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Abstract

Operating systems must be flexible in their support for
security policies, i.e., the operating system must provide
sufficient mechanisms for supporting the wide variety of
real-world security policies. Systems claiming to provide
this support have failed to do so in two ways: they either fail
to provide sufficient control over the propagation of access
rights, or they fail to provide enforcement mechanisms to
support fine-grained control and dynamic security policies.
In this paper we present an operating systems security archi-
tecture that solves both of these problems. The first problem
is solved by ensuring that the security policy (through a con-
sistent replica) is consulted for every security decision. The
second problem is solved through mechanisms that are di-
rectly integrated into the service-providing components of
the system. The architecture is described through its pro-
totype implementation in the Flask microkernel-based OS,
and the policy flexibility of the prototype is evaluated. We
present initial evidence that the architecture’s performance
impact is modest. Moreover, our architecture is applicable
to many other types of operating systems and environments.

1 Introduction

A phenomenal growth in connectivity through the Inter-
net has made computer security a paramount concern, but
no single definition of security suffices. Different comput-
ing environments, and the applications that run in them,
have different security requirements. Because any notion
of security is captured in the expression of a security policy,
there is a need for many different policies, and even many
types of policies [1, 45, 49]. To be generally acceptable,
any computer security solution must be flexible enough to
support this wide range of security policies. This flexibility
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must be supported by the security mechanisms of the oper-
ating system.

Supporting flexibility in the operating system is a hard
problem that goes beyond just the supporting of multiple
policies. The system must be capable of supporting fine-
grained access controls on low-level objects used to per-
form higher-level functions controlled by the security pol-
icy. Additionally, the system must ensure that the propa-
gation of access rights is in accordance with the security
policy. Lastly, policies are not, in general, static. To cope
with policy changes or dynamic policies, there must be a fa-
cility for the revocation of previously granted access rights.
Other systems that claim to support policy flexibility fail to
adequately address at least one of these three areas.

This paper describes an operating system security archi-
tecture that demonstrates the feasibility of policy flexibility.
This is done by presenting its prototype implementation, the
Flask microkernel-based OS, that successfully overcomes
the hard problems of policy flexibility where other systems
have failed. The cleaner separation of mechanism and pol-
icy specified in the security architecture facilitates policy
flexibility. Flask includes a security policy server to make
access control decisions and a policy-flexible enforcement
framework in the microkernel and other object managers in
the system. Although the prototype system is microkernel-
based, the security mechanisms do not depend on a micro-
kernel architecture and will easily generalize beyond it.

The resulting system provides policy flexibility. It sup-
ports a wide variety of policy types. It controls the prop-
agation of access rights by ensuring that the security pol-
icy, through a consistent replica, is consulted for every ac-
cess decision. Enforcement mechanisms directly integrated
into the service-providing components of the system en-
able fine-grained access controls and dynamic policy sup-
port that allows the revocation of previously granted access
rights. Initial performance results indicate that the impact
of policy flexible security on the system can be kept to a
minimum.

The remainder of the paper begins by elaborating on the
meaning of policy flexibility. After a discussion of why two
popular mechanisms employed in systems that purport to be
policy flexible are really limiting to policy flexibility, some



related work is described. The Flask security architecture
is then presented. This is followed by a discussion on the
design and implementation of the prototype system, includ-
ing an evaluation of the policy flexibility of the system. The
paper concludes with a section discussing the performance
impact and what was done to mitigate it.

2 Policy Flexibility

When first attempting to define security policy flexibil-
ity, it is tempting to generate a list of all known security
policies and define flexibility through that list. This ensures
that the definition will reflect a real-world view of the de-
gree of flexibility. Unfortunately, this simplistic definition
is unrealistic because this list cannot be generated. Real-
world security polices in computer systems are limited by
the facilities currently provided in such systems, and it is
not always clear how security policies enforced in the “pen-
cil and paper” world translate to computer systems, if at
all [3, 49]. As such, a more useful definition is needed.

It is more useful to define security policy flexibility by
viewing a computer system abstractly as a state machine
performing atomic operations to transition from one state
to the next. Within such a model, a system could be consid-
ered to provide total security policy flexibility if the security
policy can interpose atomically on any operation performed
by the system, allowing the operation to proceed, denying
the operation or even injecting operations of its own. In
such a system, the security policy can make its decisions
using knowledge of the entire current system state. Because
it is possible to interpose on all access requests, it is possi-
ble to modify the existing security policy and to revoke any
previously granted access.

This second definition more correctly captures the
essence of policy flexibility, but practical considerations
force a slightly more limited point of view. It is unlikely
that a real system could base security policy decisions for
all possible operations on the entire current system state. In-
stead, a more reasonable expectation is that a system be able
to control certain operations based on that portion of the
current system state that is relevant to that operation with
respect to the security policy. This yields a new definition
of security policy flexibility which is used throughout this
paper: A system is considered to provide total security pol-
icy flexibility if the security policy can interpose atomically
on any of a defined set of controlled operations, allowing
the operation to proceed, denying the operation or even in-
jecting certain operations of its own. In such a system, the
security policy can make its decisions using knowledge of
a defined portion of the current system state. The degree of
flexibility in a system will naturally depend upon the com-
pleteness of defined set of controlled operations. Further-
more, the granularity of the controlled operation affects the
degree of flexibility because it impacts the granularity at
which sharing can be controlled.

This definition seems limiting in three areas. It allows
some operations to proceed outside of the control of the se-
curity policy, places limitations on the operations available
to be injected by the security policy, and permits some sys-
tem state to exist beyond the scope of the security policy.
In actuality, however, each of these apparent limitations is
in fact a desirable property since many of the internal op-
erations and state of any system are of no apparent use or
concern to any security policy. Section 7.1 will discuss how
these limitations were interpreted for the Flask system.

Security policies may be classified according to certain
characteristics, including such things as: the ability to re-
voke previously granted accesses, the type of input required
to make access decisions, the sensitivity of policy decisions
to the external factors, and the transitivity of access deci-
sions [45]. Supporting policy flexibility requires that a sys-
tem be capable of supporting security policies with a va-
riety of these characteristics. The remainder of this section
focuses on the most difficult of these to provide, revocation.

An essential element of policy flexibility is that all con-
trolled operations are controlled according to the current
security policy, which means that there must be effective
atomicity in the interleaving of policy changes and con-
trolled operations. A system that enforces access rights
that are not current can hardly be considered to be policy
flexible, since even the simplest security policies undergo
change (e.g., as user authorizations change). The funda-
mental difficulty in achieving this atomicity is ensuring that
permissions can be revoked after they are granted.

When a permission is to be revoked, it is necessary for
the system to ensure that any service controlled by the per-
mission will be no longer provided by the system unless
the permission is granted again later. Revocation can be a
very difficult property to satisfy because permissions, once
granted, have a tendency to migrate throughout the system.
The revocation mechanism must guarantee that all of these
migrated permissions are indeed revoked.

A basic example of a migrated permission surfaces in
Unix. The permission check to write to a file is done when
that file is opened, but the granted permission is stored in a
file description, and write access in that description is per-
mission to write to the file. Revoking the right to write to
that file by revoking the right to open it may not have the
desired effect unless the migrated permission in the file de-
scription can also be revoked. This type of situation is not
uncommon, and migrated permissions can be found in other
places throughout a system including: capabilities, access
rights in page tables, open IPC connections, and operations
currently in progress. More complicated systems are likely
to yield more places to which permissions can migrate.

When a revocation of a permission is deemed neces-
sary by the security policy, the revocation mechanism must
know how that permission has migrated through the sys-
tem. For this to be possible, it is essential that the service
a permission controls be explicitly defined. For instance,
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write permission to a file may control a request to open
a memory-mapped file with write permission. As in the
preceding example, the important operation for revoking
that permission may be the actual writing to the file rather
than the opening of the file. On the other hand, in a local
caching file system the important operation for write per-
mission may not actually be writes to the cache (as long as
it is private) but flushes of the cache back to the file server.

In most cases, revocation can be accomplished simply by
altering a data structure. However, revocation requests in-
volving migrated permissions associated with an operation
in progress are more complicated. The revocation mech-
anism must be able to identify all in-progress operations
affected by such revocation requests and deal with each of
them in one of three possible ways. The first is to abort
it immediately, returning an error status. Alternatively, it
could be restarted allowing a permission check for the re-
tracted permission to be generated. The third option is to
just wait for it to complete on its own. In general, only
the first two are safe. Only when the system can guaran-
tee that the request can complete without causing the revo-
cation request to block indefinitely (e.g., if all appropriate
data structures have already been locked and there are no
external dependencies) may the third option be taken. This
is critical because blocking the revocation effectively denies
the revocation request and causes a security violation.

As a final note, policy flexibility may not demand that
all permissions be revocable. For instance, there may be
permissions that are necessary for the system to be even
minimally functional.

3 Insufficiency of Popular Mechanisms

This section discusses two popular mechanisms that are
often employed within systems purporting to be policy-
flexible, and the reasons why both are limiting to policy
flexibility in normal usage. However, each has benefits de-
spite their limitations, and both can be used within Flask in
a restricted way that allows some of their benefits without
the policy limitations.

3.1 Capability Based Systems
The goal of a single operating system mechanism capable

of supporting a wide range of security policies is not a new
goal; the Hydra operating system developed in the 1970’s
introduced a security model explicitly based upon the sepa-
ration of access control mechanisms from the definition of
a security policy [31, 52]. Hydra was a capability based
system, though the developers of the system recognized the
limitations of a simple capability model and introduced sev-
eral enhancements to the basic capability mechanisms in or-
der to satisfy a specific collection of security policies. The
result was that while Hydra could support several interest-
ing security policies, there were no general mechanisms or
principles that could be invoked to support policies outside

of these specific policies. And for some of the policies that
were supported, such as confinement, the solution was so
limiting as to be impractical [52, Ch. 7].

The Hydra approach was taken even further by the
KeyKOS system [41], which introduced the concept of a
factory [21] to solve the mutual exclusion problem and the
KeySAFE [30] system which was intended to support mul-
tilevel security. Much of the security philosophy and mech-
anisms of the KeyKOS system are being carried forward
into the EROS [48] system.

Unfortunately, the ability of Hydra and KeyKOS to sup-
port several security policies has been interpreted as demon-
strating that capability based systems are naturally suited to
providing policy flexibility. Indeed, capability-based sys-
tems have been described as policy-flexible even though
they provide few or none of the enhancements that were
incorporated into Hydra and KeyKOS. This ignores the fact
that these mechanisms were embedded into the basic func-
tion of the capability system of each system, and were ab-
solutely necessary for those systems to support many of the
security policies that they were capable of supporting.

Despite their popularity, capability mechanisms are
poorly suited to providing policy flexibility. The basic func-
tion of a capability mechanism is to allow the holder of a
capability to control the direct propagation of that capabil-
ity, whereas a critical requirement for supporting security
policies is the ability to control the propagation of access
rights in accordance with the policy. The mechanisms that
are provided by Hydra and KeyKOS to support various poli-
cies are all intended to limit the propagation of access rights
in various ways. The resulting systems still generally only
satisfy the specific policies that they are designed to satisfy,
and at the cost of significant complexity that diminishes the
attraction of a capability model in the first place.

Primarily with an interest in solving the problem of
supporting a multilevel security policy within a capa-
bility based system, a few capability based systems
(e.g., SCAP [27], ICAP [19], Trusted Mach [4]) intro-
duced mechanisms that validated every propagation or use
of a capability against the security policy. Kain and
Landwehr [25] developed a taxonomy to characterize such
systems. In these systems, the simplicity of the capability
mechanism is retained, but capabilities serve only as a least
privilege mechanism rather than a mechanism for recording
and propagating the security policy. This is a potentially
valuable use of capabilities. However, the designs for these
systems do not define the mechanisms by which the security
policy is queried to validate capabilities, and those mecha-
nisms are essential to providing policy flexibility. The Flask
architecture described in this paper could be employed to
provide the security decisions needed to validate the capa-
bilities in these systems. In the Flask prototype, the archi-
tecture is used in exactly this way.
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3.2 Intercepting Requests
Another mechanism commonly used in systems claiming

to be policy flexible is to intercept requests or to otherwise
interpose a layer of security code between all applications
and the operating system (e.g., Kernel Hypervisors [38],
SPIN [20]), or between particular applications or sets of
applications (e.g., L3/L4 [32], Lava [24], KeySAFE [30]).
This may be done in capability systems or non-capability
systems, and when applied to an operating system the se-
curity layer may lie within the operating system itself (as in
Spring [37]) or in a component outside of the operating sys-
tem to which all requests are redirected (as in Janus [18]).

There are several very attractive aspects of this approach.
Security code is localized, making it easier to generate and
verify. It may even be possible to generate much of the se-
curity code automatically from an interface language com-
piler. By interposing across an interface, it is also possible
to change a request or the return values from a request. Best
of all, this approach can be applied to existing systems with
minimal modification.

But this approach also has some shortcomings that are
not always acknowledged. The objects that should be in-
volved in access control are often not directly accessible
at the interface. For instance, the parameters to a request
to access a file include a directory and a path name from
that directory, while the access controls should involve all
of the interim directories. Solutions to this problem can be
cumbersome and require care to ensure that the actual ob-
jects being accessed are the same as the objects to which
the access controls are applied prior to the request being
forwarded. Another problem is the potential for inefficien-
cies, especially when the security code executes in a sepa-
rate process, which is often necessary when using this ap-
proach on existing systems.

The biggest disadvantage of this approach is that the se-
curity layer can only affect the operation of the system as
requests pass through it. Hence, it is often impossible for
the system to reflect subsequent changes to the security pol-
icy, in particular, the revocation of migrated permissions.

As was the case with capabilities, implementing access
control within a security layer is a good approach when
these disadvantages can be avoided through the use of other
mechanisms. But it is important to recognize that other
mechanisms are necessary, often mechanisms that are more
invasive, in order to provide any degree of flexibility to sup-
port dynamic security policies.

4 Related Work

This section describes the relationship between Flask and
some other efforts not previously mentioned in Section 3.
The specific issue of revocation is also not a new issue in
operating system design, though it has received surprisingly
little recognition. Multics [10] effectively provided imme-
diate revocation of all memory permissions by invalidating

segment descriptors. Redell and Fabry [43], Karger [26]
and Gong [19] all describe approaches for revoking previ-
ously granted capabilities, though none were actually im-
plemented. Spring [50] implemented a capability revoca-
tion technique, though only the capabilities were revoked,
not migrated permissions. Revocation of memory permis-
sions is naturally provided by microkernel based systems
with external paging support, such as Mach [34], though
revocation is not extended to other permissions. DTOS
provided the security server with the ability to remove per-
missions previously granted and stored in the microkernel’s
permission cache. However, except for memory permis-
sions where Mach’s mechanisms could be used, DTOS did
not provide for revocation of migrated permissions [40].

While the Flask effort is focused on policy enforcement
mechanisms and coordination between these mechanisms
and the security policy, several recent projects consider
policy-flexible tools for configuring the security policy it-
self (e.g., Adage [53], ASP [8], Dynamic DTE [17], AR-
BAC [42]). These projects nicely complement the Flask
effort by potentially providing a way to manage the mecha-
nisms provided by Flask.

The Flask prototype is implemented within a
microkernel-based operating system with hardware-
enforced address space separation between processes.
Several recent efforts (e.g., SPIN [5], VINO [47] and the
Java protection models in [51]) have presented software-
enforced process separation. The distinction is essentially
irrelevant for the Flask architecture. It is essential that
some form of separation between processes be provided,
but the particular mechanism is not mandated by the Flask
architecture.

5 Flask Security Architecture

This section defines the components of the Flask security
architecture and identifies the requirements on each com-
ponent necessary to meet the goals of the system. The
security architecture of the Flask system is derived from
DTOS [36], which had a similar goal of policy flexibility in
addition to the goals of application transparency, defense-
in-depth, ease of assurance, and minimal policy-specific
code changes. However, while the DTOS security mecha-
nisms were independent of any particular security policy, it
became clear as that project progressed that the mechanisms
were not sufficiently rich to support some policies [45], es-
pecially dynamic security policies.

The Flask security architecture is described here using
the language of a microkernel-based multiserver system,
since it has been implemented in such a system. However,
the security architecture only requires two properties in the
underlying system. The first property is that the underlying
system must provide separation between subjects and ob-
jects such that unbypassable access controls can be added
to mediate all accesses to those objects. The second is that
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which is owned by Bob?

(an object manager)
File Server

open("foo.txt")

SID: A

"/bin/sh" process

BSID:

"foo.txt" file

check(A, B, file_open)

Decision
Enforcement

A = "Alice"

Security Policy

B = "Bob"

       Server can Alice open a file

Figure 1:An example request and associated security decision. Object
managers operate only on objects with opaque SIDs. The object manager
obtains the client SID via the system’s secure subject identification facili-
ties.

the system must be capable of providing secure identifica-
tion of the subject accessing the object for use in performing
access decisions. Unix and safe extensible systems such as
SPIN [5] meet these requirements, while any system with
no enforced subject/object separation does not.

The basic Flask architecture is very simple. The system
consists of object managers (such as a file server and pro-
cess manager) which provide the system’s controlled oper-
ations and a security server which provides security deci-
sions for a particular security policy. The object managers
are responsible for enforcing the security decisions. The
object managers are policy independent, and only the secu-
rity server may need to be altered when a different security
policy is desired.

However, this very simple model begins to get com-
plicated as we consider the interactions between the two
kinds of components. One complication is that the decision
whether to allow a controlled operation is usually dependent
upon the identity of objects being accessed. Thus the secu-
rity policy must have some knowledge about all objects in
the system. This is accomplished by associating a security
identifier (SID) with every object that may be part of an ac-
cess decision. The object manager must maintain this map-
ping, while the security server defines the default SID that is
associated with an object when it is created. A second com-
plication is that the decision whether to allow a controlled
operation is also usually dependent upon the identity of the
client attempting to perform the operation. Since the mi-
crokernel is the basic provider of communication services,
it provides mutual identification between clients and servers
through their SIDs. Both complications were similarly ad-
dressed in DTOS. These components of the architecture are
illustrated in Figure 1.

The most difficult complication in the architecture, how-
ever, is that the object managers effectively keep a local

copy of certain security decisions, both explicitly in a cache
used to minimize the need for security computations and
implicitly in the form of migrated permissions. Therefore
a change to the security policy requires coordination be-
tween the security server and the object managers to ensure
that their representations of the policy are consistent. Be-
cause this third complication was never fully addressed by
the DTOS project, the remainder of this section will be de-
voted to a more detailed discussion of the requirements on
the components of the architecture during a change in secu-
rity policy.

We could state a requirement that when a policy change
is triggered, the system enters into a non-interruptible state
in which no other actions can occur until the change is com-
plete and reflected in all object managers as well as the se-
curity server. This would provide the atomicity guarantee
of Section 2 as atomicity between the request for a pol-
icy change within the security server and the actual policy
change. However, we do not make such a strict interpreta-
tion, not just because it is impractical but also because it is
unnecessary. A sufficient form of atomicity may be defined
by imposing two requirements on the system. The first re-
quirement is that after completion of the policy change, the
behavior of the object manager must reflect that change. No
further controlled operations requiring a revoked permis-
sion will be performed without a subsequent policy change.
Policy changes require communication between the secu-
rity server and object managers. The security server noti-
fies each affected object manager that a policy change has
been requested, and the object manager responds when the
change is completed. The security server cannot consider a
policy change to be completed until it is completed by all
affected object managers. This allows effective atomicity
of system-wide policy changes since the security server can
determine when the policy change is effective for all rele-
vant object managers.

This less stringent form of atomicity is reasonable be-
cause there is a second requirement imposed on the object
managers. This requirement is that object managers must
complete policy changes in a timely manner. It must not
be possible for the revocation request to be arbitrarily de-
layed by actions of untrusted software. When this time-
liness requirement is generalized for system-wide policy
changes, it also involves two other elements of the system:
the microkernel which must provide timely communication
between the security server and object managers and the
scheduler which must provide the object manager with CPU
resources. Interdependencies among object managers may
also interfere with meeting this requirement and must be
carefully analyzed.

6 Flask Design and Implementation

The Flask prototype was derived from the Fluke
microkernel-based operating system [16]. Although the
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Flask architecture is not limited to a microkernel-based sys-
tem, a microkernel-based system has certain advantages
from a security, assurability and flexibility perspective. De-
spite the unresolved performance controversy of microker-
nels [24, 5, 47, 23, 33], these advantages warranted further
experimentation. The enforcement mechanisms of the mi-
crokernel permit many threats to be transparently addressed
directly by the microkernel and can provide defense-in-
depth even in the event of a lapse of security in a server.
The confinement of the operating system servers by the mi-
crokernel limits the trust that must be placed in each com-
ponent of the operating system, simplifying the assurance
analysis for each server. Furthermore, as composability
theory [12, 44] advances, it should become possible to de-
compose the system into modules which are independently
evaluatable. Since microkernel-based operating systems are
already designed with the philosophy of separating policy
from mechanism and permitting easy replacement of sys-
tem components, the notion of a replaceable security policy
server fits well within the existing model.

In addition to the general advantages of a microkernel-
based operating system, the Fluke microkernel itself is es-
pecially well-suited for implementing the Flask architecture
due to the lack of global resources [16] and the atomic prop-
erties of its API [15]. However, the original Fluke system
was capability based and was not in itself adequate to meet
the requirements of the Flask architecture. Each of the fol-
lowing subsections describes the changes required by the
architecture.

6.1 Object Labeling
All objects that are controlled by the security policy are

also labeled by the security policy with asecurity context.
The interpretation of a security context is policy dependent
but can indicate attributes such as usernames, roles, sensi-
tivity labels (e.g., unclassified, secret, top secret) and data
types. The mapping between an object and its security con-
text is maintained in two steps. The security server assigns
an integer value, thesecurity identifier(SID), to each secu-
rity context and the object manager maintains the mapping
between each object and its SID. The SID allows all object
manager interactions to be independent of not just the con-
tent but even the format of a security context, simplifying
object labeling and the interfaces that coordinate the secu-
rity policy between the security server and object managers.

When an object is created, it is assigned a SID that rep-
resents the security context in which the object is created.
This context typically depends upon the client requesting
the object creation and upon the environment in which it
is created. For example, the security context of a newly
created file is dependent upon the security context of the
directory in which it is created, and the security context of
the client that requested its creation. Similarly, for anex-
ecvecall, the security context of the transformed process is
dependent upon the security context of the executable file

and the security context of the calling process. This SID is
computed by the security server at the request of the object
manager, which provides the type of the object and the SIDs
of the related objects. For some security policies, such as
a separation of duty policy [39], the security policy must
uniquely distinguish subjects and objects of certain classes
even if they are created in the same security context. For
such policies, the SID must be computed from the security
context and a unique identifier chosen by the security server.

There are two situations in which the security server may
not be called directly to compute the SID of a new object.
Objects that are local to a subject, such as newly allocated
memory, are simply assigned the SID of the subject. Also,
a policy-aware subject can request that a particular SID be
assigned to a new object, though this request must still be
approved by the security server.

6.2 Client and Server Identification
Object managers must be able to identify the SID of a

client making a request when this SID is part of a security
decision. It is also useful for clients to be able to identify
the SID of a server to ensure that a service is requested from
an appropriate server. However, this feature is not com-
plete without providing the client and server with a means
of overriding their identification. For instance, the need of
a subject to limit its privileges when making a request on
behalf of another subject is one justification for capability
based mechanisms [22]. In addition to limiting privileges,
overriding the actual identification can be used to provide
anonymity in communications or to allow for transparent
interposition, such as through a network server connecting
the client and server in a distributed system [13].

The Flask microkernel provides this service directly as
part of IPC processing, rather than relying upon compli-
cated and potentially expensive external authentication pro-
tocols such as those in Spring [50] and the Hurd [7]. The
microkernel provides the SID of the client to the server
along with the client’s request. The client can identify the
SID of the server by making a kernel call on the capabil-
ity to be used for communication. When making a request,
the client can specify a different SID as its effective SID to
override its identification to the server. The server can also
specify an effective SID when preparing to receive requests.
In both cases, permission to specify a particular effective
SID is controlled by the security server.

6.3 Requesting and Caching Security Decisions
A typical control for an operation in Flask must deter-

mine whether a subject is allowed to access a object with
some permission or set of permissions. An object man-
ager poses this question to the security server by provid-
ing the SID of the subject, the SID of the object and the
set of requested permissions. The security server responds
with a yes/no decision for each of the requested permis-
sions. To minimize the overhead of security computations
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and requests, the security server can provide more decisions
than requested, and the object manager will cache these de-
cisions for future use. When a request for a security de-
cision is received by the security server, it will return the
current state of the security policy for all permissions with
anaccess vector. An access vector is a collection of related
permissions for the pair of SIDs provided to the security
server. For instance, all file access permissions are grouped
into a single access vector.

An access vector does not provide simply a yes/no an-
swer for each permission, as the traditional model of an ac-
cess control matrix [29] is too limiting. There is an third
possible value, undecided, for each permission. This is nec-
essary for policies that include any kind of dynamic conflict
of duty constraints. As a simple example, consider a policy
that requires that a purchase order and payment for that or-
der are authorized by different individuals. The policy can-
not decide which of these operations to allow and which to
deny for an individual until one of the operations is explic-
itly requested. Because there are three possible values for
each permission, the return from the security server actually
contains two access vectors. Each bit in thedecidedaccess
vector indicates whether the corresponding permission has
been decided. If so, then theallowedaccess vector indicates
whether the permission is granted or denied.

Each object manager contains an access vector cache im-
plemented as a common library. An entry in the access vec-
tor cache contains the two access vectors received from the
security server, indexed by the two SIDs and the identity of
the collection of permissions that the access vectors repre-
sent (e.g., file permissions).

6.4 Coordinating Policy Changes
A policy change is accomplished through three steps.

The security server notifies all object managers that may
have been previously provided any portion of the policy that
has changed. Each object manager updates its internal state
to reflect the change. Each object manager notifies the secu-
rity server that the change is complete. This step is essential
to support policies that require policy changes to occur in a
particular order. For instance, permission to alter a purchase
order must be removed prior to allowing the purchase order
to be approved.

Since messages providing policy decisions to the object
managers and messages requesting changes to the policy
may not arrive in the same order in which they are sent, a
sequence number is added to all messages from the security
server to the object manager. An object manager will not
accept a message providing policy decisions if it is received
after a higher ordered message changing that portion of the
policy. This does not require absolute sequencing of mes-
sages from the security server, but only that the sequence
number be incremented for each policy change.

The general access vector cache library handles the initial
processing of all policy change requests, and updates the

cache appropriately. The only other operation that must be
performed is revocation of migrated permissions, which is
currently only implemented within the microkernel and will
be discussed in Section 6.6.

An alternative approach to coordinating policy changes
is to use revocation lists. Though our approach requires ad-
ditional activity by the object manager at the time of the
policy change, it only requires a simple comparison of se-
quence numbers when a policy decision is received from
the security server, rather than a search of a revocation list.

6.5 Policy Enforcement
The previous sections described the security functions

that are common to all of the Flask object managers. In this
section, we discuss the manager-specific features that have
been added to the Flask object managers. Support for revo-
cation, however, will be discussed separately in Section 6.6.

6.5.1 Microkernel All of the state of the Flask micro-
kernel is encompassed in six primitive object types pro-
vided for three services: execution (threads), memory
management (address spaces, mappings, regions) and IPC
(ports, port sets). (The three other Flask object types are
not security-relevant.) Due to the requirements of Fluke’s
architecture, each active primitive object is associated with
a small chunk of physical memory [16]. Though “memory”
is not itself an object within the microkernel, the microker-
nel provides the base service for memory management and
binds a SID to each memory segment. The SID of each
basic object is identical to the SID of the memory segment
with which it is associated. Once assigned, the SID of an
object may not be changed.

The microkernel provides several simple controls over
its services. Creating microkernel objects or reading and
writing to their state are controlled byCreate, Readand
Write permissions. Direct memory accesses are controlled
throughRead, Write andExecutepermissions. To support
containment of the program counter,Readpermission can
be granted without simultaneously grantingExecuteper-
mission. Memory permissions cannot be computed at the
level of any interface, and are computed instead during page
faults. An IPC connection between two subjects is allowed
only if three permissions are satisfied. Each subject that re-
quests an effective SID must haveSpecifypermission to the
effective SID. ThenConnectpermission must be granted
between the effective SIDs of the two subjects. To mini-
mize the performance impact on an IPC, the state of a port
reference (capability) includes a pointer to the access vec-
tor cache entry containing the permissions to the port from
the subject that most recently accessed the reference. Of
course, such hints are validated before use.

The most interesting aspect of the microkernel controls
considers the relationships between objects. Setting the
state of one microkernel object can have an indirect effect
on the state of another. For instance, a thread is assigned to
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an address space by setting the state of the thread, but this
has an obvious effect on the address space as well. Rather
than requiring the subject that sets the state of the thread to
haveWritepermission to the address space, which might be
too permissive, the relationship between the thread and the
address space is controlled explicitly. In the cases where
one of the objects is essentially “owned” by another, like a
thread and an address space (or port and port set), the mi-
crokernel verifies that the two objects have identical SIDs.
In the other cases, the relationship between the two objects
is controlled by an explicit permission. For example, there
is a permission between two address spaces to control mem-
ory mapping from one address space to another. Therefore
this operation requires two permissions:Write permission
to the recipient address space andMappermission between
the two address spaces.

6.5.2 Virtual Memory Manager The Flask memory
manager interface provides two high-level abstractions of
memory for use by applications. Asegmentis a contiguous
piece of memory, either of fixed size or growable to a max-
imum limit. Address spaces are populated by mapping one
or more segments. Amempoolis a hierarchical resource
control mechanism; segments and nested subpools are cre-
ated in the context of a mempool and share the resources
allocated to that pool. When a mempool is destroyed all
contained mempools and segments are destroyed as well.
The Flask Virtual Memory Manager (VMM) is a user-mode
process that exports the memory manager interface, imple-
menting demand-paged, virtual memory segments using the
mempool resource limits as a basis for page replacement
decisions.

The access checks controlling segments and mempools
are straightforward. By default, mempools and segments
are labeled with the SID of the creating subject though there
are additional operations to create either with a particular
SID. Individual permissions exist to control each exported
mempool and segment operation, e.g. the ability to change
the size of a segment. Since mempool and segment creation
operations involve three potentially different SIDs (the SID
of the creating subject, the SID of the parent mempool and
the requested SID for the object), up to three distinct checks
are performed.

The most significant complication posed by the Flask ar-
chitecture involves the management of physical memory.
The kernel controls the labeling of physical memory pages
through segments it exports via the memory manager inter-
face. When the VMM provides a segment with a particular
SID, it must call the kernel to obtain appropriately labeled
physical memory to resolve page faults for that segment.
Thus the VMM’s physical memory is fragmented into many
different groups of physical pages, one per active SID. Be-
cause moving physical memory between those groups is
relatively expensive (returning memory of one SID to the
kernel and then allocating memory with a different SID) it

is important to achieve a good balance between the compet-
ing groups and minimize inter-SID page replacement. Note
that this would not be as great a problem in a system with a
more conventional, kernel-based VM manager.

6.5.3 File Server The Flask file server provides four
types of controlled (labeled) objects: file systems, direc-
tories, files, and open file objects. Entire file systems are
labeled not only to control operations such as mounting and
unmounting but to also represent the aggregate label of all
files within the file system. Control over open file objects
is separated from control over the files themselves so that
propagation of access to open file objects may be controlled
by the policy.

Since most file system operations are not as conceptually
simple as a read or write operation, there are a large number
of distinct permissions enforced by the file server, including
24 permissions on directory operations alone. This provides
fine-grained access control with minimal additional perfor-
mance impact since the security server can provide deci-
sions on all of these permissions when just one is requested.
This does, however, complicate the low-level specification
of the security policy.

One unique aspect of the file server is that since files are
persistent, the label on a file must also be persistent. This
is accomplished by storing a mapping of between each se-
curity context used in that file system and an integer val-
uedpersistent SIDwithin the file system. Although the file
server maintains this mapping, it does not interpret the se-
curity contexts associated with the files.

As was noted in section 3.2, file server operations provide
a simple example of the problems with implementing secu-
rity controls at the server’s external interface. The Flask file
server draws its file system implementation from the OSKit
[14] whose exported COM interfaces are similar to the in-
ternal VFS interface [28] used by many Unix file systems.
It was possible to implement the Flask security controls at
that interface where these problems do not exist.

6.5.4 Process Manager The Flask process manager is
a user-mode process which implements the POSIX process
abstraction, providing support for functions such asforkand
execve. These higher-level process abstractions are layered
on top of Fluke processes, which consist of an address space
and its associated threads. The process manager provides
one controlled object type, the POSIX process, and binds
a SID to each POSIX process. Unlike the SID of a Fluke
process, the SID of a POSIX process may change through
anexecve. Such SID transitions are controlled by theTran-
sition permission between the old and new SIDs. Default
transitions may be defined by the policy through the default
object labeling mechanism described in Section 6.1. In ad-
dition to ensuring thatTransitionpermission is granted, the
process manager must verify that the calling process has
Executepermission to the executable file.
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In combination with the virtual memory manager, file
server and the microkernel, the process manager is respon-
sible for ensuring that each POSIX process is securely ini-
tialized. The file server ensures that the memory for the
executable is labeled with the SID of the file. The micro-
kernel ensures that the process may only execute memory to
which it hasExecuteaccess. The process manager initial-
izes the state of transformed POSIX processes, sanitizing
their environment if the policy requires it.

6.5.5 Network Server The Flask network server [9] is a
user-mode process that provides applications with access to
the network through an interface based on the BSD socket
system call interface. The network server draws its network
protocol implementation from the OSKit [14]. Many of the
details of the Flask network server and other servers that
support it are beyond the scope of the paper.

Abstractly, the network server ensures that every network
IPC is authorized by the security policy. Of course, a net-
work server cannot independently ensure that a network
IPC is authorized by the policy of its node, since it does
not have end-to-end control over data delivery to processes
on peer nodes. Instead, a network server must extend some
level of trust to its peer network servers to enforce its own
security policy, in combination with their own security poli-
cies, over the peer processes. This requires a reconciliation
of security policies, which is handled by a separate negoti-
ation server using the ISAKMP [35] protocol. The precise
form of trust and the precise level of trust extended to peer
network servers can vary widely, and is defined within the
policy.

The principal controlled object type for the network
server is the socket. The network server binds a SID to each
socket object. The default SID used for a socket object de-
pends on the manner in which it is created. If it is created
by a local process, then the SID of the creating process is
used as the default. If it is created as a result of a new con-
nection being accepted on an existing socket, then the SID
of the existing socket is used as the default.

For socket types that maintain message boundaries (e.g.,
datagram), the network server also binds a separate SID
to each message sent or received on a socket. For other
socket types, each message is implicitly associated with the
SID of its sending socket. Since messages cross the bound-
ary of control of the network server, and may even cross a
policy domain boundary, the network server applies cryp-
tographic protections to messages in order to preserve the
security requirements of the policy and to bind the security
attributes of the message to the message. Our prototype net-
work server uses the IPSEC [2] protocols for this purpose,
with security associations [2] established by the negotiation
server. The negotiation server may not pass SIDs across the
network, since they are only local identifiers; instead, the
negotiation server must pass the actual security attributes to
its peer, which can then establish its own SID for the cor-

responding security context. Attribute translation and in-
terpretation must take place in accordance with the policy
reconciliation.

The network server controls are layered to match the net-
work protocol layering architecture. Hence, the abstract
control over the high-level network IPC services consists of
a collection of controls over the abstractions at each layer.
For example, control over the transmission of a datagram
from one process to another is provided through controls
at the socket layer involving the process SID, the message
SID and the socket SID and controls at the network layer
involving the message SID, the destination node SID and
the network interface SID. Node SIDs are provided to the
network server by a separate network security server, which
may query distributed databases for security attributes, and
network interface security contexts may be locally config-
ured. Due to the need to control abstractions that are not
visible at the server interface or the OSKit network compo-
nent interface, it was infeasible to add the security controls
at these interfaces; consequently, modifications to the inter-
nals of the OSKit network component were necessary.

6.6 Revocation of Migrated Permissions
Revocation of migrated permissions has currently been

implemented only within the Flask microkernel. Microker-
nel revocation is simplified by the fact that Fluke has a pure
interrupt-model API [15]. This is useful in two ways. First,
it means that the kernel provides prompt and complete ex-
portability of thread state. Second, it means that kernel op-
erations are either atomic or cleanly subdivided into user-
visible atomic stages. The first property permits the kernel
revocation mechanism to assess the kernel’s state, includ-
ing operations currently in progress. The revocation mech-
anism may safely wait for operations currently in progress
to complete or restart due to the promptness guarantee. The
second property permits Flask permission checks to be en-
capsulated in the same atomic operation as the service that
they control, thereby avoiding any occurrences of the ser-
vice after a revocation request has completed.

If memory permissions are being revoked, Flask locates
all memory translations that map memory from a segment
with the specified segment SID into an address space with
the specified address space SID, and updates the translation
protection accordingly. If IPCConnectpermission is being
revoked, Flask locates all threads whose IPC state corre-
sponds to the specified pair of effective SIDs and breaks
their connections. If IPCSpecifypermission is being re-
voked, Flask locates all threads whose IPC state corre-
sponds to the specified real SID and the specified effective
SID and breaks their connections. When a connection is
broken by a revocation, it will appear as though the connec-
tion was broken by the peer thread from the perspective of
each of the formerly connected threads.

In the original Fluke implementation, the kernel provided
a mechanism to cancel a target thread and wait for it to en-
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ter a stopped state when the kernel wished to examine or
modify the thread’s state. Flask likewise stops each thread
prior to examining its IPC state during a revocation request.
The stop operation cannot be blocked indefinitely by the
thread’s activities nor by the activities of any other thread.
Since a thread must be stopped prior to examination in or-
der to ensure that it is in a well-defined state, the current
Flask implementation must stop all threads when an IPC
revocation is processed. Thus, the current implementation
meets the completeness and timeliness requirements of the
architecture, but is quite costly.

6.7 The Security Server
As stated earlier, the security server is required to provide

security policy decisions, to maintain the mapping between
SIDs and security contexts, to provide SIDs for newly cre-
ated objects, and to manage object manager access vector
caches. In addition to the requirements listed above, most
security policy servers will provide functionality for load-
ing policies and changing policies. Because many opera-
tions depend on the results of a security server decision, in
many cases it may be advantageous for the security server
to provide its own caching of decisions in addition to the
caching performed by the access vector cache in the object
managers. The security server also is typically a policy en-
forcer over its own services.

In the remainder of this section we describe the secu-
rity server implemented for the Flask prototype. The se-
curity policy encapsulated by this security server is de-
fined through a combination of its code and a policy
database. Changes to the security policy that can be ex-
pressed through the existing policy database language may
be implemented simply by altering the policy database.
More complex changes to the security policy may be im-
plemented by altering the code of the security server or by
completely replacing the security server.

The Flask security server prototype implements a secu-
rity policy that is a combination of four subpolicies: multi-
level security (MLS) [3], type enforcement [6], identity-
based access control [45] and dynamic role-based access
control (RBAC) [11]. The access decisions provided by the
security server must meet the requirements of each of these
four subpolicies. The Flask security server differs from
the DTOS security server in its approach to implementing
MLS, its support for dynamic RBAC, and its enhanced sup-
port for identity-based access control. Changing the collec-
tion of subpolicies encapsulated within the security server
is straightforward as long as the changes are consistent with
the interdependencies among the subpolicies.

The MLS policy is a form of the Bell-LaPadula (BLP)
model [3] which has been extended to support multi-level
subjects and direct subject-to-subject interactions [46]. The
policy database defines which users may be associated with
which MLS ranges. An MLS access decision is computed
by determining the relationship between the source MLS

range and the target MLS range. The decision of whether
or not to grant a permission is based upon this relationship
and the information flow characteristics of the service that
the permission controls.

The type enforcement policyexplicitly defines an access
matrix on the basis of types. Unlike typical representations
of type enforcement, there is no distinction between do-
mains and types in the type enforcement subpolicy of the se-
curity server. The policy database defines which users may
be associated with which types. It also defines all allowed
access vector permissions for each (source type, target type)
pair. These type enforcement access rules encompass both
the domain definition table and the domain transition table
of traditional type enforcement [6]. A type enforcement ac-
cess decision is computed by looking up and returning the
allowed permissions for the (source type, target type) pair.

Theidentity-based access control policyis defined in the
form of constraints that are imposed on particular access
decisions based on the user identity attributes of the source
and/or target. These constraints may be imposed on all ac-
cess decisions for a given set of permissions or may be lim-
ited to access decisions involving certain (source type, tar-
get type) pairs for a given set of permissions. They may
specify the relationship that must exist between the source
user identity and the target user identity in order for a set
of permissions to be granted or it may specify that a set of
permissions is to be granted only if the source and/or target
have a particular user identity.

The dynamic RBAC policyis defined by similar con-
straints, but these constraints are based upon the role at-
tribute of the security context. The security server binds a
role attribute to each SID, which reflects the active role as-
sociated with the SID. The policy database defines a partial
order for the set of roles and a set of role-based constraints.
Role-based constraints are similar to identity-based con-
straints except that role relationships are based on the par-
tial order. One policy-specific interface was implemented
to support the dynamic RBAC policy, thechangerole set
function, which can be used to dynamically change a user’s
authorized role set. Since the authorized role set for a user
is dynamic, the security server does not ensure that the user
may be associated with the role when a SID is issued. In-
stead, it checks on each access decision where the role is
relevant. If the user is not permitted to operate in the role,
then any role-based constraint will fail, which leads to a de-
nial of the constrained permissions. When a role is removed
from a user’s authorized role set, the security server noti-
fies all relevant object managers of any formerly granted
permissions that must now be denied. The security server
waits for all relevant object managers to notify it that the
changes have been completed and then notifies the caller of
changerole set.
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7 Results
This section describes the results of the effort in three

areas: policy flexibility, performance impact, and extent of
code changes.

7.1 Flexibility in the Flask Implementation
We evaluate the policy flexibility which the system pro-

vides, based upon the description of policy flexibility in
Section 2. The most important criteria discussed in that sec-
tion was “atomicity”, i.e., the ability of the system to ensure
that all operations in the system are controlled with respect
to the current security policy. Section 6.4 described the co-
ordination of policy changes in Flask, and section 6.6 de-
scribed how the Flask microkernel provides effective atom-
icity for the revocation of microkernel permissions. How-
ever, the implementation of revocation of migrated permis-
sions in the other object managers has not yet been done.

Section 2 also identifies three other potential weaknesses
in policy flexibility. The first is the range of operations that
the system can control. In an object-based system such as
Flask, there is generally not much confusion over the oper-
ations that must be controlled. The most difficult decisions
regarding the operations to be controlled were within the
network server because of differing needs at the different
levels in the protocol stack. However, by generally allow-
ing the access controls to be embedded within the object
managers, Flask is able to provide more complete and fine-
grained controls than systems that force all of the controls
to be at the level of external interfaces.

The second potential source of inflexibility is the limita-
tion on the operations available to the security policy. In
Flask, the security server has access to all interfaces pro-
vided by the system, but this is obviously not the same as
having access to any arbitrary operation. While a security
server with complete control over the state of the object
managers would clearly be more flexible, we know of no
need for such a feature.

The third potential source of inflexibility is the amount of
state information available to the security policy for mak-
ing security decisions. This is a potential weakness in the
current Flask design because all permissions are defined as
a function of two SIDs. The description of the Flask vir-
tual memory manager in Section 6.5.2 identifies one case
where a permission ultimately depends upon three SIDs and
must be reduced to a collection of permissions among pairs
of SIDs. An even worse situation is if the security deci-
sion should depend upon a parameter to a request that is
not represented as a SID. Consider a request to change the
scheduling priority of a thread. Here the security policy
must certainly be able to make a decision based in part on
the requested priority. This parameter can be considered
within the current implementation by defining separate per-
missions for some classes of changes, for instance, increas-
ing the priority can be a different permission than decreas-
ing the priority. But it is not practical to define a separate

permission for every possible change to the priority.

This is not a weakness in the architecture itself, and the
design could easily be changed to allow for a security deci-
sion to be represented as a function of arbitrary parameters.
However, the performance of the system would certainly be
impacted by such a change, because an access vector cache
supporting arbitrary parameters would be much more com-
plicated than the current cache. A better solution may be
to expand the interface only for those specific operations
that require decisions based upon more complex parame-
ters, and to provide separate caching mechanisms for those
decisions.

Another potential source of inflexibility in the current
Flask design stems from the assumptions encoded into the
object managers with respect to object labeling. The po-
tential for inflexibility is greater for object types where the
SID of a new object is directly inherited from some related
object rather than obtained from the security server. Fur-
thermore, even in the case where the SID of a new object is
computed by the security server, the degree of flexibility is
limited by the fact that the object manager determines the
set of related object SIDs provided as inputs to the com-
putation, despite the fact that different policies may require
different sets of related object SIDs. Finally, as with se-
curity decisions, the computation of a new object SID is a
function of two SIDs, typically the SID of the creating pro-
cess and the SID of a related object, which may likewise
inhibit flexibility.

7.2 Performance
In implementing the system, our goal was to provide the

basic mechanisms and data structures which would allow
for fast queries of previously computed security decisions.
This goal is primary because computation of a new security
decision is only required when a permission is required be-
tween a new pair of SIDs or when a policy change occurs.
Permissions between a new pair of SIDs are rarely required,
because most subjects, even if they access many different
objects or different pages of memory, access objects with
only a few distinct SIDs, and new subjects are usually cre-
ated with a SID of an existing subjects. The frequency of
policy changes is obviously policy dependent, but the usual
examples of policy changes are externally driven and there-
fore will be infrequent. Moreover, a performance loss in
a system with frequent policy changes should not be un-
expected as it is fundamentally a new feature provided by
the system. Obviously, even these uncommon operations
should be completed as fast as possible, but that has not
been a major consideration in the current implementation.

While we have provided the data structures to allow for
fast queries of previously computed security decisions, we
have not done any specific code optimization to speed up
the execution. Therefore it was particularly comforting to
find that the addition of these data structures alone is suffi-
cient to almost completely eliminate any measurable impact
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Flask
Fluke naive client client

message size (�s) identification impersonation
‘‘Null’’ 13.5 +2% +9% +6%
16-byte 15.0 +2% +4% +6%
128-byte 15.8 +1% +2% +5%
1k-byte 21.9 +2% +2% +4%
4k-byte 42.9 +1% +1% +2%
8k-byte 78.5 +1% +5% +1%
64k-byte 503 +0% +6% +0%

Table 1: Performance of IPC in Flask relative to the base Fluke system.

of the permission checks.

While a complete assessment of performance requires
analysis of all object managers, we limit ourselves to the
microkernel, and primarily to IPC since it is a critical path
which must be factored into all higher level measurements.
Also, the microkernel is currently the only object manager
with complete support for revocation, an important aspect
of the security architecture.

All measurements in this section were taken using the
time-stamp counter register on a 200MHz Pentium Pro pro-
cessor with a 256KB L2 cache and 64MB of RAM.

7.2.1 Object Labeling As with other managers, all ob-
jects within the microkernel are identified by SIDs. When a
kernel object is created, it is labeled with the SID of the
memory segment in which it resides. The segment SID
for any piece of mapped physical memory is readily avail-
able, since it is computed when a virtual-to-physical address
translation is created and is stored along with that transla-
tion. As the address translation must be obtained at object
creation time anyway, the additional cost of labeling is min-
imal. We verified this by measuring the cost to create the
simplest kernel object in both Fluke and Flask. Flask added
1% to the operation (3.62 versus 3.66�s).

7.2.2 IPC Operations This section presents perfor-
mance measurements for IPC operations under various
message sizes and also measures the impact of caching
within the microkernel.

Table 1 presents timings for a variety of client-server IPC
microbenchmarks for the base Fluke microkernel and un-
der different scenarios in the Flask system. The tests mea-
sure cross-domain transfer of varying amounts of data, from
client to server and back again. It should be noted that a
“Null” IPC actually transfers a minimal message, 8 bytes in
the current implementation. For all of the tests performed
on Flask, the required permissions are available in the ac-
cess vector cache at the location identified by the “hint”
within the port structure. The effect of not finding the per-
mission through the hint is investigated below.

In Fluke, the tests use the standard Fluke IPC interfaces
in a system configured with no Flask enforcement mecha-
nisms. Absolute times are shown in this column as a basis

Flask
using using calling calling

Fluke hint cache trivSS realSS
‘‘Null’’ 13.5�s 13.8�s 14.4�s 43.4�s 82.5�s

+2% +7% +221% +511%

Table 2: Marginal cost of security decisions in Flask.

for comparison.

Naiveruns the same tests on the Flask microkernel. This
is the most interesting case because it represents the most
common form of IPC in the Flask system, in which mes-
sages are sent using the unmodified Fluke IPC interfaces.
Along this path there is only a singleConnectpermission
check. The results show a worst-case 2% (�50 machine
cycle) performance hit. As would be expected, the relative
effect of the single access check diminishes as the size of
the data transfer increases and memory copy costs become
the dominating factor.

In client identification, the tests have been modified to
use the Flask-specific server-side IPC interface to obtain the
SID of the client on every call. The additional Flask pro-
cessing in this case includes theConnectpermission check
and the passing of the SID (a 32-bit integer) across the
server interface. The larger than expected impact in this
case is due to the fact that, in the current implementation,
the client SID is passed across the interface to the server in
a register normally used for data transfer. This forces an ex-
tra memory copy (particularly obvious in the Null IPC test).
The significant effect on large data transfers is unexpected
and needs to be investigated.

Client impersonationuses the client-side IPC interface to
specify an effective SID for every call. The additional Flask
processing in this case includes theConnectand Specify
permissions and the passing of the SID parameter across
the client interface. For this request, the SID parameter is
not passed through a data transfer register and the perfor-
mance impact is predominately the result of the two access
checks.

Table 2 presents the relative costs of retrieving a secu-
rity decision from the cache and from the security server.
The operation being performed is the most sensitive of the
IPC operations, transfer of a “null” message from client to
server and back again.

The first two columns repeat data from Table 1, identify-
ing the relative cost of Flask when the required permission
is found in the access vector cache at the location identified
by the hint in the port structure. The third column is the
time required when the hint was incorrect but the permis-
sion was still found in the access vector cache. This shows
that the use of the hint is significant in that it reduces the
overhead from 7% to 2%.

ThetrivSScolumn is the time required when the permis-
sion is not found in the access vector cache, and a trivial
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connections revocation time
1 1.55 ms
2 1.56 ms
4 1.57 ms
8 1.60 ms
16 1.65 ms

Table 3: Measured cost of revoking IPC connections.

security server is implemented to immediately respond by
allowing all permissions. The result is a more than tripling
of the time required in the base Fluke case. The IPC inter-
action between the microkernel and security server require
transfer of 20 bytes of data to the security server and return-
ing 18 bytes. Since the permission for this IPC interaction
is found using the hint, we see from Table 1 that over half
of the additional overhead is due to the IPC. The remainder
of the overhead is due to the identification of the security
fault, construction of the security server request in the ker-
nel, and the unmarshaling and marshaling of parameters in
the security server itself.

The realSScolumn is the time required when the per-
mission is not found in the access vector cache and it is
computed by the prototype security server. The additional
overhead compared to the previous case is the time required
to compute a security decision within this security server.
Though no attempt has been made to optimize the secu-
rity server computations, this result points out that the ac-
cess vector cache can potentially be important regardless of
whether interactions with the security server require an IPC
interaction.

7.2.3 Revocation Operations The possible microker-
nel revocation operations are described in Section 6.6. For
demonstration purposes we chose to evaluate the most ex-
pensive of those operations, IPC revocation. For the experi-
ment we established a client to server connection, and have
the server revoke the connection. We then add increasing
numbers of interposed threads to increase the work done
for each revocation.

Table 3 shows the results with 1 to 16 active connections.
The large base case is due to the need to stop all threads
in the system when an IPC revocation is processed, as ex-
plained in section 6.6. The actual cost to examine and up-
date the state of the affected threads is small in relation, and
as expected scales linearly with the number of connections.

7.2.4 Performance Conclusions Initial microbench-
mark numbers suggest that the overhead of the Flask micro-
kernel mechanisms can be made negligible through the use
of the access vector cache and local hints when appropriate.
They also identify the need for an access vector cache so
that communications with the security server and security
computations within the security server are minimized.

Extensive macrobenchmarking has not been performed

Component Fluke LOC + Flask % Incr. # Locs. % Locs.
Kernel 9227 1758 19.0 229 2.4
FFS 21802 1342 6.2 14 .06
VMM 2006 159 7.9 100 4.9
Process Mgr 851 245 28.7 80 9.4
Net Server 24549 1071 4.4 224 9.1
Total 58435 4575 7.8 647 1.1

Table 4: “Filtered” source code size for various Flask components and
the number of discrete locations in the base Fluke code that were mod-
ified. This count of source code lines filters out comments, blank lines,
preprocessor directives, and punctuation-only lines, and typically is1=4

to 1=2 the size of unfiltered code. The network server count includes the
ISAKMP and IPSEC distributions, counting as modifications all Flask-
specific changes to them and the base Fluke network component.

since such measurements would be necessarily policy spe-
cific. However, we have measured compilation of a simple
program usinggcc with the existing security server and
found that Flask increased the compilation time by 13%.
This is encouraging since so few efforts have been made to
optimize the Flask changes, but it should not be accepted as
indicative of performance under other security policies.

7.3 Scale and Invasiveness of Flask Code
In Table 4 we present data that give a rough estimate of

the scale and complexity of adding fine-grained security en-
forcement to the base Fluke components. Overall, the Fluke
components increased in size less than 8%. Although the
kernel increased the most at 19%, for large object managers
the percentage is reassuringly small (4–6%).

8 Summary

This paper describes an operating system security ar-
chitecture for supporting a wide range of security poli-
cies with minimal, localized changes for each policy, and
the implementation of this architecture as part of the Flask
microkernel-based operating system. The most significant
innovation in this work is the ability to support dynamic
policies, and in particular, policies that require total revo-
cation of previously granted permissions. Although perfor-
mance evaluation of our particular prototype is incomplete,
we have demonstrated that the architecture is practical to
implement and flexible to use. Moreover, the architecture
should be applicable to many other operating systems.

Availability We will be making a source distribution of
the Flask OS by the date of the conference.
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