Verify_ It may even be possib'e to generate much Of the se- Wh||e the F|aSk effort iS focused on p0||Cy enforcement
curity code automatically from an interface language confhechanisms and coordination between these mechanisms
piler. By interposing across an interface, it is also possibf@nd the security policy, several recent projects consider
to change a request or the return values from a request. Be8licy-flexible tools for configuring the security policy it-

of all, this approach can be applied to existing systems witself (e.9., Adage [53], ASP [8], Dynamic DTE [17], AR-
minimal modification. BAC [42]). These projects nicely complement the Flask

But this approach also has some shortcomings that afgort by potentially providing a way to manage the mecha-
not always acknowledged. The objects that should be imsms provided by Flask.
volved in access control are often not directly accessible The Flask prototype is implemented within a
at the interface. For instance, the parameters to a requédcrokernel-based operating system with hardware-
to access a file include a directory and a path name frofiforced address space separation between processes.
that directory, while the access controls should involve afpeveral recent efforts (e.g., SPIN [5], VINO [47] and the
of the interim directories. Solutions to this problem can bdava protection models in [51]) have presented software-
cumbersome and require care to ensure that the actual §sforced process separation. The distinction is essentially
jectS being accessed are the same as the Objects to WHréﬁIeVant for the FlaSk arChiteCture. It iS essential that
the access controls are applied prior to the request beifgme form of separation between processes be provided,
forwarded. Another problem is the potential for inefficien-but the particular mechanism is not mandated by the Flask
cies, especially when the security code executes in a segéchitecture.
rate process, which is often necessary when using this ap-

proach on existing systems. . .
The biggest disadvantage of this approach is that the s%- Flask Security Architecture

curity layer can only affect the operation of the system as This section defines the components of the Flask security
requests pass through it. Hence, it is often impossible f@rchitecture and identifies the requirements on each com-
the system to reflect subsequent changes to the security gadnent necessary to meet the goals of the system. The
icy, in particular, the revocation of migrated permissions. security architecture of the Flask system is derived from
As was the case with capabilities, implementing acceddTOS [36], which had a similar goal of policy flexibility in
control within a security layer is a good approach whe@ddition to the goals of application transparency, defense-
these disadvantages can be avoided through the use of otifeflepth, ease of assurance, and minimal policy-specific
mechanisms. But it is important to recognize that othetode changes. However, while the DTOS security mecha-
mechanisms are necessary, often mechanisms that are nfdfgns were independent of any particular security policy, it

invasive, in order to provide any degree of flexibility to supPecame clear as that project progressed that the mechanisms
port dynamic security policies. were not sufficiently rich to support some policies [45], es-

pecially dynamic security policies.

The Flask security architecture is described here using
4 Related Work the language of a microkernel-based multiserver system,

This section describes the relationship between Flask affice it has been implemented in such a system. However,
some other efforts not previously mentioned in Section 3h€ security architecture only requires two properties in the
The specific issue of revocation is also not a new issue knderlying system. The first property is that the underlying
operating system design, though it has received surprisingfySt€m must provide separation between subjects and ob-
little recognition. Multics [10] effectively provided imme- JECts such that unbypassable access controls can be added
diate revocation of all memory permissions by invalidatindo mediate all accesses to those objects. The second is that



File Server h copy of certain security decisions, both explicitly in a cache
open(" foo.txt") (an object manager) used to minimize the need for security computations and
implicitly in the form of migrated permissions. Therefore
"/bin/sh" process "foo.txt" file a change to the security policy requires coordination be-
SID- Al v SD: B tween the security server and the object managers to ensure

. that their representations of the policy are consistent. Be-
Enforcement check(A, B, file_open) cause this third complication was never fully addressed by
Dedigon the DTOS project, the remainder of this section will be de-
voted to a more detailed discussion of the requirements on
Security Policy the components of the architecture during a change in secu-
Server can Alice open afile rity policy.

A="Aice" which is owned by Bob? We could state a requirement that when a policy change
B = "Bob" is triggered, the system enters into a non-interruptible state
in which no other actions can occur until the change is com-

plete and reflected in all object managers as well as the se-

managers operate only on objects with opaque SIDs. The object manag&gmty server. This would prowde the atomicity guarantee

obtains the client SID via the system’s secure subject identification faciliog Section 2 as atomicity between the request for a pol-
ties. icy change within the security server and the actual policy

change. However, we do not make such a strict interpreta-
tion, not just because it is impractical but also because it is

the system must be capable of providing secure Identmc"ﬁ‘mnecessary. A sufficient form of atomicity may be defined

tion of the subject accessing the object for use in performing . . . .
o ; : r& imposing two requirements on the system. The first re-
access decisions. Unix and safe extensible systems such as

SPIN [5] meet these requirements, while any system Witﬁuwement is that after completion of the policy change, the
: 9 N y sy ehavior of the object manager must reflect that change. No
no enforced subject/object separation does not.

: . ) ] further controlled operations requiring a revoked permis-
The basic Flask architecture is very simple. The systeq)yp, il be performed without a subsequent policy change.
consists of object managers (such as a file server and psgjicy changes require communication between the secu-
cess manager) which provide the system’s controlled op&fs, server and object managers. The security server noti-
ations and a security server which provides security deGjg each affected object manager that a policy change has
sions for a particular security policy. The object managefiggen requested, and the object manager responds when the
are responsible for enforcing the security decisions. T ange is completed. The security server cannot consider a
object managers are policy independent, and only the seqysjicy change to be completed until it is completed by all
rity server may need to be altered when a different securilitected object managers. This allows effective atomicity
policy is desired. of system-wide policy changes since the security server can
However, this very simple model begins to get comdetermine when the policy change is effective for all rele-
plicated as we consider the interactions between the tW@nt object managers.
kinds of components. One complication is that the decision This |ess stringent form of atomicity is reasonable be-

whether to allow a controlled operation is usually dependegl, se there is a second requirement imposed on the object
upon the identity of objects being accessed. Thus the seGanagers. This requirement is that object managers must
rity policy must have some knowledge about all objects IRomplete policy changes in a timely manner. It must not

the system. This is accomplished by associating a securifi hossible for the revocation request to be arbitrarily de-
identifier (SID) with every object that may be part of an acayeq hy actions of untrusted software. When this time-
cess decision. The object manager must maintain this mapyess requirement is generalized for system-wide policy
ping, while the security server defines the default SID thatishanges; it also involves two other elements of the system:
associated with an object when itis created. A second Coffe microkernel which must provide timely communication
plication is that the decision whether to allow a controlledystyeen the security server and object managers and the
operation is also usually dependent upon the identity of thehequler which must provide the object manager with CPU
client attempting to perform the operation. Since the Mizegoyrces. Interdependencies among object managers may

crokernel is the basic provider of communication servicesy\sq interfere with meeting this requirement and must be
it provides mutual identification between clients and ServelSyrefully analyzed.

through their SIDs. Both complications were similarly ad-
dressed in DTOS. These components of the architecture are

illustrated in Figure 1. 6 Flask Design and Implementation
The most difficult complication in the architecture, how-

ever, is that the object managers effectively keep a local The Flask prototype was derived from the Fluke
' ) 9 y P microkernel-based operating system [16]. Although the

Figure 1: An example request and associated security decision. Obje



Flask architecture is not limited to a microkernel-based sysnd the security context of the calling process. This SID is

tem, a microkernel-based system has certain advantagesmputed by the security server at the request of the object
from a security, assurability and flexibility perspective. Demanager, which provides the type of the object and the SIDs
spite the unresolved performance controversy of microkeof the related objects. For some security policies, such as
nels [24, 5, 47, 23, 33], these advantages warranted furtheeiseparation of duty policy [39], the security policy must

experimentation. The enforcement mechanisms of the miniquely distinguish subjects and objects of certain classes
crokernel permit many threats to be transparently addresseeen if they are created in the same security context. For
directly by the microkernel and can provide defense-insuch policies, the SID must be computed from the security
depth even in the event of a lapse of security in a servazontextand a unique identifier chosen by the security server.

The confinement of the operating system servers by the mi- There are two situations in which the security server may
crokernel limits the trust that must be placed in each COMhot be called direcﬂy to compute the SID of a new Object_

ponent of the operating system, simplifying the assuranggpjects that are local to a subject, such as newly allocated
analysis for each server. Furthermore, as composabiliffemory, are simply assigned the SID of the subject. Also,
theory [12, 44] advances, it should become possible to dg-policy-aware subject can request that a particular SID be

compose the system into modules which are independeng¥signed to a new object, though this request must still be
evaluatable. Since microkernel-based operating systems agghroved by the security server.

already designed with the philosophy of separating policy

from mechanism and permitting easy replacement of syg>  client and Server Identification
tem components, the notion of a replaceable security policy Object managers must be able to identify the SID of a

server fits well within the existing model. . . : . :
lient making a request when this SID is part of a security

In addition to the general advantages of a mlcrOkernefiecision. It is also useful for clients to be able to identify

baged operatlng system, the FIuI'<e microkernel |tsglf IS €e SID of a server to ensure that a service is requested from
pecially well-suited for implementing the Flask architectur

. %n appropriate server. However, this feature is not com-

. . S ‘Eﬂete without providing the client and server with a means
erties of its API [15]. However, the original Fluke Systemy overriding their identification. For instance, the need of

was capability based and was not in itself adequate to me ts,ubject to limit its privileges when making a request on
the requirements of the Flask architecture. Each of the f

lowi b . d ibes the ch ired b yehalf of another subject is one justification for capability
E(l)rv(\:/;:?e;l:rzectlons escribes the changes required by Bgqeq mechanisms [22]. In addition to limiting privileges,

overriding the actual identification can be used to provide
) ) anonymity in communications or to allow for transparent
6.1 Object Labeling interposition, such as through a network server connecting

All objects that are controlled by the security policy arethe client and server in a distributed system [13].
also labeled by the security policy withsecurity context ~ The Flask microkernel provides this service directly as
The interpretation of a security context is policy dependemart of IPC processing, rather than relying upon compli-
but can indicate attributes such as usernames, roles, sengited and potentially expensive external authentication pro-
tivity labels (e.g., unclassified, secret, top secret) and dafgcols such as those in Spring [50] and the Hurd [7]. The
types. The mapping between an object and its security comricrokernel provides the SID of the client to the server
text is maintained in two steps. The security server assigagong with the client’s request. The client can identify the
an integer value, theecurity identifieSID), to each secu- S|D of the server by making a kernel call on the capabil-
rity context and the object manager maintains the mapping to be used for communication. When making a request,
between each object and its SID. The SID allows all objeghe client can specify a different SID as its effective SID to
manager interactions to be independent of not just the cogverride its identification to the server. The server can also
tent but even the format of a security context, simplifyingspecify an effective SID when preparing to receive requests.
object labeling and the interfaces that coordinate the secir both cases, permission to specify a particular effective
rity policy between the security server and object managers|D is controlled by the security server.

When an object is created, it is assigned a SID that rep-
resents the security context in which the object is created.3 Requesting and Caching Security Decisions
This context typically depends upon the client requesting A typical control for an operation in Flask must deter-

the object creation and upon the environment in which {0 \yhether a subject is allowed to access a object with
is create(_i _For example, the security co_ntext of a newlgome permission or set of permissions. An object man-
created file is dependent upon the security context of t%er poses this question to the security server by provid-
directory in which it is created, and the security context Ofng the SID of the subject, the SID of the object and the
the client that requested its creation. Similarly, for@®  gq; of requested permissions. The security server responds
ecvecall, the security contgxt of the transformed process Rith a yes/no decision for each of the requested permis-
dependent upon the security context of the executable filg, 5 T4 minimize the overhead of security computations



and requests, the security server can provide more decisiareche appropriately. The only other operation that must be
than requested, and the object manager will cache these gerformed is revocation of migrated permissions, which is
cisions for future use. When a request for a security deurrently only implemented within the microkernel and will
cision is received by the security server, it will return thebe discussed in Section 6.6.

current state of the Security p0|lcy for all permissions with An alternative approach to Coordinating po“cy Chanoes

anaccess vectorAn access vector is a collection of relatedis to use revocation lists. Though our approach requires ad-

permissions for the pair of SIDs provided to the securityjitional activity by the object manager at the time of the

server. For instance, all file access permissions are groupgslicy change, it only requires a simple comparison of se-

into a single access vector. quence numbers when a policy decision is received from
An access vector does not provide simply a yes/no amhe security server, rather than a search of a revocation list.

swer for each permission, as the traditional model of an ac-

cess control matrix [29] is too limiting. There is an thirdg,5 Policy Enforcement

possible value, undecided, for each permission. This is nec-

. . ! . .~ The previous sections described the security functions
essary for policies that include any kind of dynamic confhc{hat are common to all of the Flask object managers. In this
of duty constraints. As a simple example, consider a polic

that requires that a purchase order and payment for that %{Fction, we discuss the manager-specific features that have
. ; Lo . een added to the Flask object managers. Support for revo-
der are authorized by different individuals. The policy can- ) 9 upp v

: . X " cation, however, will be discussed separately in Section 6.6.
not decide which of these operations to allow and which to P y

deny for an individual until one of the operations is explic- . .
itly requested. Because there are three possible values ﬁd?'l Microkemnel All of the state of the Flask micro-

each permission, the return from the security server actua \)((nggl 1‘I§r etﬂﬁg;nzzsr\s/iecdesm S;);eit?:r']vitﬁgzgg)typnizng;?'
contains two access vectors. Each bit indeeidedaccess : ' Y

vector indicates whether the corresponding permission hmanagement (address spaces, mappings, regions) and IPC

S ;
been decided. If so, then talowedaccess vector indicates ?ports, port sets). (The three other Flask object types are
) ' not security-relevant.) Due to the requirements of Fluke’s

whether the permission is granted or denied. i : - o X i
. , architecture, each active primitive object is associated with
Each object manager contains an access vector cache Msmall chunk of physical memory [16]. Though “memory”

plemented as a common library. An entry in the access Ve o jtself an object within the microkernel, the microker-
tor caphe contal_ns the two access vectors recewt_ad fro_m tha provides the base service for memory management and
security server, mdexgd py the two SIDs and the identity Yinds a SID to each memory segment. The SID of each
the coIIectlt_)n of permissions that the access vectors repi§ssic object is identical to the SID of the memory segment
sent (e.g., file permissions). with which it is associated. Once assigned, the SID of an
o _ object may not be changed.
6.4 Coordinating Policy Changes The microkernel provides several simple controls over
A policy change is accomplished through three stepgts services. Creating microkernel objects or reading and
The security server notifies all object managers that mayriting to their state are controlled b@reate Readand
have been previously provided any portion of the policy thagvrite permissions. Direct memory accesses are controlled
has changed. Each object manager updates its internal stai@ughRead Write and Executepermissions. To support
to reflect the change. Each object manager notifies the se@entainment of the program count&eadpermission can
rity server that the change is complete. This step is essentisd granted without simultaneously grantiEgecuteper-
to support policies that require policy changes to occur in mission. Memory permissions cannot be computed at the
particular order. For instance, permission to alter a purchagssel of any interface, and are computed instead during page
order must be removed prior to allowing the purchase ordésults. An IPC connection between two subjects is allowed
to be approved. only if three permissions are satisfied. Each subject that re-
Since messages providing policy decisions to the objeguests an effective SID must haS8pecifypermission to the
managers and messages requesting changes to the paiiigctive SID. ThenConnectpermission must be granted
may not arrive in the same order in which they are sent, ketween the effective SIDs of the two subjects. To mini-
sequence number is added to all messages from the secunitize the performance impact on an IPC, the state of a port
server to the object manager. An object manager will naeference (capability) includes a pointer to the access vec-
accept a message providing policy decisions if it is receivei@r cache entry containing the permissions to the port from
after a higher ordered message changing that portion of tHee subject that most recently accessed the reference. Of
policy. This does not require absolute sequencing of meseurse, such hints are validated before use.
sages from the security server, but only that the sequenceThe most interesting aspect of the microkernel controls
number be incremented for each policy change. considers the relationships between objects. Setting the
The general access vector cache library handles the initigtate of one microkernel object can have an indirect effect
processing of all policy change requests, and updates tas the state of another. For instance, a thread is assigned to



an address space by setting the state of the thread, but tisismportant to achieve a good balance between the compet-
has an obvious effect on the address space as well. Ratlreg groups and minimize inter-SID page replacement. Note
than requiring the subject that sets the state of the threadttmat this would not be as great a problem in a system with a
haveWrite permission to the address space, which might beore conventional, kernel-based VM manager.
too permissive, the relationship between the thread and the
address space is controlled explicitly. In the cases whee5.3 File Server The Flask file server provides four
one of the objects is essentially “owned” by another, like &pes of controlled (labeled) objects: file systems, direc-
thread and an address space (or port and port set), the mairies, files, and open file objects. Entire file systems are
crokernel verifies that the two objects have identical SIDsabeled not only to control operations such as mounting and
In the other cases, the relationship between the two objeaiamounting but to also represent the aggregate label of all
is controlled by an explicit permission. For example, theréiles within the file system. Control over open file objects
is a permission between two address spaces to control meigiseparated from control over the files themselves so that
ory mapping from one address space to another. Therefqigopagation of access to open file objects may be controlled
this operation requires two permissiondfrite permission by the policy.
to the recipient address space afiap permission between  gince most file system operations are not as conceptually
the two address spaces. simple as a read or write operation, there are a large number
of distinct permissions enforced by the file server, including
6.5.2 Virtual Memory Manager The Flask memory 24 permissions on directory operations alone. This provides
manager interface provides two high-level abstractions @he-grained access control with minimal additional perfor-
memory for use by applications. egments a contiguous mance impact since the security server can provide deci-
piece of memory, either of fixed size or growable to a maxsjons on all of these permissions when just one is requested.
imum limit. Address spaces are populated by mapping onghis does, however, complicate the low-level specification
or more segments. Aempoolis a hierarchical resource of the security policy.
control mechanism; segments and nested subpools are crep e nigue aspect of the file server is that since files are

ated in the context of a mempool and share the resourctS sistent, the label on a file must also be persistent. This

allocated to that pool. When a mempool is destroyed all 5ccomplished by storing a mapping of between each se-
contained mempools and segments are destroyed as Welliy, context used in that file system and an integer val-

The Flask Virtual Memory Manager (VMM) is a user-mode, o qhersistent Sitwithin the file system. Although the file

process that exports the memory manager interface, implgser maintains this mapping, it does not interpret the se-
menting demand-paged, virtual memory segments using téﬁrity contexts associated with the files.

mempool resource limits as a basis for page replacement . . i . .
P pag P As was noted in section 3.2, file server operations provide

decisions. . o .
a simple example of the problems with implementing secu-

The access checks controlling segments and mempogls, controls at the server's external interface. The Flask file
are straightforward. By default, mempools and segments, o1 graws its file system implementation from the OSKit

are labeled with the SID of the creating subject though ther; 4] whose exported COM interfaces are similar to the in-

are additional operations to create either with a particulqémm VFS interface [28] used by many Unix file systems.

SID. Individual permissions exist to control each exporteg a5 possible to implement the Flask security controls at
mempool and segment operation, e.g. the ability to changﬁat interface where these problems do not exist.
the size of a segment. Since mempool and segment creation

operations involve three potentially different SIDs (the SID6 54 Process Manager The Flask process manager is

of the creating subject, the SID of the parent mempool anguser-mode process which implements the POSIX process

the requested SID for the object), up to three distinct Chec‘éﬁ)straction, providing support for functions sucliak and
are performed.

o o execve These higher-level process abstractions are layered
The most significant complication posed by the Flask ag, top of Fluke processes, which consist of an address space
chitecture involves the management of physical memoryn its associated threads. The process manager provides
The kernel controls the labeling of physical memory pagegne controlled object type, the POSIX process, and binds
through segments it exports via the memory manager inte§-s|p to each POSIX process. Unlike the SID of a Fluke
face. When the VMM provides a segment with a pa”'cmabrocess, the SID of a POSIX process may change through
SID, it must call the kernel to obtain appropriately labeleg,nexecve Such SID transitions are controlled by fhen-
physical memory to resolve page faults for that segmen{jsion permission between the old and new SIDs. Default
Thus the VMM's physical memory is fragmented into manyransitions may be defined by the policy through the default
different groups of physical pages, one per active SID. Bgspject labeling mechanism described in Section 6.1. In ad-
cause moving physical memory between those groups fion to ensuring thafransitionpermission is granted, the

relatively expensive (returning memory of one SID to theprocess manager must verify that the calling process has
kernel and then allocating memory with a different SID) itExecutepermission to the executable file.



In combination with the virtual memory manager, fileresponding security context. Attribute translation and in-
server and the microkernel, the process manager is respoerpretation must take place in accordance with the policy
sible for ensuring that each POSIX process is securely inieconciliation.

tialized. The file server ensures that the memory for the The network server controls are |ayered to match the net-
executable is labeled with the SID of the file. The microwork protocol layering architecture. Hence, the abstract
kernel ensures that the process may only execute memorydgntrol over the high-level network IPC services consists of
which it hasExecuteaccess. The process manager initialg collection of controls over the abstractions at each layer.
izes the state of transformed POSIX processes, sanitizipgr example, control over the transmission of a datagram
their environment if the policy requires it. from one process to another is provided through controls
at the socket layer involving the process SID, the message
6.5.5 Network Server The Flask network server[9]isa SID and the socket SID and controls at the network layer
user-mode process that provides applications with accessiit@olving the message SID, the destination node SID and
the network through an interface based on the BSD sockgie network interface SID. Node SIDs are provided to the
system call interface. The network server draws its networnketwork server by a separate network security server, which
protocol implementation from the OSKit [14]. Many of the may query distributed databases for security attributes, and
details of the Flask network server and other servers thattwork interface security contexts may be locally config-
support it are beyond the scope of the paper. ured. Due to the need to control abstractions that are not
Abstractly, the network server ensures that every netwotksible at the server interface or the OSKit network compo-
IPC is authorized by the security policy. Of course, a netaent interface, it was infeasible to add the security controls
work server cannot independently ensure that a netwo#k these interfaces; consequently, modifications to the inter-
IPC is authorized by the policy of its node, since it doesals of the OSKit network component were necessary.
not have end-to-end control over data delivery to processes
on peer nodes. Instead, a network server must extend so81¢ Revocation of Migrated Permissions

level of trust to its peer network servers to enforce its OWn ey ocation of migrated permissions has currently been
security policy, in combination with their own security poli- jjniemented only within the Flask microkernel. Microker-
cies, over the peer processes. This requires a reconciliating) yeyocation is simplified by the fact that Fluke has a pure
of security policies, which is handled by a separate negotisierrypt-model API [15]. This is useful in two ways. First,
ation server using the ISAKMP [35] protocol. The precisg; means that the kernel provides prompt and complete ex-

form of trust and the precise level of trust extended 0 pegf,tapjjity of thread state. Second, it means that kernel op-
network servers can vary widely, and is defined within the,ions are either atomic or cleanly subdivided into user-

policy. visible atomic stages. The first property permits the kernel

The principal controlled object type for the networkrevocation mechanism to assess the kernel's state, includ-
server is the socket. The network server binds a SID to eafiy operations currently in progress. The revocation mech-
socket object. The default SID used for a socket object denism may safely wait for operations currently in progress
pends on the manner in which it is created. If it is creategh complete or restart due to the promptness guarantee. The
by a local process, then the SID of the creating process égcond property permits Flask permission checks to be en-
used as the default. If it is created as a result of a new coapsulated in the same atomic operation as the service that
nection being accepted on an existing socket, then the StRey control, thereby avoiding any occurrences of the ser-
of the existing socket is used as the default. vice after a revocation request has completed.

For socket types that maintain message boundaries (e.g.if memory permissions are being revoked, Flask locates
datagram), the network server also binds a separate SHR memory translations that map memory from a segment
to each message sent or received on a socket. For othgth the specified segment SID into an address space with
socket types, each message is implicitly associated with tiige specified address space SID, and updates the translation
SID of its sending socket. Since messages cross the boufglotection accordingly. If IP@onnecipermission is being
ary of control of the network server, and may even cross gvoked, Flask locates all threads whose IPC state corre-
policy domain boundary, the network server applies crypsponds to the specified pair of effective SIDs and breaks
tographic protections to messages in order to preserve #iir connections. If IPCSpecifypermission is being re-
security requirements of the policy and to bind the securityoked, Flask locates all threads whose IPC state corre-
attributes of the message to the message. Our prototype ngfonds to the specified real SID and the specified effective
work server uses the IPSEC [2] protocols for this purpos&|D and breaks their connections. When a connection is
with security associations [2] established by the negotiatiaroken by a revocation, it will appear as though the connec-
server. The negotiation server may not pass SIDs across tish was broken by the peer thread from the perspective of
network, since they are only local identifiers; instead, thgach of the formerly connected threads.
negotiation server must pass the actual security attributes to, e original Fluke implementation, the kernel provided

its peer, which can then establish its own SID for the corz mechanism to cancel a target thread and wait for it to en-



ter a stopped state when the kernel wished to examine ange and the target MLS range. The decision of whether
modify the thread’s state. Flask likewise stops each threamt not to grant a permission is based upon this relationship
prior to examining its IPC state during a revocation requesand the information flow characteristics of the service that
The stop operation cannot be blocked indefinitely by théhe permission controls.

thread’s activities nor by the activities of any other thread. Thetype enforcement poliogxplicitly defines an access
Since a thread must be stopped prior to examination in ofatrix on the basis of types. Unlike typical representations
der to ensure that it is in a well-defined state, the curregf type enforcement, there is no distinction between do-
Flask implementation must stop all threads when an IPRains and types in the type enforcement subpolicy of the se-
revocation is processed. Thus, the current implementatieqirity server. The policy database defines which users may
meets the completeness and timeliness requirements of ¢ associated with which types. It also defines all allowed

architecture, but is quite costly. access vector permissions for each (source type, target type)
pair. These type enforcement access rules encompass both
6.7 The Security Server the domain definition table and the domain transition table

As stated earlier, the security server is required to providd traditional type enforcement [6]. A type enforcement ac-
security policy decisions, to maintain the mapping betweef€sS decision is computed by looking up and returning the
SIDs and security contexts, to provide SIDs for newly cre@llowed permissions for the (source type, target type) pair.
ated objects, and to manage object manager access vectoFheidentity-based access control polisydefined in the
caches. In addition to the requirements listed above, mderm of constraints that are imposed on particular access
security policy servers will provide functionality for load- decisions based on the user identity attributes of the source
ing policies and changing policies. Because many operand/or target. These constraints may be imposed on all ac-
tions depend on the results of a security server decision, §i¢ss decisions for a given set of permissions or may be lim-
many cases it may be advantageous for the security servted to access decisions involving certain (source type, tar-
to provide its own caching of decisions in addition to theget type) pairs for a given set of permissions. They may
caching performed by the access vector cache in the objegtecify the relationship that must exist between the source
managers. The security server also is typically a policy etuser identity and the target user identity in order for a set
forcer over its own services. of permissions to be granted or it may specify that a set of

In the remainder of this section we describe the secilpermissions is to be granted only if the source and/or target
rity server implemented for the Flask prototype. The sgl@ve a particular user identity.
curity policy encapsulated by this security server is de- The dynamic RBAC policys defined by similar con-
fined through a combination of its code and a policystraints, but these constraints are based upon the role at-
database. Changes to the security policy that can be dxbute of the security context. The security server binds a
pressed through the existing policy database language migye attribute to each SID, which reflects the active role as-
be implemented simply by altering the policy databasesociated with the SID. The policy database defines a partial
More complex changes to the security policy may be imerder for the set of roles and a set of role-based constraints.
plemented by altering the code of the security server or bgole-based constraints are similar to identity-based con-
completely replacing the security server. straints except that role relationships are based on the par-

The Flask security server prototype implements a secfjal order. One policyTspecific inte.rface was implemented
rity policy that is a combination of four subpolicies: multi- 10 support the dynamic RBAC policy, thenangerole_set
level security (MLS) [3], type enforcement [6], identity- function, which can be used to dynamically change a user’s
based access control [45] and dynamic role-based accésghorized role set. Since the authorized role set for a user
control (RBAC) [11]. The access decisions provided by thi dynamic, the security server does not ensure that the user
security server must meet the requirements of each of the3@y be associated with the role when a SID is issued. In-
four subpolicies. The Flask security server differs fron$t€ad, it checks on each access decision where the role is
the DTOS security server in its approach to implementingglévant. If the user is not permitted to operate in the role,
MLS, its support for dynamic RBAC, and its enhanced supe€n any role-based constraint will fail, which leads to a de-
port for identity-based access control. Changing the collegial of the anstramed permissions. When arole is removed
tion of subpolicies encapsulated within the security servdfom & user's authorized role set, the security server noti-
is straightforward as long as the changes are consistent wftiS all relevant object managers of any formerly granted
the interdependencies among the subpolicies. permissions that must now be denied. The security server

The MLS policyis a form of the Bell-LaPadula (BLP) waits for all relevant object managers to notify it that the
model [3] which has been extended to support multi-leveﬁhanges have been completed and then notifies the caller of

subjects and direct subject-to-subject interactions [46]. Th%wangerole_set
policy database defines which users may be associated with

which MLS ranges. An MLS access decision is computed

by determining the relationship between the source MLS
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7 Results permission for every possible change to the priority.
This section describes the results of the effort in three This is not a weakness in the architecture itself, and the
areas: policy flexibility, performance impact, and extent oflesign could easily be changed to allow for a security deci-

code changes. sion to be represented as a function of arbitrary parameters.
However, the performance of the system would certainly be
7.1 Flexibility in the Flask Implementation impacted by such a change, because an access vector cache

supporting arbitrary parameters would be much more com-
plicated than the current cache. A better solution may be
expand the interface only for those specific operations
at require decisions based upon more complex parame-

We evaluate the policy flexibility which the system pro-
vides, based upon the description of policy flexibility in
Section 2. The mostimportant criteria discussed in that seg—
tion was “atomicity”, i.e., the ability of the system to ensure . . .
that all operations in the system are controlled with respe §'s: gnd to provide separate caching mechanisms for those
to the current security policy. Section 6.4 described the ¢ €cisions. ) . o
ordination of policy changes in Flask, and section 6.6 de- Another potential source of inflexibility in the current
scribed how the Flask microkernel provides effective atonf-12sk design stems from the assumptions encoded into the
icity for the revocation of microkernel permissions. How-OPj€ct managers with respect to object labeling. The po-
ever, the implementation of revocation of migrated permis’;e”t'al for inflexibility is greater for object types where the

sions in the other object managers has not yet been doneS!D of a new object is directly inherited from some related
gject rather than obtained from the security server. Fur-

Section 2 also identifies three other potential weaknes:s%1 ; L
P thermore, even in the case where the SID of a new object is

in policy flexibility. The first is the range of operations that i oo

thep sys)t/em can )clontrol. In an object(:;basedpsystem such %Os".“p“ted by the security SEIver, the degree of erx!blllty IS

Flask, there is generally not much confusion over the opelr'-mlted by the fagt that the Obje.Ct manager determines the
- get of related object SIDs provided as inputs to the com-

; : e utation, despite the fact that different policies may require
regarding the operations to be controlled were within th ifferent sets of related object SIDs. Finally, as with se-

network server because of differing needs at the differe CtI (it decisions. the computation of a new obiect SID is a
levels in the protocol stack. However, by generally allow% unlc%{on 01|‘ tl o éIDs N 'é)aﬁl tlhe SID of t\r,:/e cheat'n rlo—
ing the access controls to be embedded within the objeéf ' W , typically ng p

managers, Flask is able to provide more complete and ﬁn(ér?hsiZiffrll:x:Eiith of a related object, which may likewise
grained controls than systems that force all of the control8 Y-
to be at the level of external interfaces.

The second potential source of inflexibility is the Iimita—7'2 Performance
tion on the operations available to the security policy. In Inimplementing the system, our goal was to provide the
Flask, the security server has access to all interfaces pfasic mechanisms and data structures which would allow
vided by the system, but this is obviously not the same 48 fast queries of previously computed security decisions.
having access to any arbitrary operation. While a securit}his goal is primary because computation of a new security
server with complete control over the state of the objed€cision is only required when a permission is required be-
managers would clearly be more flexible, we know of ndween a new pair of SIDs or when a policy change occurs.
need for such a feature. Permissions between a new pair of SIDs are rarely required,

The third potential source of inflexibility is the amount Ofbepause mqst subjects, even if they access many d|ﬁer§ nt
state information available to the security policy for mak2PJects or different pages of memory, access objects with

ing security decisions. This is a potential weakness in tHlY @ few distinct SIDs, and new subjects are usually cre-
current Flask design because all permissions are defined4€d With @ SID of an existing subjects. The frequency of
a function of two SIDs. The description of the Flask vir-POlICy changes is obviously policy dependent, but the usual
tual memory manager in Section 6.5.2 identifies one Caﬁ%}amples of policy changes are externally driven and there-

where a permission ultimately depends upon three SIDs afff© Will be infrequent. Moreover, a performance loss in
Agsystem with frequent policy changes should not be un-

must be reduced to a collection of permissions among pai o ,
expected as it is fundamentally a new feature provided by

of SIDs. An even worse situation is if the security deci- buious| h .
sion should depend upon a parameter to a request thath§ System. Obviously, even these uncommon operations

not represented as a SID. Consider a request to change fh@uld be completed as fast as possible, but that has not
scheduling priority of a thread. Here the security policypeen a major consideration in the current implementation.
must certainly be able to make a decision based in part on\While we have provided the data structures to allow for
the requested priority. This parameter can be consider&¥pt queries of previously computed security decisions, we
within the currentimplementation by defining separate pef@ve not done any specific code optimization to speed up
missions for some classes of changes, for instance, incre#fze execution. Therefore it was particularly comforting to
ing the priority can be a different permission than decreaiﬁ.nd that the addition of these data structures alone is suffi-
ing the priority. But it is not practical to define a separaté&ient to almost completely eliminate any measurable impact
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Flask Flask

Fluke | naive client client using using | calling | calling
message sizg (uS) identification | impersonation Fluke hint cache| trivSS | realSS
“Null” 135 | +2% +9% +6% “Null” 13.5us | 13.8us | 14.4us | 43.4pus | 82.5us
16-byte 150 | +2% +4% +6% +2% +7% | +221% | +511%
128-byte 158 | +1% +2% +5%
1k-byte 219 | +2% +2% +4%
4k-byte 42.9 | +1% +1% +2% Table 2: Marginal cost of security decisions in Flask.
8k-byte 785 | +1% +5% +1%
64k-byte 503 +0% +6% +0%

for comparison.

Table 1: Performance of IPC in Flask relative to the base Fluke system. Naiveruns the same tests on the Flask microkernel. This
is the most interesting case because it represents the most
common form of IPC in the Flask system, in which mes-

of the permission checks. sages are sent using the unmodified Fluke IPC interfaces.

While a complete assessment of performance requirdsong this path there is only a singf@onnectpermission
analysis of all object managers, we limit ourselves to theheck. The results show a worst-case 29&6Q machine
microkernel, and primarily to IPC since it is a critical pathcycle) performance hit. As would be expected, the relative
which must be factored into all higher level measurementgffect of the single access check diminishes as the size of

Also, the microkernel is currently the only object managethe data transfer increases and memory copy costs become

with complete support for revocation, an important aspe¢he dominating factor.

of the security architecture. In client identification the tests have been modified to

All measurements in this section were taken using these the Flask-specific server-side IPC interface to obtain the
time-stamp counter register on a 200MHz Pentium Pro pr&ID of the client on every call. The additional Flask pro-
cessor with a 256KB L2 cache and 64MB of RAM. cessing in this case includes t@ennectpermission check

and the passing of the SID (a 32-bit integer) across the
7.2.1 Object Labeling As with other managers, all ob- server interface. The larger than expected impact in this
jects within the microkernel are identified by SIDs. When &ase is due to the fact that, in the current implementation,
kernel object is created, it is labeled with the SID of thehe client SID is passed across the interface to the server in
memory segment in which it resides. The segment SlB register normally used for data transfer. This forces an ex-
for any piece of mapped physical memory is readily availtra memory copy (particularly obvious in the Null IPC test).
able, since it is computed when a virtual-to-physical addreghe significant effect on large data transfers is unexpected
translation is created and is stored along with that transland needs to be investigated.
tion. As the address translation must be obtained at objectClient impersonatiomises the client-side IPC interface to
creation time anyway, the additional cost of labeling is minspecify an effective SID for every call. The additional Flask
imal. We verified this by measuring the cost to create thgrocessing in this case includes tBennectand Specify
simplest kernel object in both Fluke and Flask. Flask addgskrmissions and the passing of the SID parameter across
1% to the operation (3.62 versus 3 66). the client interface. For this request, the SID parameter is
not passed through a data transfer register and the perfor-

7.2.2 IPC Operations This section presents perfor- mance impact is predominately the result of the two access
mance measurements for IPC operations under variouhecks.
message sizes and also measures the impact of cachingraple 2 presents the relative costs of retrieving a secu-
within the microkernel. rity decision from the cache and from the security server.

Table 1 presents timings for a variety of client-server IP’he operation being performed is the most sensitive of the
microbenchmarks for the base Fluke microkernel and unPC operations, transfer of a “null” message from client to
der different scenarios in the Flask system. The tests meserver and back again.
sure cross-domain transfer of varying amounts of data, from The first two columns repeat data from Table 1, identify-
client to server and back again. It should be noted thatigg the relative cost of Flask when the required permission
“Null” IPC actually transfers a minimal message, 8 bytes ifjs found in the access vector cache at the location identified
the current implementation. For all of the tests performegy the hint in the port structure. The third column is the
on Flask, the required permissions are available in the agme required when the hint was incorrect but the permis-
cess vector cache at the location identified by the “hintsjon was still found in the access vector cache. This shows
within the port structure. The effect of not finding the perthat the use of the hint is significant in that it reduces the
mission through the hint is investigated below. overhead from 7% to 2%.

In Fluke, the tests use the standard Fluke IPC interfaces ThetrivSScolumn is the time required when the permis-

in a system configured with no Flask enforcement mechajon is not found in the access vector cache, and a trivial
nisms. Absolute times are shown in this column as a basis
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connections| revocation time Component | Fluke LOC | +Flask | % Incr. | #Locs. | % Locs.
1 1.55ms Kernel 9227 1758 19.0 229 2.4
2 1.56 ms FFS 21802 1342 6.2 14 .06
4 1.57ms VMM 2006 159 7.9 100 4.9
8 1.60 ms Process Mgr 851 245 28.7 80 9.4
16 1.65ms Net Server 24549 1071 4.4 224 9.1

Total 58435 4575 7.8 647 11

Table 3: Measured cost of revoking IPC connections.

Table 4: “Filtered” source code size for various Flask components and
the number of discrete locations in the base Fluke code that were mod-
security server is implemented to immediately respond bffed. This count of source code lines filters out comments, blank lines,
allowing all permissions. The result is a more than triplingfre'o'rocessc_’r directives, and punctuation-only lines, and typically 4s
; . . . 0 1/2 the size of unfiltered code. The network server count includes the
of t_he time required in the base Fluke case. The IPC Inte'fSAKMP and IPSEC distributions, counting as modifications all Flask-
action between the microkernel and security server requigpecific changes to them and the base Fluke network component.
transfer of 20 bytes of data to the security server and return-

ing 18 bytes. Since the permission for this IPC interaction, . )
is found using the hint, we see from Table 1 that over haffinc€ such measurements would be necessarily policy spe-

of the additional overhead is due to the IPC. The remaindé&ffic: However, we have measured compilation of a simple

of the overhead is due to the identification of the securit?rogram usinggec with the existing security server and

fault, construction of the security server request in the kefoUnd that Flask increased the compilation time by 13%.

nel, and the unmarshaling and marshaling of parameters IfiS iS €ncouraging since so few efforts have been made to
the security server itself. optimize the Flask changes, but it should not be accepted as

The realSScolumn is the time required when the per_mdlcatlve of performance under other security policies.

mission is not found in the access vector cache and it | .

computed by the prototype security server. The additiond3 Scalé and Invasiveness of Flask Code

overhead compared to the previous case is the time requiredn Table 4 we present data that give a rough estimate of

to compute a security decision within this security servethe scale and complexity of adding fine-grained security en-

Though no attempt has been made to optimize the sedigrcementto the base Fluke components. Overall, the Fluke
rity server computations, this result points out that the acsomponents increased in size less than 8%. Although the
cess vector cache can potentially be important regardlessksfrnel increased the most at 19%, for large object managers
whether interactions with the security server require an IPthe percentage is reassuringly small (4—-6%).

interaction.

7.2.3 Revocation Operations The possible microker- 8 Summary

nel revocation Operations are described in Section 6.6. ForThiS paper describes an Operating System security ar-
demonstration purposes we chose to evaluate the most gkitecture for supporting a wide range of security poli-
pensive of those operations, IPC revocation. For the expetires with minimal, localized changes for each policy, and
ment we established a client to server connection, and hays implementation of this architecture as part of the Flask
the server revoke the connection. We then add ianeaSiﬁﬂcrokerneLbased Operating system. The most signiﬁcant
numbers of inte_rposed threads to increase the work dofghovation in this work is the ability to support dynamic
for each revocation. policies, and in particular, policies that require total revo-

Table 3 shows the results with 1 to 16 active connectionsation of previously granted permissions. Although perfor-
The large base case is due to the need to stop all threadance evaluation of our particular prototype is incomplete,
in the system when an IPC revocation is processed, as exe have demonstrated that the architecture is practical to
plained in section 6.6. The actual cost to examine and upnplement and flexible to use. Moreover, the architecture
date the state of the affected threads is small in relation, astiould be applicable to many other operating systems.
as expected scales linearly with the number of connections.

. - ) Availability We will be making a source distribution of

7.2.4 Performance Conclusions Initial microbench- e Flask OS by the date of the conference.
mark numbers suggest that the overhead of the Flask micro-
kernel mechanisms can be made neg!lglble through the.uﬁ\%knowledgements
of the access vector cache and local hints when appropriate. ) )
They also identify the need for an access vector cache soWe especially thank Jeff Turner of RABA Technologies

computations within the security server are minimized.  ture. We thank Grant Wagner and Andy Muckelbauer for

Extensive macrobenchmarking has not been performéﬁVieWing earlier drafts of this paper, Roland McGrath for
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recent Fluke implementation, Ajay Chitturi for implement-[21]
ing the secure network server, and other members of the

Flux group for help in numerous ways.
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