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Abstract

Scalable shared memory multiprocessors traditionally use either a cache coherent non-
uniform memory access (CC-NUMA) or simple cache-only memory architecture (S-
COMA) memory architecture. Recently, hybrid architectures that combine aspects of
both CC-NUMA and S-COMA have emerged. In this paper, we present two improvements
over other hybrid architectures. The first improvement is a page allocation algorithm that
prefers S-COMA pages at low memory pressures. Once the local free page pool is drained,
additional pages are mapped in CC-NUMA mode until they suffer sufficient remote misses
to warrant upgrading to S-COMA mode. The second improvement is a page replacement
algorithm that dynamically backs off the rate of page remappings from CC-NUMA to S-
COMA mode at high memory pressure. This design dramatically reduces the amount of
kernel overhead and the number of induced cold misses caused by needless thrashing of the
page cache. The resulting hybrid architecture is called adaptive S-COMA (AS-COMA).
AS-COMA exploits the best of SSCOMA and CC-NUMA, performing like an S-COMA
machine at low memory pressure and like a CC-NUMA machine at high memory pressure.
AS-COMA outperforms CC-NUMA under almost all conditions, and outperforms other
hybrid architectures by up to 17% at low memory pressure and up to 90% at high memory
pressure.
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1 Introduction

Scalable hardware distributed shared memory (DSM) architectures have become increasingly pop-
ular as high-end compute servers. One of the purported advantages of shared memory multipro-
cessors compared to message passing multiprocessors is that they are easier to program, because
programmers are not forced to track the location of every piece of data that might be needed.
However, naive exploitation of the shared memory abstraction can cause performance problems,
because the performance of DSM multiprocessors is often limited by the amount of time spent
waiting for remote memory accesses to be satisfied. When the overhead associated with accessing
remote memory impacts performance, programmers are forced to spend significant effort managing
data placement, migration, and replication — the very problem that shared memory is designed to
eliminate. Thus, the value of DSM architectures is directly related to the extent to which observable

remote memory latency can be reduced to an acceptable level.

The two basic approaches for addressing the memory latency problem are building latency-
tolerating features into the microprocessor and reducing the average memory latency. Because of
the growing gap between microprocessor cycle times and main memory latencies, modern micro-
processors incorporate a variety of latency-tolerating features such as fine-grained multithreading,
lockup free caches, split transaction memory busses, and out-of-order execution [1, 11, 15]. These
features reduce the performance bottleneck of both local and remote memory latencies by allow-
ing the processor to perform useful work while memory is being accessed. However, other than
the fine-grained multithreading support of the Tera machine [1], which requires a large amount
of parallelism and an expensive and proprietary microprocessor, these techniques can hide only a
fraction of the total memory latency. Therefore, it is important to develop memory architectures

that reduce the overhead of remote memory access.

Remote memory overhead is governed by three issues: (i) the number of cycles required to satisfy
each remote memory request, (ii) the frequency with which remote memory accesses occur, and (iii)
the software overhead of managing the memory hierarchy. The designers of high-end commercial
DSM systems such as the SUN UE10000 [18] and SGI Origin 2000 [6] have put considerable effort
into reducing the remote memory latency by developing specialized high speed interconnects. These
efforts can reduce the ratio of remote to local memory latency to as low as 2:1, but they require
expensive hardware available only on high-end servers costing hundreds of thousands of dollars. In
this paper, we concentrate on the second and third issues, namely reducing the frequency of remote

memory accesses while ensuring that the software overhead required to do this remains modest.



Previous studies have tended to ignore the impact of software overhead [5, 12, 16], but our findings

indicate that the effect of this factor can be dramatic.

Scalable shared memory multiprocessors traditionally use either a cache coherent non-
uniform memory access (CC-NUMA) architecture or a simple cache-only memory architecture

(S-COMA) [16]. Each architecture performs well under different conditions, as follows.

CC-NUMA is the most common DSM memory architecture. It is embodied by such machines
as the Stanford DASH [7], SUN UE10000 [18], and SGI Origin 2000 [6]. In a CC-NUMA, shared
physical memory is evenly distributed amongst the nodes in the machine, and each page of shared
memory has a home location. The home node of data can be determined from its global physical
address. Processors can access any piece of global data by mapping a virtual address to the
appropriate global physical address, but the amount of remote shared data that can be replicated
on a node is limited by the size of a node’s processor cache(s) and remote access cache (RAC) [8].
Thus, CC-NUMA machines generally perform poorly when the rate of conflict or capacity misses
is high, such as when a node’s caches are too small to hold the entire remote working set or when

the data access patterns and cache organization cause cached remote data to be purged frequently.

S-COMA architectures employ any unused DRAM on a node as a cache for remote data [16],
which significantly increases the amount of storage available on each node for caching remote
data. The performance of pure S-COMA machines is heavily dependent on the memory pressure
of a particular application. Put simply, memory pressure is a measure of the amount of physical
memory in a machine required to hold an application’s instructions and data. A 20% memory
pressure indicates that 20% of a machine’s pages must be used to hold the initial (home) copy of
the application’s instructions and data. At this low memory pressure, on average 80% of a node’s
physical memory is available to be used as a page-grained cache of remote data. Although this
ability to cache remote data in local memory can dramatically reduce the number of remote memory
operations, pure S-COMA has a number of drawbacks. Page management can be expensive. The
page-grained allocation of the remote data cache can lead to large amount of internal fragmentation,
and the requirement that all shared data accessed by a node must be backed by a local DRAM

page can lead to thrashing at high memory pressures.

Recently, hybrid architectures that combine aspects of both CC-NUMA and S-COMA have
emerged, such as the Wisconsin reactive CC-NUMA (R-NUMA) [5] and the USC wictim cache
NUMA (VC-NUMA) [12]. Intuitively, these hybrid systems attempt to map the remote pages for
which there are the highest number of conflict misses to local S-COMA pages, thereby eliminating

the greatest number of expensive remote operations. All other remote pages are mapped in CC-



NUMA mode. Ideally, such systems would exploit unused available DRAM for caching without

penalty but the proposed implementations fail to achieve this goal under certain conditions.

In this paper, we present two improvements over R-NUMA and VC-NUMA. The first improve-
ment is a page allocation algorithm the prefers S-COMA pages at low memory pressures. Once the
local free page pool is drained, additional pages are initially mapped in CC-NUMA mode until they
suffer sufficient remote misses to warrant upgrading to SS-COMA mode. The second improvement
is a page replacement algorithm that dynamically backs off the rate of page remappings between
CC-NUMA and S-COMA mode at high memory pressure. This design dramatically reduces the
amount of kernel overhead and the number of induced cold misses caused by needless thrashing of

the page cache. The resulting hybrid architecture is called adaptive S-COMA (AS-COMA).

R-NUMA [5] and VC-NUMA [12] initially map all pages in CC-NUMA mode, and then identify
remote pages that are suffering inordinate numbers of conflict misses to remote node, so-called
hot pages. Unfortunately, under heavy memory pressure, there are not enough local pages to
accommodate all hot remote pages and thrashing occurs, which severely degrades performance.
In addition to the interrupt handling and flushing overheads induced by a remap request, page
remapping also increases the cold miss rate, because the contents of both the hot page and any

victim page that was downgraded to make room for it must be flushed from the processor cache(s).

AS-COMA initially maps pages in S-COMA mode to exploit S-COMA’s superior performance
at low memory pressures. Doing so eliminates remote conflict misses and remapping overhead when
there is enough free memory to cache all of a node’s working set in its local memory. To combat
page thrashing under heavy memory pressures, which occurs in S-COMA and to a lesser degree in
R-NUMA and VC-NUMA, AS-COMA uses a page replication backoff algorithm to detect thrashing
and aggressively reduce its rate of page remapping. Under extreme circumstances, AS-COMA goes

so far as to disable CC-NUMA < S-COMA remappings entirely.

We used detailed execution-driven simulation to evaluate a number of AS-COMA design trade-
offs and then compared the resulting AS-COMA design against CC-NUMA, pure S-COMA, R-
NUMA, and VC-NUMA. We found that AS-COMA’s hybrid design provides the best behavior of
both CC-NUMA and S-COMA. At low memory pressures, AS-COMA acts like S-COMA and out-
performs other hybrid architectures by up to 17%. At high memory pressures, AS-COMA avoids the
performance dropoff induced by thrashing and aggressively converges to CC-NUMA performance,
thereby outperforming the other hybrid architectures by up to 90%. In addition, AS-COMA out-
performs CC-NUMA under almost all conditions, and at its worst only underperforms CC-NUMA
by 5%.



The remainder of this paper is organized as follows. In Section 2 we describe the basics of
all scalable shared memory architectures, followed by an in-depth description of existing DSM
models. Section 3 presents the design of our proposed AS-COMA architecture. We describe our
simulation environment, test applications, and experiments in Section 4, and present the results of

these experiments in Section 5. Finally, we draw conclusions and discuss future work in Section 6.

2 Background

In this section, we discuss organization of the existing DSM architectures: CC-NUMA, S-COMA,
R-NUMA, and VC-NUMA.

2.1 Directory-based DSM Architectures

All of the shared memory architectures that we consider share a common basic design, illustrated
in Figure 1. Individual nodes are composed of one or more commodity microprocessors with private
caches connected to a coherent split-transaction memory bus. Also on the memory bus is a main
memory controller with shared main memory and a distributed shared memory controller connected
to a node interconnect. The aggregate main memory of the machine is distributed across all nodes.
The processor, main memory controller, and DSM controller all snoop the coherent memory bus,
looking for memory transactions to which they must respond.

The internals of a typical DSM controller also are illustrated in Figure 1. It consists of a memory
bus snooper, a control unit that manages locally cached shared memory (cache controller), a control
unit that retains state associated with shared memory whose “home” is the local main memory
(directory controller), a network interface, and some local storage. In all of the design alternatives
that we explore, the local storage contains DRAM that is used to store directory state.

When a local processor makes an access to shared data that is not satisfied by its cache, a
memory request is put on the coherent memory bus where it is observed by the DSM controller.
The bus snooper detects that the request was made to shared memory and forwards the request
to the DSM cache controller. The DSM cache controller will then take one of the following two
actions. If the data is in main memory, e.g., this node is the memory’s “home” or the data is cached
in a local S-COMA page, a coherency response is given that allows the main memory controller to
satisfy the request. Otherwise the request is forwarded to the appropriate remote node. Once a
response has been received, the DSM cache controller supplies the requested data to the processor

and potentially also stores it to main memory.
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Figure 1 Typical Scalable Shared Memory Architecture

A request for data that is received from a remote node is forwarded to the directory controller,
which tracks the status of each line of shared data for which it is the home node. If the remote
request can be supplied using the contents of local memory, the directory controller simply responds
with the requested data and updates its directory state. If the directory controller is unable to
respond directly, e.g., because a remote node has a dirty copy of the requested cache line, it forwards

the request to the appropriate node(s) and updates its directory state.
The remote access overhead of these architectures can be represented as:

(Npagecache * Tpagecache) + (Nremote * Tremote) + (Neotd * Tremote) + Toverhead-

Npagecache and Nyepore Tepresent the number of conflict misses that were satisfied by the page
cache or remote memory, respectively. Ng,q represents the number of cold misses induced by
flushing and remapping pages, and thus is zero only in CC-NUMA model. Tjqg4ecqche and Themote
represent the latency of fetching the line from the local page cache or remote memory, respectively.
Toverhead Tepresents the software overheads of the S-COMA and the hybrid models to support page
remapping, e.g., flushing.

Table 1 summarizes the remote memory overhead for each architecture and the critical factors

determining performance, assuming a fixed amount of memory. Table 2 provides the cost in terms



| Model | Remote Overhead | Performance Factors |

CC-NUMA (Nyemote * Tremote) Network speed

S-COMA (Npagecache * Tpagecache )+ 1. Network speed
(Neotd * Tremote )+ 2. Software overhead
Toverhead

Hybrid (Npagecache * Tpagecache )+ 1. Network speed

Architectures | (Nyemote * Tremote )+ 2. Software overhead
(Ncold * Tremote) + Toverhead

Table 1 Remote Memory Overhead of Various Models

| Model | Storage Cost | Complexity
CC-NUMA None None
S-COMA Page cache state: 1.Page cache state lookup
1. 2 bits per block 2. local ¢ remote page map
2. 44 bits per page 3. Page-daemon and VM kernel
Hybrid Page cache state: 1.Page cache state controller
Architectures | 1. 2 bits per block 2. local ¢ remote page map
2. 44 bits per page 3. Page-daemon and VM kernel
Refetch Count: 4. Refetch counter, comparator
6 bits per page per node | and interrupt generator

Table 2 Cost and Complexity of Various Models

of the storage and complexity for each of the models. These issues will be explained in the following

sections along with how each model works.

2.2 CC-NUMA

In CC-NUMA, the first page access on each node to a particular page causes a page fault, at which
time the local TLB and page table are loaded with a page translation to the appropriate global
physical page. The home node of each page can be determined from its physical address. When
the local processor suffers a cache miss to a line in a remote page, the DSM controller forwards the
memory request to the memory’s home node, incurring a significant access delay. Remote data can
only be cached in the processor cache(s) or an optional remote access cache (RAC) on the DSM
controller. Applications that suffer a large number of conflict misses to remote data, e.g., due to
the limited amount of caching of remote data, perform poorly on CC-NUMAs [5]. Unfortunately,
these applications are fairly common [5, 14, 16]. Careful page allocation [2, 9], migration [21], or
replication [21] can alleviate this problem by carefully selecting or modifying the choice of home
node for a given page of data, but these techniques have to date only been successful for read-only

or non-shared pages.



The conflict miss cost in the CC-NUMA model is represented by (N,emote * Tremote), that is,
all misses to shared memory with a remote home must be remote misses. To reduce this overhead,

designers of some such systems have adopted high speed interconnect to reduce (T emore) [6, 13,

18].

2.3 S-COMA

In the SSCOMA model [16], the DSM controller and operating system cooperate to provide access
to remotely homed data. In S-COMA, a mapping from a global virtual address to a local physical
address is created at the first page fault to that shared memory page. The page fault handler selects
an available page from the local DRAM page cache. At this time, the cache state information is
updated in the local DSM controller to indicate which global page this local page is caching. In
addition, the valid bit associated with each cache line in the page is set to invalid to indicate that,
while the page mapping is valid, no remote data is actually cached in the local page yet. If there
are no free pages in the page cache when a page fault occurs, the page fault handler selects another
S-COMA page to replace, flushes this page’s cache lines from the local processor cache, and then
maps the faulting page.

When a local processor suffers a cache miss to remote data, the DSM cache controller examines
the valid bit for the line. If the valid bit is set, the page cache contains valid data for that line, so
it can be supplied directly from main memory, thereby avoiding an expensive remote operation. If,
however, the requested line is invalid, the DSM cache controller must perform a remote request to
acquire a copy of the desired data. When the remote node responds with the data, it is written to
the page cache, supplied to the processor, and the valid bit is set.

S-COMA’s aggressive use of local memory to replicate remote shared data can completely elim-
inate N,emote when the memory pressure on a node is low. However, pure S-COMA’s performance
degrades rapidly for some applications as memory pressure increases. Because all remote data
must be mapped to a local physical page before it can be accessed, there can be heavy contention
if the number of local physical pages available for S-COMA page replication is small. Under these
circumstances, thrashing occurs, not unlike thrashing in a conventional VM system. Given the high
cost of page replacement, this can lead to dismal performance.

In the S-COMA model, the conflict miss cost is represented by (Npagecache * Tpagecache) + (Neotd *
Tremote) + Toverhead- When memory pressure is low enough that all of the remote data a node needs
can be cached locally, page remapping does not occur and both N.,q and T, crpeqqd are zero. As the
memory pressure increases, and thus more remote pages are accessed by a node than can be cached

locally, N.pjq and Toyerpeaq increase due to remapping. N4 increases because the contents of any



pages that are replaced from the local page cache must be flushed from the processor cache(s).
Subsequent accesses to these pages will suffer cold misses in addition to the cost of remapping.
An even worse problem is that as memory pressure approaches 100%, the time spent in the kernel
flushing and remapping pages (Toyernead) skyrockets. Sources of this overhead include the time
spent context switching between the user application and the pageout daemon, flushing blocks

from the victim page(s), and remapping pages.

2.4 Hybrid DSM Architectures

Two hybrid CC-NUMA /S-COMA architectures have been proposed: R-NUMA [5] and VC-NUMA

[12]. We describe these architectures in this section.

The basic architecture of an R-NUMA machine [5] is that of a CC-NUMA machine. However,
unlike CC-NUMA, which “wastes” local physical memory not required to hold home pages, R-
NUMA uses this otherwise unused storage to cache frequently accessed remote pages, as in S-
COMA. This mechanism requires a number of modest modifications to a conventional CC-NUMA’s

DSM engine and operating system, as described below.

In addition to its normal CC-NUMA operation, the directory controller in an R-NUMA machine
maintains an array of counters that tracks for each page the number of times that each processor
has refetched a line from that page, as follows. Whenever a directory controller receives a request
for a cache line from a node, it checks to see if that node is already in the copyset of nodes for
that line. If it is, this request is a refetch caused by a conflict miss, and not a coherence or cold
miss, and the node’s refetch counter for this page is incremented. The per-page/per-node counter
is used to determine which CC-NUMA pages are generating frequent remote refetches, and thus are
good candidates to be mapped to an S-COMA page on the accessing node. When a refetch counter
crosses a configurable threshold (e.g. 64), the directory controller piggybacks an indication of this
event with the data response. This causes the DSM engine on the requesting node to interrupt the

processor with an indication that a particular page should be remapped to a local SSCOMA page.

Pages are remapped from CC-NUMA mode to SSCOMA mode using essentially the same mech-
anism as is used by S-COMA to remap pages. First, all lines of the page being upgraded must be
flushed from the local processor cache(s) and RAC. Then, if a free page already exists, the global
virtual address is mapped to the selected local physical address, and the DSM engine is informed of
the new mapping. If no free page exists, the fault handler first must select a victim page to replace,
the victim’s data must be flushed from the page cache, and its corresponding global virtual address

must be remapped back to its home global physical address.



By supporting both CC-NUMA and S-COMA access modes in the same machine, an R-NUMA
machine is able to exploit available local memory as a large page cache for CC-NUMA pages. By
tracking refetch counts, it is able to select dynamically which CC-NUMA pages should populate
the S-COMA cache based on access behavior. In a recent study [5], R-NUMA’s flexibility and
intelligent selection of pages to map in S-COMA mode caused it to outperform the best of pure
CC-NUMA and pure S-COMA by up to 37% on some applications.

However, although R-NUMA frequently outperforms both CC-NUMA and S-COMA, it was also
observed to perform as much as 57% worse on some applications [5]. This poor performance can be
attributed to two problems. First, R-NUMA initially maps all pages in CC-NUMA mode, and only
upgrades them to S-COMA mode after some number of remote refetches occur, which introduces
needless remote refetches when memory pressure is low. Second, R-NUMA always upgrades pages
to S-COMA mode when their refetch threshold is exceeded, even if it must evict another hot page
to do so. When memory pressure is high, and the number of hot pages exceeds the number of free
pages available for caching them, this behavior results in frequent expensive page remappings for

little value. This leads to performance worse than CC-NUMA, which never remaps pages.

VC-NUMA [12] treats its RAC as a victim cache for the processor cache(s), i.e., only remote
data evicted from the processor cache(s) is placed in its RAC. VC-NUMA reduces memory overhead
by using the victim cache tags and page indices to identify the relocation candidates, instead of
maintaining multiple refetch counters per page in the directory controller as in R-NUMA. However,
this solution requires significant modifications to the processor cache controller and bus protocol,
changes that are not feasible in systems built from commodity nodes. The designers of VC-NUMA
noticed the tendency of hybrid models to thrash at high memory pressure and suggested a thrashing
detection scheme to address the problem. Their scheme requires a local refetch counter per SSCOMA
page, a programmable break even number that depends on the network latency and overhead of
relocating pages, and an evaluation threshold that depends on the total number of free S-COMA
pages in the page cache. Although VC-NUMA frequently outperforms R-NUMA, the study did not
isolate the benefit of the thrashing detection scheme from that of the integrated victim cache. Thus,
the effectiveness of their thrashing detection scheme under different architecture configurations was

not measured and thus the necessity of the extra hardware support was not clearly justified.

In these hybrid models, the conflict miss cost is represented by (Npagecache *Lpagecache) +(Nremote*
Tremote) + (Neota * Tremote) + Tovernead Npagecache and Nyemore closely depend on the relocation
mechanisms. Remappings between CC-NUMA and S-COMA modes account for the increased cold
miss rate (Neyq), as described earlier. Thyyernead is the software overhead required for the kernel to

handle interrupts, flush pages, and remap pages.
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When there are plentiful free local pages, the difference between the hybrid models and S-
COMA is that S-COMA does not suffer from as many initial conflict misses, nor does it pay for

page remapping. In such a case, the relative costs between the two models can be represented as:

Nremote.hybrid + Ncold.hybrid > Ncold.scoma ~ 07 (1)
Toverhead.hybrid > Toverhead.scoma ~ 07 (2)
Npagecache.scoma > Npagecache.hybrid (3)

As the memory pressure increases, R-NUMA and VC-NUMA suffer from the same problems
as pure S-COMA, although to a lesser degree. Even hot pages already in the page cache begin to
be remapped. When this occurs, the local page cache becomes less effective at satisfying conflict
misses, and Nyemote hybrid + Neold.hybrid increases. As before, the extra cold misses are induced by the
cache flushes performed during remapping. Also as in S-COMA, as memory pressure approaches
100%, thrashing causes kernel overhead (T,yerhead.hybrida) to become significant. As a result, the
performance of the hybrid models drops dramatically under high memory pressure, albeit not as
dramatically as pure SSCOMA. The primary reason that the hybrids’ performance dropoff is less
dramatic is that remappings occur only every N (e.g., 64) remote refetches, not on every remote
access as in S-COMA. In a worst case, the relative cost between the hybrid models and CC-NUMA

under high memory pressure can be represented as:

Nremote.hybrid + Ncold.hybrid > Nremote.ccnuma7 (4)

Toverhead.hybrid > Toverhead.ccnuma ~ 0. (5)

Relations (1), (2) and (3) suggest that one way to improve the hybrid models at low memory
pressure is to accelerate their convergence to S-COMA. Likewise, relations (4) and (5) suggest that
performance can be improved by throttling CC-NUMA + S-COMA transitions at high memory
pressure. Unlike SSCOMA, in which remapping is required for the architecture to operate correctly,
the hybrid architectures can choose to stop remapping and leave pages in CC-NUMA mode.

In summary, the performance of hybrid S-COMA /CC-NUMA architectures is significantly in-
fluenced by the memory pressure induced by a particular application. Since it is common for users
to run the largest applications they can on their hardware, the performance of an architecture at
high memory pressures is particularly important. Therefore, it is crucial to conduct performance
studies of S-COMA or hybrid architectures across a broad spectrum of memory pressures. An
improved hybrid architecture, motivated by the analysis above, that performs well regardless of

memory pressure is discussed in the following section.

11



3 Adaptive S-COMA

At low memory pressure, S-COMA outperforms CC-NUMA, but the converse is true at high mem-
ory pressure [16]. Thus, our goal when designing AS-COMA was to develop a memory architecture
that performed like pure S-COMA when memory for page caching was plentiful, and like CC-NUMA

when it is not.

To exploit S-COMA’s superior performance at low memory pressures, AS-COMA initially maps
pages in S-COMA mode. Thus, when memory pressure is low, AS-COMA will suffer no remote
conflict or capacity misses, nor will it pay the high cost of remapping (i.e., cache flushing, page
table remapping, TLB refill, and induced cold misses). Only when the page cache becomes empty
does AS-COMA begin remapping.

Like the previous hybrid architectures, AS-COMA reacts to increasing memory pressure by
evicting “cold” pages from, and remapping “hot” pages to, the local page cache. However, what
sets AS-COMA apart from the other hybrid architectures is its ability to adapt to differing memory
pressures to fully utilize the large page cache at low memory pressures and to avoid thrashing at
high memory pressures. It does so by dynamically adjusting the refetch threshold that triggers
remapping, increasing it when it notices that memory pressure is high. If the refetch threshold is
too low, remappings will occur too frequently, which leads to thrashing. Ifit is too high, remappings
that could be usefully made will be delayed. By dynamically adjusting the refetch threshold based
on both static information (e.g., the cost of relocating a page) and dynamic information (e.g., the

rate of page remappings), AS-COMA is able to adapt smoothly to differing memory pressures.

AS-COMA uses the kernel’s VM system to detect thrashing, as follows. The kernel maintains
a pool of free local pages that it can use to satisfy allocation or relocation requests. The pageout
daemon attempts to keep the size of this pool between free_target and free_min pages. Whenever
the size of the free page pool falls below free_min pages, the pageout daemon attempts to evict
enough “cold” pages to refill the free page pool to free_target pages. Only S-COMA pages are
considered for replacement. To replace a page, its valid blocks are flushed from the processor
cache, and then its corresponding global virtual address is remapped to its home physical address.
Cold pages are detected using a second chance algorithm: the TLB reference bit associated with
each S-COMA page is reset each time it is considered for eviction by the pageout daemon. If the

reference bit is zero when the pageout daemon next runs, the page is considered cold.

Under low to moderate memory pressure, allocation or relocation requests can be performed
immediately because there will be pages in the free page pool. However, at heavy memory pressure,

the pageout daemon will be unable to find sufficient cold pages to refill the free page pool. Whenever

12



the pageout daemon is unable to reclaim at least free_target free pages, AS-COMA begins allocating
pages in CC-NUMA mode under the assumption that local memory can not accommodate the
application’s entire working set. In addition, it raises the refetch threshold by a fixed amount to
reduce the rate at which “equally-hot” pages in the page cache replace each other. It also increases
the time between successive invocations of the pageout daemon. Should the number of hot pages
drop, e.g., because of a phase change in the program that causes a number of hot pages to grow
cold, the pageout daemon will detect it by detecting an increase in the number of cold pages. At
this point, it can reduce the refetch threshold.

Using this backoff scheme, the rate at which destructive flushing and remapping occurs is
decreased, as is the number of cold misses induced by remapping. In addition, the frequency at
which the pageout daemon is invoked is reduced, which eliminates context switches and pageout
daemon execution time. Overall, we found this back pressure on the replacement mechanism to
be extremely important. As will be shown in Section 5, it alleviates the performance slowdowns
experienced by R-NUMA or VC-NUMA when memory pressure is high.

AS-COMA’s conflict miss cost is identical to SCOMA’s when there are enough local free pages
to accommodate the application’s working set. In such cases, the remote refetch cost of AS-
COMA will be close to (Npagecache * Tpagecache). Until memory pressure gets high, N,.,, will grow
slowly. Eventually the page cache will no longer be large enough to hold all hot pages. Ideally
AS-COMA’s performance would simply degrade smoothly to that of CC-NUMA, (N,cpn * Trem), as
memory pressure approaches 100%. Realizable AS-COMA models will fare somewhat worse due to
the extra kernel overhead incurred before the system stabilizes. Nevertheless, AS-COMA is able to
converge rapidly to either S-COMA or CC-NUMA mode, depending on the memory pressure.

4 Performance Evaluation

4.1 Experimental Setup

All experiments were performed using an execution-driven simulation of the HP PA-RISC archi-
tecture called Paint (PA-interpreter)[17, 19]. Paint was derived from the Mint simulator[20]. Our
simulation environment includes detailed simulation modules for a first level cache, system bus,
memory controller, network interconnect, and DSM engine. It provides a multiprogrammed pro-
cess model with support for operating system code, so the effects of OS/user code interactions are
modeled. The simulation environment includes a kernel based on 4.4BSD that provides schedul-
ing, interrupt handling, memory management, and limited system call capabilities. The modeled

physical page size is 4 kilobytes. The VM system was modified to provide the page translation,
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allocation, and replacement support needed by the various distributed shared memory models. All
three hybrid architectures we study adopt BSD4.4’s page allocation mechanism and paging pol-
icy [10] with minor modifications. Free_min and free_target (see Section 3) were set to 5% and 7%
of total memory, respectively. We extended the first touch allocation algorithm [9] to distribute
home pages equally to nodes by limiting the number of home pages that are allocated at each node
to a proportional share of the total number of pages. Once this limit is reached, remaining pages
are allocated in a round robin fashion to nodes that have not reached the limit.

The modeled processor and DSM engine are clocked at 120MHz. The system bus modeled is
HP’s Runway bus, which is also clocked at 120MHz. All cycle counts reported herein are with
respect to this clock. The characteristics of the L1 cache, RACs, and network that we modeled are
shown in Table 3.

For most of the SPLASH2 applications we studied, the data sets provided have a primary
working set that fits in an 8-kbyte cache[22]. We, therefore, model a single 8-kilobyte direct-
mapped processor cache to compensate for the small size of the data sets, which is consistent with
previous studies of hybrid architectures[5, 12].

We model a 4-bank main memory controller that can supply data from local memory in 58
cycles. The size of main memory and the amount of free memory used for page caching was varied
to test the different models under varying memory pressures.

We modeled a sequentially-consistent write-invalidate consistency protocol. DSM data is moved
in 128-byte (4-line) chunks to amortize the cost of remote communication and reduce the memory
overhead of directory state information. As part of a remote memory access, the DSM engine writes
the received data back to the RAC or main memory as appropriate. Our CC-NUMA and hybrid
models are not “pure,” as we employ a 128-byte RAC containing the last remote data received as
part of performing a 4-line fetch. This minor optimization had a larger impact on performance
than we had anticipated, as is described in the next section. We do not consider different RAC

configurations in the hybrid architectures for this study. An initial relocation threshold of 32,

| Component | Characteristics |
L1 Cache Size: 8-kilobytes. 32 byte lines, direct-mapped, virtually indexed, physically tagged,
non-blocking, up to one outstanding miss, write back, 1-cycle hit latency
RAC 128 byte lines, direct-mapped, non-inclusive, non-blocking, up to one outstanding miss.
Networks 1 cycle propagation, 2X2 switch topology, port contention (only) modeled
Fall through delay: 4 cycles (ratio between remote to local memory access latencies - 3:1)

Table 3 Cache and Network Characteristics
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the number of remote refetches required to initiate a page remapping, is used in all three hybrid
architectures. The relocation thresholds were incremented by 8 whenever thrashing is detected by
AS-COMA’s software scheme or by VC-NUMA’s hardware scheme; R-NUMA does not employ a
backoff scheme. VC-NUMA uses a breakeven number of 16 for its thrashing detection mechanism.
We did not simulate VC-NUMA’s victim-cache behavior, because we considered the use of non-
commodity processors or busses to be beyond the scope of this study. Thus, the results reported
for VC-NUMA are only relevant for evaluating its relocation strategy, and not the value of treating
the page cache as a victim cache[12].

Finally, Table 4 shows the minimum latency required to satisfy a load or store from various
locations in the global memory hierarchy. The average latency in our simulation is considerably
higher than this minimum because of contention for various resources (bus, memory banks, net-
works, etc.), which we accurately model. The remote to local memory access ratio is about 3:1.

Note that our network model only accounts for input port contention.

4.2 Benchmark Programs

We used six programs to conduct our study: barnes, £ft, 1u, ocean, and radix from the SPLASH-2
benchmark suite [22] and em3d from a shared memory implementation of the Split-C benchmark [4,
3]. Table 5 shows the inputs used for each test program. The column labeled Home pages indicates
the number of shared data pages initially allocated at each node. These numbers indicate that
each node manages from 0.5 megabytes (barnes) to 2 megabytes (lu, em3d, and ocean) of home
data.

The Mazimum remote pages column indicates the maximum number of remote pages that are
accessed by a node for each application, which gives an indication of the size of the application’s
global working set. The [Ideal pressure column is the memory pressure below which S-COMA
and AS-COMA machines act like a “perfect” S-COMA, meaning that every node has enough free

memory to cache all remote pages that it will ever access. Below this memory pressure, S-COMA

| Data Location | Latency |
L1 Cache 1 cycle
Local Memory 58 cycles
RAC 23 cycles
Remote Memory | 147 cycles

Table 4 Minimum Access Latency
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and AS-COMA never experience a conflict miss to remote data, nor will they suffer any kernel or
page daemon overhead to remap pages.
Due to its small default problem size and long execution time, lu was run on just 4 nodes - all

other applications were run on 8 nodes.

5 Results

Figures 2 and 3 show the performance of CC-NUMA, S-COMA, and three hybrid CC-NUMA /S-
COMA architectures (AS-COMA, VC-NUMA, R-NUMA) on the six applications. The left column
in each figure displays the execution time of the various architectures relative to CC-NUMA, and

1. The right column in each figure displays

indicates where this time was spent by each program
where cache misses to shared data were satisfied?. Note that for readability, these graphs are
adjusted to focus on the remote data accesses, and thus the origin of the Y-axis is non-zero. We
simulated the applications across a range of memory pressures between 10% and 90%. Only one
result is shown for CC-NUMA, since it is not affected by memory pressure. As can be seen in the

graphs, the relative performance of the different architectures can vary dramatically as memory

pressures change. All results include only the parallel phase of the various programs.

Program Input parameters Home Pages Maximum Ideal
(per node) | Remote Pages | Pressure
barnes 16K particles 102 552 16
em3d 40K nodes,15%remote, 491 778 39
20 iters
FFT 256K Points, 390 1254 24
tuned for cache sizes
LU 1024x1024 matrix, 514 405 56
16x16 blocks, contiguous
ocean 2H8x258 ocean 473 356 57
radix 1M Keys, Radix = 1024 259 1306 17

Table 5 Programs and Problem Sizes Used in Experiments

YU-SH-MEM: stalled on shared memory. K-BASE: performing essential kernel operations (i-e., those required by
all architectures). K-OVERHD: performing architecture-specific kernel operations, such as remapping pages and
handling relocation interrupts. U-INSTR and U-LC-MFEM : performing user-level instructions or non-shared memory
operations. SYNC': performing synchronization operations.

2HOME: the local node is the data’s home, so it is supplied from local DRAM. S-COMA: misses satisfied from
the local page cache. RAC: misses satisfied from the local RAC. COLD: cold misses satisfied on a remote node,
including both essential cold misses and cold misses induced by remapping. CONF/CAPC: conflict/capacity misses
not satisfied locally but that instead result in remote accesses.
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5.1 Initial Allocation Schemes

We will first focus on the effect of the initial allocation policies. Recall from Table 5 that the “ideal”
memory pressure for the six applications ranged from 16% to 57%. Below this memory pressure,
the local page cache is large enough to store the entire working set of a node. To isolate the impact
of initially allocating pages in S-COMA, we simulated S-COMA and the hybrid architectures at
a memory pressure of 10%, when no page remappings beyond any initial ones will occur. Table 6
shows the percentage of remote pages that are refetched at least 32 times, and thus will be remapped
from CC-NUMA to S-COMA mode in R-NUMA or VC-NUMA, versus of the total number of remote
pages accessed. This percentage exhibits a broad range from under 1% in £ft to over 95% in 1u
and radix.

First, to illustrate the importance of employing a hybrid memory architecture over a vanilla
CC-NUMA architecture, examine their relative results at 10% memory pressures, in Figures 2 and
3. Under these circumstances, AS-COMA, like S-COMA, outperforms CC-NUMA by 20-35% for
four of the applications (lu, radix, barnes, and em3d). Looking at the hybrid architectures in
isolation, we can see that for radix, AS-COMA outperforms R-NUMA and VC-NUMA by 17%.
In radizx, the percentage and total number of remote pages that need to be remapped are both
quite high, 98% and 10236 respectively. In the other applications, the initial page allocation policy
had little impact on performance. There is no strong correlation between the number of pages that
need to be remapped and performance. We can observe a 5% performance benefit in 1u, where
the percentage of relocated remote pages is very high (99%), but the total number is fairly small
(1606).

There are two primary reasons why the initial allocation policy did not have a stronger impact
on performance. First, our interrupt and relocation operations are highly optimized, requiring only
2000 and 6000 cycles, respectively, to perform. Thus, the impact of the unnecessary remappings

and flushes is overwhelmed by other factors. Second, as an artifact of our experimental setup,

Program | Total Remote Pages | Relocated Pages | % of Relocated Pages |

barnes 4416 3498 80%
em3d 6224 1868 29%
FFT 10032 5 0.05%
LU 1620 1606 99%
ocean 2848 569 20%
radix 10448 10236 98%

Table 6 Number of Remote Pages Ever Accessed versus Conflicted Frequently
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the initial remappings for several applications were not included in the performance results, as
they took place before the parallel phase when our measurements are taken. This was the case
for barnes and em3d. The final two applications, £ft and ocean, only access a small number of
remote pages enough times to warrant remapping, and thus the impact of initially mapping pages
in S-COMA mode is negligible.

In summary, if memory pressure is low and local pages for replication are abundant, an S-COMA-
preferred initial allocation policy can improve the performance hybrid architectures moderately by
accelerating their convergence to pure S-COMA behavior. However, the performance boost is

modest.

5.2 Thrashing Detection and Backoff Schemes

The performance of hybrid DSM architectures depends heavily on the memory pressure. Perfor-
mance seriously degrades when the page cache cannot hold all “hot” pages and those pages start
to evict one another. Intuitively, when this begins to occur, the memory system should simply
treat the page cache as a place to store a reasonable set of hot pages, and stop trying to fine tune
its contents since this tuning adds significant overhead. Previous studies have not considered the
kernel overhead (T,yerhead), but we found it to be very significant at high memory pressures. Once
the page cache holds only hot pages, further attempts to refine its contents lead to thrashing, which
involves unnecessary flushing of hot data, cache flushes, and induced cold misses. Since one hot
page is replacing another, the benefit of this remapping is likely to be minimal compared to the
cost of the remapping itself. As a result, the performance of a hybrid architecture will quickly drop
below that of CC-NUMA if a mechanism is not put in place to avoid thrashing. As described in
Section 3, the pageout daemon in AS-COMA detects thrashing when it cannot find cold pages to
replace, at which point it reduces the rate of page remappings, going so far as to stop it completely if
necessary. As can be seen in Figures 2 and 3, this can lead to significant performance improvements
compared to R-NUMA and VC-NUMA under heavy memory pressure.

We can divide the six applications into two groups: (i) applications where there are sufficient re-
mote conflict misses that handling thrashing effectively can lead to large performance gains (barnes,
em3d, and radix), and (ii) applications in which minimal efforts to avoid thrashing are sufficient
for handling high memory pressure (£ft, ocean, and 1u).

The behavior of em3d shows the danger of focusing solely on reducing remote conflict misses
when designing a memory architecture. As shown in Figure 2, the performance of em3d on the
hybrid architectures is quite sensitive to memory pressure. R-NUMA outperforms CC-NUMA
until memory pressure approaches 70%, after which time its performance drops quickly. CC-NUMA
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outperforms R-NUMA by 5% at 70% memory pressure and by 50% at 90%. Looking at the detailed
breakdown of where time is spent, we can see that increasing kernel overhead is the culprit. In em3d,
approximately 29% of remote pages, i.e., 230 pages, are eligible for relocation (see Table 6), but at
70% memory pressure there are only 210 free local pages. It turns out that for em3d, most of the
remote pages ever accessed are in the node’s working set, i.e., they are “hot” pages. Thus, above
70% memory pressure, R-NUMA begins to thrash and its performance degrades badly. Looking at
the right column of Figure 2, we can see that this performance dropoff occurs even though there
are significantly fewer remote conflict misses (CONF/CAPC) in R-NUMA than in CC-NUMA or
AS-COMA. The cost of constantly remapping pages between CC-NUMA and S-COMA mode and
the increase in remote cold misses overwhelms the benefit of the reduced number of remote conflict
misses. This behavior emphasizes the importance of detecting thrashing and reducing the rate of
remappings when it occurs.

Recognizing this problem, VC-NUMA uses extra hardware to detect thrashing. However, its
mechanism is not as effective as AS-COMA’s. VC-NUMA starts to underperform CC-NUMA at
the same memory pressure that R-NUMA does, 70%. While VC-NUMA outperforms R-NUMA by
22% at 90% memory pressure, it underperforms CC-NUMA by 27% and AS-COMA by 31%. In
contrast, AS-COMA outperforms CC-NUMA even at 90% memory pressure, when the other hybrid
architectures are thrashing. It does so by dynamically turning off relocation as it determines that
this relocation has no benefits because it is simply replacing hot pages with other hot pages. This
results in more remote conflict/capacity misses than the other hybrid architectures, but it reduces
the number of cold misses caused by flushing pages during remapping and the kernel overhead
associated with handling interrupts and remapping. As a result, ASS-COMA outperforms VC-
NUMA by 31% and R-NUMA by 53% at 90% memory pressure. Moreover, despite having only
a small page cache available to it and a remote working set larger than this cache, AS-COMA
outperforms CC-NUMA.

Barnes exhibits very high spatial locality. It accesses large dense regions of remote memory, and
thus can make good use of a local SSCOMA page cache®. As shown in in Table 5, barnes’s ideal
memory pressure is 16%. Like em3d, most of the remote pages that are accessed are part of the
working set and “hot” for long periods of execution. We observed that thrashing begins to occur
at 50% memory pressure. As in em3d, R-NUMA reduces the number of remote conflict/capacity

misses at high memory pressures, at the cost of increasing kernel overhead and remote cold misses.

®Note that barnes is very compute-intensive, and a problem size that can be simulated in a reasonable amount of
time requires only approximately 100 home pages per node of data. Since there are only about 50 free pages per
node available for page replication at 70% memory pressure, we did not simulate barnes at higher memory pressures
since the results would be heavily skewed by small sample size effects.
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As a result, it is able to outperform CC-NUMA at low memory pressure, but is only able to break
even by the time memory pressure reaches 70%. Similarly, VC-NUMA’s backoff mechanism is not
sufficiently aggressive at moderate memory pressures to stop the increase in kernel overhead or cold
misses. In particular, VC-NUMA only checks its backoff indicator when an average of two replace-
ments per cached page have occurred, which is not sufficiently often to avoid thrashing. As shown
in the previous study [12], VC-NUMA does not significantly outperform R-NUMA until memory
pressure exceeds 87.5%. Once again, AS-COMA’s adaptive replacement algorithm detects thrash-
ing as soon as it starts to occur, and the resulting backoff mechanism causes performance to degrade
only slightly as memory pressure increases. As a result, it consistently outperforms CC-NUMA by
20% across all ranges of memory pressures, and outperforms the other hybrid architectures by a

similar margin at high memory pressures.

Unlike barnes, radix exhibits almost no spatial locality. Every node accesses every page of
shared data at some time during execution. As such, it is an extreme example of an application
where fine tuning of the S-COMA page cache will backfire - each page is roughly as “hot” as any
other, so the page cache should simply be loaded with some reasonable set of “hot” pages and
left alone. With an ideal memory pressure of 17% and low spatial locality, the performance of
pure SSCOMA is 6.7 times worse than CC-NUMA’s at memory pressures as low as 30%. Although
the performance of both R-NUMA and VC-NUMA are significantly more stable than that of S-
COMA, they too suffer from thrashing by the time memory pressure reaches 70%. The source of
this performance degradation is the same as in em3d and barnes - increasing kernel overhead and
(to a lesser degree) induced cold misses. Once again, R-NUMA induces fewer remote accesses than
CC-NUMA, but the kernel overhead required to support page relocation is such that R-NUMA
underperforms CC-NUMA by 75% at 70% memory pressure and by almost a factor of two at 90%
memory pressure. Once again, VC-NUMA’s backoff algorithm proves to be more effective than
R-NUMA’s, but it still underperforms CC-NUMA by roughly 40% at high memory pressures. AS-
COMA, on the other hand, deposits a reasonable subset of “hot” pages into the page cache and then
backs off from replacing further pages once it detects thrashing. As a result, even for a program
with almost no spatial locality, AS-COMA is able to converge to CC-NUMA-like performance (or
better) across all memory pressures. At 90% memory pressure, AS-COMA outperforms VC-NUMA
by 35% and R-NUMA by 90% at high memory pressures, and it remains within 5% of CC-NUMA’s
performance. The slight degradation compared to CC-NUMA is due to the short period of thrashing
that occurs before AS-COMA can detect it and completely stop relocations.

Applications in the second category (fft, ocean, and lu) exhibit good page-grained locality.

All three applications only have a small set of “hot” pages, which can be easily replicated using
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a small page cache, or references to remote pages are so localized that the small (128-byte) RAC
in our simulation was able to satisfy a high percentage of remote accesses. As a result, thrashing
never occurs and the various backoff schemes are not invoked. Thus, the performance of the three

hybrid algorithms is almost identical.

The performance results for £ft and ocean are almost identical, albeit for different reasons.
For these applications, all of the architectures performed equally well, except for pure S-COMA,
which performs poorly at high memory pressures. As can be seen in Table 6, only a tiny fraction
of pages in £t are accessed enough to be eligible for relocation, so all of the hybrid architectures
effectively become CC-NUMAs. S-COMA must maintain inclusion between the processor cache
and the page cache, so kernel overhead due to thrashing occurs at 90% memory pressure, which
causes performance to drop significantly. Somewhat surprisingly, ££t has such high spatial locality
in its references to remote memory that the 128-byte RAC plays a major role in satisfying remote
accesses locally. The reason that performance is stable across all memory pressures in ocean can
be seen in the right hand graph of Figure 3. Even at 90% memory pressure, only 3% of cache
misses are to remote data, and most such accesses can be supplied from a local S-COMA page or
the RAC. As a result, all of the architectures other than pure S-COMA, which suffers the same

problem as in £ft, perform within 3% of one another.

Finally, in 1u, each process accesses every remote page enough times to warrant remapping (see
Table 6), similar to radix. However, every process uses each set of shared pages in the problem
set for only a short time before moving to another set of pages. Thus, unlike radix, only a small
set of remote pages are active at any time, and a small page cache can hold each process’s active
working set completely. So, while 7% of CC-NUMA’s cache misses must be satisfied by remote
nodes, practically all cache misses are satisfied locally in the other architectures. As a result,
all of the hybrid architectures outperform CC-NUMA by approximately 33% across all memory
pressures. Even pure S-COMA outperforms CC-NUMA at a 90% memory pressure, although its

overall performance is 15% worse than the hybrid architectures because of load imbalance.

In summary, for applications that do not suffer frequent remote cache misses or for which the
active working set of remote pages is small at any given time, all of the hybrid architectures perform
quite well, often outperforming CC-NUMA. However, for applications with less spatial locality or
larger working sets, the more aggressive remapping backoff mechanism used by AS-COMA is crucial
to achieving good performance. In such applications, AS-COMA outperformed the other hybrid
architectures by 20% to 90%, and either outperformed or broke even with CC-NUMA even at

extreme memory pressures. Given programmers’ desire to run the largest problem size that they
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can on their machines, this stability of AS-COMA at high memory pressures could prove to be an
important factor in getting hybrid architectures adopted.

6 Conclusions

The performance of hardware distributed shared memory is governed by three factors: (i) remote
memory latency, (ii) the number of remote misses, and (iii) the software overhead of managing
the memory hierarchy. In this paper, we evaluated the performance of five DSM architectures
(CC-NUMA, S-COMA, R-NUMA, VC-NUMA | and AS-COMA) with special attention to the third
factor, system software overhead. Furthermore, since users of SMPs tend to run the largest applica-
tions possible on their hardware, we paid special attention to how well each architecture performed

under high memory pressure.

We found that at low memory pressure, architectures that were most aggressive about mapping
remote pages into the local page cache (S-COMA and AS-COMA) performed best. In our study, S-
COMA and AS-COMA outperformed the other architectures by up to 17% at low memory pressures.
As memory pressure increased, however, it became increasingly important to reduce the rate at
which remote pages were remapped into the local page cache. S-COMA’s performance usually
dropped dramatically at high memory pressures. The performance of VC-NUMA and R-NUMA
also dropped at high memory pressures, albeit not as severely as S-COMA, due to thrashing. This
thrashing phenomenom has been largely ignored in previous studies, but we found that it had a
significant impact on performance, especially at the high memory pressures likely to be preferred

by power users.

In contrast, AS-COMA’s software-based scheme to detect thrashing and reduce the rate of page
remappings caused it to outperform VC-NUMA and R-NUMA by up to 90% at high memory
pressures. AS-COMA is able to fully utilize even a small page cache by mapping a subset of
“hot” pages locally, and then backing off further remapping. This mechanism caused AS-COMA to
outperform even CC-NUMA in five out of the six applications we studied, and only underperform

CC-NUMA by 5% in the sixth.

Consequently, we believe that hybrid CC-NUMA /S-COMA architectures can be made to per-
form effectively at all ranges of memory pressures. At low memory pressures, aggressive use of
available DRAM can eliminate most remote conflict misses. At high memory pressures, reducing
the rate of page remappings and keeping only a subset of “hot” pages in the small local page cache

can lead to performance close to or better than CC-NUMA. To achieve this level of performance,
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the overhead of system software must be carefully considered, and careful attention must given to

avoiding needless system overhead. AS-COMA achieves these goals.
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