CSTD-98-001
FAST ISOSURFACE EXTRACTION USING
QUASI-MONTE CARLO METHODS

Xu Ji

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science
The University of Utah

March 1998

Copyright (© Xu Ji 1998

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Xu Ji

This thesis has been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory.

Chair: Krzysztof Sikorski

Frank Stenger

Christopher Johnson

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the thesis of Xu Ji in its final form and have
found that (1) its format, citations, and bibliographic style are consistent and acceptable;
(2) its illustrative materials including figures, tables, and charts are in place; and (3) the
final manuscript is satisfactory to the Supervisory Committee and is ready for submission
to The Graduate School.

Date Krzysztof Sikorski
Chair, Supervisory Committee

Approved for the Major Department

Robert Kessler
Chair/Dean

Approved for the Graduate Council

Ann W. Hart
Dean of The Graduate School

ABSTRACT

A new algorithm for isosurface extraction is proposed and implemented. The
algorithm is based on the new mathematical understanding of the theory of the
quasi-Monte Carlo methods. Different from the general isosurface extracting meth-
ods, which work on the whole data set, this algorithm works on a subset of the orig-
inal large three-dimensional data set, which is generated by the quasi-Monte Carlo
method. The isosurface is generated on this subset data as an approximation to the
isosurface generated from the whole data set. Hammersley, Halton and Hyperbolic
Cross points are used as the quasi-Monte Carlo points in the implementation.

The results show that the QMC techniques enjoy a linear speedup with the
number of QMC points. For large data sets, we usually can reduce the data
size remarkbaly and still get a good representation of the original isosurface. The
advantage of the techniques becomes more prominent when the data size gets larger.
The QMC points generally generate visually better and smoother isosurfaces and
these isosurfaces represent the overall shape of the original isosurfaces better than
a regular subset of the original data.

The preprocessing of the QMC isosurface extraction might be time consuming.
But this is a one-time process. After it is done, the postisosurface extraction is

very fast.

To my family

CONTENTS

ABSTRACT ... v
LIST OF FIGURES viii
ACKNOWLEDGEMENTS X
CHAPTERS
1. INTRODUCTION e 1
1.1 The Problem of Isosurface Extraction 1
1.2 Isosurface Extracting Methods. 3
1.2.1 Geometric Space Decomposition Methods 3
1.2.1.1 Marching Cubes 3
1.2.1.2 Octrees . ..o 4
1.2.1.3 Extrema Graphs 4
1.2.2 Value Space Decomposition Methods 5
1.2.2.1 The Active List o 6
1.2.2.2 The Span Filter 6
1.2.2.3 Sweeping Simplices 7
1.2.2.4 NOISE 8
1.3 Data Reduction Methods 9
1.3.1 Geometry Extraction 10
1.3.2 Thresholding 10
1.3.3 Probing ... 10
1.3.4 Decimation 11
1.4 Quasi-Monte Carlo Methods 11
1.5 Isosurface Extraction Using Quasi-Monte Carlo Methods 13
2. QUASI-MONTE CARLO POINTS GENERATION........... 16
2.1 Hammersley and Halton Points 16
2.2 Hyperbolic Cross Points. 17
3. QUASI-MONTE CARLO ISOSURFACE EXTRACTION FOR
STRUCTURED GRIDS 22
3.1 Data Sets ... 23
3.2 Interpolation on the Structured Grids 25
3.2.1 Search in Structured Grids 25
3.2.2 Linear Interpolation....... 26

3.2.3 Cubic Polynomial Interpolation 26

3.2.4 Numerical Results 27

3.3 QMC and Regular Points Comparisons 30
3.3.1 QMC and Regular Points Comparisons 31
3.3.2 Subsampling Vs. Interpolation for Hyperbolic Cross
Points 34
3.4 Data Reduction 37
3.5 DISCUSSION . oot 41
4. QUASI-MONTE CARLO ISOSURFACE EXTRACTION FOR
UNSTRUCTURED GRIDS 42
4.1 Data Sets . . 43
4.2 Local Natural Coordinate 43
4.3 Search on Unstructured Grids 46
4.3.1 Kd-Trees . .. 47
4.3.2 Searching Using Kd-Trees 48
4.3.2.1 Kd-Tree Construction 48
4.3.2.2 Traversing the Kd-Tree 48
4.3.2.3 Point Insidea Cell oo 50
4.4 Interpolation on the Unstructured Grids 50
4.4.1 Linear Interpolation.......... 51
4.4.2 Quadratic Interpolation 51
4.4.3 Numerical Results 52
4.5 QMC and Regular Points Comparisons 57
4.6 Data Reduction 61
A7 DISCUSSION . ottt 65
5. DISCUSSION AND CONCLUSIONS 67
REFERENCES 69

Vil

2.1

2.2
2.3

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8
3.9
3.10
4.1
4.2
4.3
4.4

4.5

LIST OF FIGURES

Three-dimensional Hammersley points. The total number of points is

D00, 18
Three-dimensional Halton points. The total number of points is 500. . 19

Three-dimensional Hyperbolic Cross points form =2 and r; = 1,5 =
1,2,3. The total number of points is 495.. 21

Isosurfaces of some structured data sets. 24

Comparisons between linear and cubic polynomial interpolations. One-

fourth of the original data size is used for both data sets. 28
Comparisons between linear and cubic polynomial interpolations. One-
sixteenth (1/16) of the original data size is used for both data sets. . 29
Comparison between QMC and regular points for SPHERE. One-
eighth of the original data is used, which is 62500 points. 32

Comparison between QMC and regular points for SEIS. One-eighth
of the original data is used, which 62500 points. 33

Comparison between subsampling (for Hyperbolic Cross points) and
interpolation (for Hammersley and Halton points) for SPHERE. The
number of points is 10660. 35

Comparison between subsampling (for Hyperbolic Cross points) and
interpolation (for Hammersley and Halton points) for SEIS. The num-

ber of points is 10660. 36
Data reduction comparisons for SPHERE. 38
Data reduction comparisons for SEIS. 39
Data reduction perfomance on data sets SPHERE and SEIS. 40
[sosurfaces of some unstructured data sets. 44
Volume coordinate for a point inside a tedrahedron. 45
Ten points used in quadratic interpolation. 51

Comparisons between linear and quadratic interpolation. Half of the
original data size is used for each data set. 53

Comparisons between linear and quadratic interpolation. One-sixteenth
(1/16) of the original data size is used for each data set. 54

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13

Time spent in linear interpolation and NOISE isosurface extraction
for different number of QMC points. oL

Comparison between QMC and regular points for HEART. One-eighth
of the original data size is used (1438 points).

Comparison between QMC and regular points for TORSO. One-eighth
of the original data size is used (4367 points).

Comparison between QMC and regular points for HEAD. One-eighth
of the original data size is used (17240 points).

Data reduction comparisons for HEART.
Data reduction comparisons for TORSO.
Data reduction comparisons for HEAD.

Data reduction performance.,

X

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Kris Sikorski, for his guidance and
encouragement in my thesis research. He is always patient and always gives me
valuable suggestions. I would also like to thank my committee member Dr. Chris
Johnson, who allowed me to use the NOISE program and a program to generate 3D
tedrahetrons from discrete points. I am in debt to my committee member Professor
Frank Stenger for his review of my thesis.

Dr. Yarden Livnat helped me with a lot of questions, especially he explained
many details of the NOISE algorithm that he designed.

I would like to specially thank Professor Gerard T. Schuster for letting me use

his codes to generate the Hammersley and Halton points.

CHAPTER 1

INTRODUCTION

Scientific visualization has played an important role in investigating and under-
standing large data sets, and isosurface extraction and visualization is one of the
most effective and powerful techniques for the investigation of three-dimensional
scalar data sets. General isosurface extraction methods use the whole data set,
which might be very large. Significant efforts have been undertaken in organizing
data structures in order to speed up the process.

Recently, a mathematical breakthrough was achieved in understanding the tract-
ability of multidimensional integrations using nearly-optimal quasi-Monte Carlo
methods. These new methods have been successfully applied to exploration geo-
physics, financial integrals and computer graphics. Inspired by the new mathemat-
ical insights and its successful applications, we apply this method for extracting
isosurface from large three-dimensional data sets.

In this chapter, we review the general isosurface extracting methods, data reduc-
tion methods, the quasi-Monte Carlo theory, and propose our procedure of using

the quasi-Monte Carlo (QMC) methods for extracting isosurfaces.

1.1 The Problem of Isosurface Extraction
The problem of isosurface extraction from a volumetric data set can be formally

stated as follows (Cignoni et al., 1996):

A volumetric scalar data set is defined as a pair (V, W), where V = {v; €
R4 = 1,..,m} is a finite set of points in the three-dimensional real

space, and W = {w; € R,i = 1,...,m} is a corresponding set of scalar

values. Elements of V' are sampling points in a domain Q C R®, for a

tri-variate scalar field W = f(x,y, 2), i.e., w; = f(v;),i = 1,...,m.

A discrete model for volume data sets (V, W) is a pair (X, ®), where ¥ is
a subdivision of) into cells o4, ..., 0,, and ® is a corresponding family of
real tri-variate functions ¢; : 0; — R,7 = 1,...,n, which interpolate the

values of W at all points of V:
Vi=1l.m,Vy=1.n,(v; € 0;) = (;(v;) = w;).

If functions of ® are coincident at the common boundary of adjacent cells

of ¥, then a continuous function ¢ is defined piecewise by ® on X:

o(p) = ¢i(p) 1f peojVi=1,..n.

Function ¢ is in practice an estimate of the measured function f over 2.

Given ¢ € R, the set S(q) ={p € Q | ¢(p) = ¢} is called an isosurface of
¢ at value ¢. If ¢ is continuous, and ¢ is not an extreme value of ¢, then
S(q) is a 2-manifold embedded in R®, possibly with a one-dimensional
boundary contained in the boundary of 2. S(q) is defined piecewise on
the cells of ¥: each cell o; € X such that min, ¢; < g < max,;¢;, ¢; is
called active at ¢, and it contributes to S(¢) for a patch corresponding to

the locus of points
Silg) ={peo; | &;(p) =a}.

The isosurface extraction problem consists in approximating all patches

S;i(q) that correspond to active cells, given (X, ®) and g.

The data set is often generated from three-dimensional images or simulation
techniques, such as from finite difference or finite element methods. When the data
set is very large, extracting an isosurface can be a large computational task. Rather
than finding a global solution one can seek a local approximation within each cell

in Y. Hence, isosurface extraction becomes a two-stage process: locating the cells

that intersect the isosurface, and then locally approximating the isosurface inside
each such cell.

Traditional methods for isosurface extraction, such as the Marching Cube, an-
alyze in turn every cell of X, and for each active cell compute the corresponding
isosurface patch. More recent techniques are aimed at avoiding analyzing non-active

cells.

1.2 Isosurface Extracting Methods
Early techniques for generating isosurfaces began as three-dimensional exten-
sions to the image processing problem of finding two-dimensional contours. These
approaches required substantial computational logic, and not all of them were fool-
proof. More recent approaches are more algorithmic, and can generally guarantee
a correct solution.

We review different approaches to the general isosurface extraction problem.

1.2.1 Geometric Space Decomposition Methods
Originally, only structured grids were available as an underlying geometry. Struc-
tured grids impose order on the given cell set. This fact helps to keep the geometric
complexity of the entire cell set in the geometry domain. By utilizing this or-
der, methods based on the geometry of the data set could take advantage of the
coherence between adjacent cells. Isosurface can be generated by searching over

the geometric space. The isosurface extraction problem can be defined as follows

(Livnat et al., 1995):

Geometric Search: Given a point ¢ € [min(W), maz(W)] and a set of
cells ¥ in Q, where each cell is associated with a set of values {¢;} € W,

find the subset of ¥ which an isosurface of value ¢ intersects.

1.2.1.1 Marching Cubes
Marching cubes algorithm, which was proposed by Lorensen and Cline (1987),
was one of the first constructive algorithms. It processes one cell o; at a time,

and generates its isosurface geometry immediately before moving to the next cell.

Its basic approach involves taking an l-vertex cube, looking at the scalar value at
each vertex, and determining if and how an isosurface would pass through it. This

algorithm has a complexity of O(n), where n is the number of cells.

1.2.1.2 Octrees

Wilhems and Van Gelder (1992) proposed the use of a branch-on-need octree, a
hierachical spatial decomposition data structure, to purge subvolumes while fitting
isosurfaces. The hierarchical nature of the octree enables searching to only the
lowest level nodes of the original data set containing at least one active cell. The
method adopts a geometric approach. The domain is limited to the case of regular
data sets or to curvilinear data sets defined on a warped regular grid.

Wilhelms and Gelder did not analyze the time complexity of the search phase
of their algorithm. However, octree decompositions are known to be sensitive to
the underlying data. If the underlying data contains some fluctuations or noise,
most of the octree will have to be traversed. The octree algorithm has a worst case
complexity of O(k + klog(n/k)), where n is the total number of cells in the scalar

field, and k is the number of active cells.

1.2.1.3 Extrema Graphs

Another geometric approach, based on the use of extrema graph, is proposed
by Itoh and Koyamada (1994). The nodes of the graph are the cells of the volume
which hold local extrema of the data values (local minima or maxima). FEach
edge of the graph keeps a list of the cells connecting its two end nodes. Given an
isovalue, an active edge is searched for in the extrema graph. The cells connected
to this edge are then sequentially scanned until an active one is found and, finally, a
propagation method is activated on this cell. Knowing how the isosurface intersects
the current cell enables the algorithm to move only to those neighbouring cells that
are guaranteed to intersect the isosurface. At the end of the process, boundary
cells need to be tested because of possibly isolated local extrema. The propagation
algorithm adopted uses a FIFO queue to store the identifiers of the adjacent active

cells to be visited, and marks those cells to avoid enqueuing them again. The

algorithm can be applied both to regular and irregular data sets. The complexity
of the algorithm is at best the size of the boundary list, which Itoh and Koyamada
estimate as O(n?/?).

Storage requirements for the extrema graph method can be high, since the
propagation search requires four links from each cell to its neighbors in addition to
the maximum and minimum values of its vertices. In addtion, the algorithm uses a
queue during the propagation search, yet the maximum required size of the queue

is unknown in advance.

1.2.2 Value Space Decomposition Methods

Another class of algorithms is based on interval search. The search is carried
out on the interval set and, for each active interval, on the corresponding active
cell. All such techniques apply to both regular and irregular data sets, but waste of
memory due to the loss of implicit spatial information makes them more suitable
for irregular data sets.

Efficient isosurface extraction for unstructured data set is more difficult, as no
explicit order, i.e., position and shape, is imposed on the cells, only an implicit one
that is difficult to utilize. Methods designed to work in this domain have to use
additional explicit information or revert to search over the value space, W. The
advantage of the latter approach is that one needs only to examine the minimum
and maximum values of a cell to determine if an isosurface intersects that cell.
Hence, the dimensionality of the problem reduces to two for scalar fields. For linear
tetrahedron cells we are working with, the minimum and maximum values of a cell
are located at the vertices.

These algorithms based on interval search can be stated formally as follows

(Livnat et al., 1995):

Interval Search: Given a number ¢ € [min(W), maz(W)] and given a

set of cells represented as intervals,

I ={[a;,b;]]} such that, a; b, €W

find I, C I such that,

la;, b)) € 1, iff a; < q < by

Posing the search problem over intervals introduces some difficulties. If the
intervals are of the same length or are mutually exclusive they can be organized
in an efficient way suitable for quick queries. However, it is much less obvious
how to organize an arbitrary set of intervals. Indeed, what distinguishes these
methods from one another is the way they organize the intervals rather than how
they perform searches.

Decomposing the value space, rather than the geometric space, has two ad-
vantages. First, the underlying geometric structure is of no importance, so this
decomposition works well with unstructured grids. Second, for a scalar field in 3-D,

the dimensionality of the search is reduced from three to only two.

1.2.2.1 The Active List

Giles and Haimes (1990) report an approach in which two sorted interval lists are
constructed in a preprocessing phase by sorting the cells” minimum and maximum
values. The global maximum range of each cell is also computed. Given an isovalue,
and active list containing all the active intervals is created by referring to the two
sorted lists. If the specified isovalue is changed by less than the global maximum
range with respect to the previous one, then the active list is augmented with the
intervals lying between the two isovalues. Only one of the original lists is used
in this process, depending on the sign of the isovalue’s change. The active list
is then purged of all the cells that do not intersect the new isosurface. Only the
cells corresponding to the intervals of the final active list are visited to extract the
isosurface. Livnat et al. showed that the complexity of this algorithm is O(n) in

time.

1.2.2.2 The Span Filter
A key issue in isosurface extraction is the size of the data set. Gallagher

(1991) addressed this issue by scanning the data set and generating a compressed

representation suitable for isosurface extraction. The range of data values is divided
into subranges, termed buckets. Each cell is then classified based on the bucket its
minimum value resides in and on how many buckets the cells range spans i.e. the
span of the cell. Cells are then grouped according to their span, and within each
such group the cells are further grouped according to their starting bucket. In
each such internal group, the representation is compressed according to a unique
id assigned to each cell. Rather than requiring a span list for every possible span
length, the method uses one span list to catch all the cells that span more than a
predefined number of buckets.

The use of this perspective stresses the importance of the first division into buck-
ets. The entire organization of the domain is controlled by only set of parameters,
the position of the original buckets. While this may help to ensure even distribution
in the first span, it does not provide control over the distribution of the cells in the
other spans. Furthermore, this division is not automated and has to be crafted by
trial and error for each new data set. Finally, the search algorithm has a complexity

of O(n) in time.

1.2.2.3 Sweeping Simplices

Shen and Johnson (1995) tried to overcome the limitations of span filter and
active list, by defining the sweeping simplices algorithm in which both sorted
lists of the active list algorithm, and the spatial decomposition into buckets of the
intervals of the span filter algorithm are present.

Sweeping simplices uses two ordered cell lists, a sweep list and a min list. Each
element in the sweep list contains a pointer to a cell, the cell’s maximum value,
and a flag. The sweep list is then sorted according the cell’s maximum value.
The min list contains the minimum value for each cell as well as a pointer to the
corresponding element in the sweep list and is ordered by the minimum values. The
initialization step requires a time of O(nlog(n)).

Given an isovalue, the sweeping simplices algorithm marks all the cells that
have a minimum value less than the given isovalue using the min list by setting

the corresponding flag in the sweep list. If an isovalue was previously given, then

the min list is traversed between the previous isovalue and the new one. The
corresponding flags in the sweep list are then set or reset based on whether the new
isovalue is greater or smaller than the previous isovalue.

Once the flags are changed, the sweep list is traversed starting at the first cell
with a maximum value greater than the new isovalue. The cells that intersect the
isosurface are those cells for which their corresponding flag is set. The complexity
of the algorithm is O(n) in both time and space.

The sweeping simplices algorithm uses a hierarchical data decomposition. At the
lowest level, the range of data values is subdivided into several subgroups. Other
levels are created recursively by grouping consecutive pairs from the previous level.
At the top level there exists a single subgroup with the range as the entire data set.
The cells are then associated with the smallest subgroup that contains the cell. Each
subgroup is then associated with a minimum and sweep list as described before.
[sosurface extraction is accomplished by selecting for each level the subgroup that
contains the given isovalue and performing the search using its minimum and sweep

lists.

1.2.2.4 NOISE

A common obstacle for all the interval methods was that the intervals were
ordered according to either their maximum or their minimum value. Both the
sweep algorithm and the minimum-maximum attempted to tackle this issue by
maintaining two lists of the intervals, ordered by the maximum and minimum
values. What was missing, however, was a way to combine these two lists into
a single list.

Livnat et al. (1995) proposed a new algorithm, which uses span space as the
underlying domain, and employs a kd-tree as a means for simultaneous ordering
the cells according to their maximum and minimum values.

This algorithm views the isosurface extraction problem not as a search over
intervals in W but rather as a search over points in W2. Livnat et al. (1995) define

the span space as follows:

The Span Space: Let X be a given set of cells, define a set of points
P = {p;} over W? such that,

Ve, € ¥ associate, p; = (a4, b;),

where a; = min;{q;},,b; = max;{q;}. and {¢;} are the values of the scalar

field f at vertices of cell ¢;.

Using this augmented definition, the isosurface extraction problem can be stated

as follows (Livnat et al., 1995):

The Span Search: Given a set of cells X, and its associated set of points
P, in the span space, and given a value ¢ € [min(W), max(W)], find the
subset P, C P, such that

Vizi,yi] € Pz <q and y; > q.

This algorithm has a worst case complexity of O(y/n+k) to locate the cells that
are intersected by the isosurface, where n is the total number of cells in the scalar
field, and k is the number of isosurface cells. This algorithm is nearly optimal in
the sense that for the typical case, k > \/n, it’s asymptotic cost is O(k), and every
algorithm has to cost at least O(k). The algorithm performs well for large and
small data sets and for any size of isosurface. The number of cells that intersect an
isosurface can also be found in O(y/n) time, which enables fast rough estimates of

the surface area and the corresponding volume encompassed by the isosurface.

1.3 Data Reduction Methods
For the problems of isosurface extraction, when the data set is very large, the cost
of computation might be huge, and the isosurface extraction becomes intractable.
Traditional isosurface extracting methods like Marching cubes search every cell in
the scalar field, more recent methods put efforts in reorganizing the data structures,
either in the geometric space or in the value space, so only those active cells are
verified. But all of these approaches work on the whole data set, the difference is

in using different ways for extracting those active cells.

10

Reducing data set size with preserved information content is an important
research problem. By reducing data size, reduction in computation and memory
requirement can be realized, which results in better interactive response. It is
important to be able to reduce the data size in order to visualize important features
of a large data set. Such techniques can be used to reduce image clutter and improve
the effectiveness of the visualization.

Various methods have been developed to reduce large data sets. In this section

we review some of these methods.

1.3.1 Geometry Extraction

Geometry extraction selects data based on geometric or topological characteris-
tics. A common extraction technique selects a set of points and cells that lie within
a specified range. This method has been used frequently in finite element analysis
to isolate the visualization to just a few key regions.

Another useful technique called spatial extraction, selects data set structure and
associated data attributes lying within a specified region in space. For example,
data may be selected within a given sphere.

Subsampling is a method that reduces data size by selecting a subset of the
original data. The subset is specified by choosing a parameter k, specifying that
every k' data point is to be extracted. Subsampling is not typically performed on
unstructured data because of its inherent complexity. A related technique is called

data masking, which selects every k' cell instead of every k" point.

1.3.2 Thresholding
Data thresholding selects data based on the values of data set attributes. For

example, one can select all points with a velocity magnitude greater than 1.0.

1.3.3 Probing
Probing is a method that obtains data set attributes by sampling one data set
(the input) with a set of points (the probe). Probing is also called resampling.
The result of the probing is a new data set (the output) with the topological and

11

geometric structure of the probed data set, and point attributes interpolated from
the input data set. Once the probing operation is completed, the output data set
can be visualized with any of the appropriate techniques.

One important application of probing converts irregular or unstructured data
to structured from using a volume of appropriate resolution as a probe to sample
the unstructured data. This is useful if we use volume rendering or other volume

visualization techniques to view the data.

1.3.4 Decimation

A decimation algorithm can be used after the isosurface has been extracted. The
goal of decimation algorithm is to reduce the total number of triangles in a trian-
gular mesh, preserving the original topology and forming a good approximation to
the original geometry. It is related to the subsampling techniques for unstructured
meshes. The differences are that decimation treats only triangular meshes, and
the choice of which point to delete is a function of a decimation criterion, also the
triangulation of the hole created by deleting the point is carried out in a way as to
preserve edges or other important features.

One of the decimation algorithms is polygon reduction technique. This technique

reduces the number of polygons required to model an object.

1.4 Quasi-Monte Carlo Methods

In general terms, the Monte Carlo method may be described as a numerical
method based on random sampling. A polish mathematician, Stanislaw Ulam, was
the first to develop and apply this method in large scale nuclear simulations (S.
Ulam, 1976, 1991). Since the 1940s, the Monte Carlo methods have been widely
used for solving multidimensional problems in various branches of science.

It is well known that, for a given error tolerance, the computational work re-
quired to numerically evaluate a d-dimensional integral for integrands with bounded
derivatives is on the order (1/¢)? with using of a regular grid discretization. The
integral becomes practically intractable when the dimension d is large. In the

classical Monte Carlo methods, the discretization points are randomly selected,

12

and the computational work is of the order (1/£)?, which is independent of d. This
makes multivariate integration for large d tractable. However The Monte Carlo
method has some disadvantages. For numerical integration, first, it yields only a
probabilistic bound on the integration error; second, it is not so much the true
randomness of the samples that is relevant, but rather that the samples should be
spread in a uniform manner over the integration domain. A determinisitic error
bound can be established if deterministic nodes are used.

Quasi-Monte Carlo methods can be succinctly described as deterministic versions
of Monte Carlo methods. The basic idea of it is to replace random samples in a
Monte Carlo method by well-chosen deterministic points. The main aim is to
select deterministic points for which the deterministic error bound is smaller than
or comparable to the probabilistic Monte Carlo error bound. It is proved that
quasi-Monte Carlo method with judiciously chosen deterministic points usually
leads to a faster rate of convergence than a corresponding Monte Carlo method.

Recently, a theoretical breakthrough was achieved in the understanding of the
computational complexity of several quasi-Monte Carlo methods for multivariate
integration. Wozniakowski (1991) proved that some of the intractable problems
can be made tractable by a quasi-Monte Carlo approach. One of such problems is
integration; another is surface reconstruction, in which discrete information is used
to approximate a multivariate function, a technique that is the basis for medical
imaging and many other applications.

Wozniakowski (1991) showed that the discretization based on the shifted Ham-
mersley points is nearly-optimal for the integration problem in the average case
setting, with the computational work H(e) = O(Z[log(1)]?), where ¢ = (d_Tl) This
means that to guarantee the expected error of the integration to be at most ¢
(with respect to a large class of probability measures) one must use at least H(¢)
evaluations, no matter what discretization points are chosen. It has also been shown
that for the Hammersley points and for the related Halton points the exponent ¢
is respectively d — 1 and d.

Temlyakov (1987, 1991, 1993) introduced the hyperbolic cross points. He proved

13

that hyperbolic cross points are nearly optimal sampling points for multivariate

function approximation in the average case setting.

1.5 Isosurface Extraction Using Quasi-Monte Carlo
Methods

G. Schuster and K. Sikorski (1991, 1997) applied the quasi-Monte Carlo method
for the three-dimensional migration in their geophysical research, and the results
showed great advantage of this approach. The quasi-Monte Carlo methods have
also been applied to financial integrals (S. Paskov and J. Traub, 1997), computer
graphics (A. Keller, 1997) and other research areas. Niederreiter (1992) discusses
the quasi-Monte Carlo methods and their applications. Inspired by the new insight
and understanding of the quasi-Monte Carlo method, we apply this method in the
three-dimensional isosurface extraction.

As we discussed in previous sections, isosurface extraction becomes difficult when
data sizes get very large. Various algorithms have been developed to reduce the data
size for fast isosurface extraction. In this thesis, we propose and implement a new
isosurface extracting method, which takes a different approach from all previous
methods. The idea is similar to some of the data reduction algorithms, instead of
working on the whole data set, we choose a subset of data from the original large
data set, and then use this subset to construct an approximation of the original
isosurface.

The new algorithm uses the quasi-Monte Carlo methods to generate a set of
quasi-Monte Carlo points as our resampling points. Then the original large data
sets are interpolated or directly subsampled to these quasi-Monte Carlo data sets.
This new subset is then used in the isosurface extraction.

The new algorithm takes the following steps:

1. Preprocessing;:

(a) Decide on how many quasi random points we want to use, and generate

them by a specific quasi-Monte Carlo method.

14

(b) Interpolate or directly subsample the scalar value into the three-dimensional

quasi-Monte Carlo points.

(c¢) Generate a new geometric representation based on these three-dimensional

points.
2. Isosurface extraction:

e Use either of the previous methods to extract the desired isosurface from

the new data set.

This algorithm is applicable for both structured and unstructured data, and also
for time dependant data. In this thesis, three types of quasi-Monte Carlo points:
Hammersley, Halton and Hyperbolic cross points are used to verify the performance
of the algorithm.

As only a subset of the original large data set is used, the cost of the isosurface
extraction can be reduced remarkably. Reducing the large data sets into smaller
ones by using quasi-Monte Carlo methods allows us to interactively render the
approximate isosurface. Though the preprocessing might not be trivial, but once
it is completed, the isosurface construction becomes much less costly as compared
to the original data set.

The results show that the QMC techniques enjoy a linear speedup with the
decreasing number of QMC points. For large data sets, we usually can reduce the
data size remarkbaly and still get a good representation of the original isosurface.
The advantage of the techniques becomes more prominent when the data size gets
larger. The QMC points generally generate visually better and smoother isosurfaces
and these isosurfaces represent the overall shape of the original isosurfaces better
than a regular subset of the original data. The differences among different QMC
points are not prominent and depend on the data sets.

This thesis is organized into five chapters. Chapter 2 discusses the quasi-Monte
Carlo points generations. Chapter 3 applies the quasi-Monte Carlo isosurface

extraction techniques to some structured data sets. Chapter 4 presents the ap-

15

plication of the techniques to unstructured data sets. Finally, Chapter 5 contains

the conclusions.

CHAPTER 2

QUASI-MONTE CARLO POINTS
GENERATION

Three types of quasi-Monte Carlo points are used in this thesis - Hammersley,
Halton and Hyperbolic Cross points. This chapter discusses the algorithms for

generating these points.

2.1 Hammersley and Halton Points
The Hammersley and Halton points can be generated in a similar way. Let
P1s P2, ..., pqg be the first d prime numbers, where d is the dimension. Any integer

k > 0 can uniquely be represented by:

[log k] ,
k= Z aip;
=1
with a; € [0,}?]‘ - 1].

The radical inverse function @, is given by

[log k] _(i+1)
o, (k)= > aip; .

=1

We then define the sequence of vectors uy for k=1, 2, ... M — 1 as

ui_l = [q)pl(k)v (I)pz(k)v X (I)pd—l(k)]

with M = (plpg...pd_l)ﬂogd].
It is proved (Wozniakowski, 1991) that there exists a real number ¢* such that

the optimal on the average n sampling points in the unit cube [0, 1]¢ are given by

:L'k:i—zk

17
where 1 = (1,....1)T and
ze = ((k + t*)/”vui_l),k =1,2,...,n.

For t* = 0 the z;’s are the classical Hammersley points.

The Halton points z.’s are defined as
2= (ul),k=1,2,...,n.

Figure 2.1 shows an example of the three-dimensional Hammersley points, and

Figure 2.2 shows an example of the three-dimensional Halton points.

2.2 Hyperbolic Cross Points

Hyperbolic Cross points were introduced by Temlyakov (1987, 1991) for periodic
functions. These points are defined as a subset of grid points whose indices satisfy a
hyperbolic inequality. Temlyakov proved that the hyperbolic cross points are nearly
optimal sampling points for multivariate function approximation in the average case
setting. Wozniakowski (1992) extended it to the nonperiodic functions. He proved
that optimal or nearly optimal sampling points for the approximation problem
can be derived from Hyperbolic Cross points. He also exhibited nearly optimal
algorithms for multivariate function approximation.

Let us define a vector
7= [ry, ... rd

for y = 1,....d, where d is the number of dimensions and r; is the regularity of the
sampled function in j** dimension.

For given integer m, the hyperbolic cross X,, of sample points is given by

[y lq

Xo = (G o) (2.1)

where {; = 1,2,...,2%%3 — 1 j = 1,2,...,d, and § € A, where A is the set of all

nonnegative integers § for which the following condition is satisfied:

(ri +1)s; <m(rmm + 1),

d
J=

—_

where 7., = min(r;),7 =1, ...,d.

0.8

0.4

0.2

3-D Hammersley Points: Y-Z (X=0)

0.8

0.4

0.2

0O 02 04

3-D Hammersley Points: X-Y (Z=0)

0.6 0.8 1

0.8

0.6

0.4

0.2

18

3-D Hammersley Points: Z-X (Y=0)

Figure 2.1. Three-dimensional Hammersley points. The total number of points is

500.

0.4 0.6 0.8

0.2

19

3-D Halton Points: X-Y (Z=0)

0.8

0.6

0.4

O 02 04 06 08 1

3-D Halton Points: Y-Z (X=0) 3-D Halton Points: Z-X (Y=0)

e} -
o'f’;
ol
X
< | -
ot
N[
SH
I I I I O ’.’ I I 4 I
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
Y Z

Figure 2.2. Three-dimensional Halton points. The total number of points is 500.

20

Here n = card(X,). For the three-dimensional case,
n = 0(2"m?)

Choice for m depends on the size of the original data set. For smaller size (say
< 107 cells), a suitable choice for m may be 2 < m < 5. Whenever for large sizes 10?
and more, we could select m in the range [10, 18] or even larger. We stress that the
total number of Hyperbolic Cross points can not be arbitrarily chosen. To generate
more “flexible” set of points, we slightly modified the generation algorithm. In
Equation 2.1, when choosing I; = 1,2, ...,2%%3 — 1, the same pattern repeats 8 times
in each dimension. Now we change it to [; = 1,2,....2%"% — 1, where 2 < k < 5.
This change allows the same pattern to repeat 4 to 32 times as needed.

Figure 2.3 shows an example of the 3-D Hyperbolic Cross points for m = 2 and
r;=1,7=1,2,3.

21

3-D Hyperbolic Cross Points: X-Y (Z=0)
—

0.8

0.6

04

0.2

3-D Hyperbolic Cross Points: Y-Z (X=0) 3-D Hyperbolic Cross Points: Z-X (Y=0)
— —

0 0
o I P
© . ©
o+ S b
N x
< <
o I S -
~ - ~
o - S b
O I I I I O | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Y A
Figure 2.3. Three-dimensional Hyperbolic Cross points for m = 2 and

r; =1,7 =1,2,3. The total number of points is 495.

CHAPTER 3

QUASI-MONTE CARLO ISOSURFACE
EXTRACTION FOR STRUCTURED
GRIDS

Structured data is one of the main types in scientific visualization. Such data
sets are usually generated by finite-difference or other numerical techniques. In this
chapter, we apply the quasi-Monte Carlo (QMC) isosurface extraction technique
to structured data sets. We assume the data sets are in the Cartesian coordinates.
For structured data sets in other coordinates, a coordinate transformation can be
utilized first, and then the same technique can be applied.

The QMC isosurface extraction comprises of the following steps :

o QMC points generation: generate specified number of quasi-Monte Carlo points,

which will be used as the subdata set to extract the isosurfaces.

e Mesh generation: generate new geometry representation (tetrahedrons) based

on the QMC points.

e Interpolation/subsampling: interpolate or subsample function values from the

original data set into the QMC points.

o [sosurface extraction: extract the isosurfaces from the QMC data sets.

After the QMC data reduction, the original structured data becomes unstructured.

We use three types of QMC points in our implementation: Hammersley, Halton
and Hyperbolic Cross points. The algorithms generating these points are presented
in Chapter 2. The isosurface extraction algorithm used (NOISE algorithm) is

presented in Chapter 1. The Delauny algorithm is used in the mesh generation.

23

To test the new QMC isosurface extraction technique, we apply it to two struc-

tured data sets. Specificaly, we investigate the following questions:
e How essential is the interpolation technique?
o How efficient are different QMC point sets?
e How effective is this data reduction technique?

This chapter is intended to answer these questions. Specifically, we apply the
QMC technique to various structured data sets by using different interpolation
techniques, different QMC points, and different data reduction scales. We then

compare the results and draw conclusions.

3.1 Data Sets
Two structured data sets are used for testing. Some information about these
data sets is shown in Table 3.1.
The SPHERE is a synthetic data set of size 50 x 50 x 50. The function values

are calculated by the following quadratic function:
floy,z)=a" + 4>+ 22 — 0.4°

The second data set SEIS is from 3-D finite-difference seismic simulation. The
model used is a real model for the Salt Lake Basin. The data recorded are the
particle velocity, and the data size is 50 x 50 x 50. Both data sets contain 705894
tetrahedron cells.

The isosurfaces of the two data sets are shown in Figure 3.1.

Table 3.1 Data sets.

Name Source | Type SIZFE Cells
SPHERE | SYN | S-grid | 50 x 50 x 50 | 705894
SEIS FD | S-grid | 50 x 50 x 50 | 705894

SPHERE : isovalue =0

SEIS : isovalue = 0.49

Figure 3.1. Isosurfaces of some structured data sets.

24

25

3.2 Interpolation on the Structured Grids

After the QMC points are generated, the function values need to be interpolated
into these QMC points before extracting the isosurfaces. The interpolation tech-
niques might be crucial. If a low precision interpolation is used, the errors of the
interpolated function value are large, then the extracted isosurfaces are not smooth,
and might also lose some information. But usually higher order interpolation is
more costly. A lower order interpolation that provides enough precision, and hence
saves computation time, would be most useful.

The interpolation for structured grids is relatively simple. It includes the fol-

lowing two steps:

o Search for the cube in which the QMC point is located.

o Interpolate function value to the QMC point inside the cube.
In the second step, two types of interpolation techniques are tested:

e Linear interpolation.

e Cubic polynomial interpolation.

3.2.1 Search in Structured Grids
For structured data, each point can be referenced by the indices (¢, 7, k). Simil-
iarly, we can reference a cube in the structured grids by the indices of the vertex
that has the minimum x, y and z coordinates.
The search for a cube in which the QMC point is located is straightforward for the
structured grids. The indices of a cube which contains a QMC point ¢ = (¢, ¢y, ¢-)

can be calculated as follows:

o= qu,/hxj,
7 = lay/hyl,
k= LQZ/hZL

26

where (i,7,k) are the indices of the cube, and ha, hy, hz are the grid spacing in

each dimension.

3.2.2 Linear Interpolation
The tri-linear interpolation in three dimensions is the simplest interpolation
technique. To illustrate, we first give the formula of linear interpolation in one
dimension.

The linear interpolation in one dimension (say X) can be calculated as follows:

r — T
A=

Tit1 — Xy

si(z) = Ma)fi+ (1= A=) fir,

where z; and f; are the X-coordinate and the function value of the data point, x
and s;(x) are the X-coordinate and the interpolated function value at the QMC
point. Apparently we should have z; < x < x;4;.

The tri-linear interpolation is simply by applying the above formula to each of

the X-, Y- and Z-directions.

3.2.3 Cubic Polynomial Interpolation
The cubic polynomial interpolation uses a third order piece-wise polynomial
to interpolate the function values. This interpolation technique is widely used in
various applications.
Consider a 1-D tabulated function y; = y(x;),¢ = 1,...,n, and concentrate on
one particular interval z; < & < z;44. The cubic polynomial interpolation is given

by

!

sa(x) = a(@)y: + b(a)yirs + clx)y; + d(@)yip,

where y, is the second derivative of the function y(x) at x;, and can be calculated

by

y/»/ _ yz/'-|—1 + yz/'—1 - Qyz/'
! 2h

27

Yira — 41 + 6y — 4yicr + Yizo
4h2 ’

The coefficients a(x),b(x), c(x) and d(x) are defined as

. Tigp1 — X
Cl(l') - Tip1 — xi7
T — Z;
b = l—a= ’
(z) 0=
1
o) = o —ah?,

1
d(z) = 6(63 — b)h?,
where h = ;41 — x; 1s the grid spacing.
The cubic polynomial interpolation in three dimensions is simply applying the

above formula to each of the X-, Y- and Z-dimensions.

3.2.4 Numerical Results

In this section, we apply the above two interpolation techniques to two data sets,
and compare the results. The Hammersley points are used in the computation.

Figures 3.2 and 3.3 show the results by applying linear and cubic polynomial
interpolation to two structured data sets. The number of QMC points is 1/4 that of
the original data size for both data sets for Figure 3.2, and 1/16 for Figure 3.3. The
left columns are for the linear interpolation, and the right columns are for the cubic
polynomial interpolation. Table 3.2 shows the performance of the two interpolation
techniques on two data sets for using 1/4 of the original data. The numbers shown
in the table are the running time in seconds as implemented on IBM RS6000 with
512 MB of virtual memory.

Table 3.2 Interpolation performance
(Running time in seconds).

SPHERE SEIS
Linear Interpolation 30.23 30.98
Cubic Spline Interpolation 40.14 41.08
Mesh Generation (DELAUNY) 1833.3 | 2029.26
[sosurface Extraction (NOISE) 25.67 24.80

28

SPHERE : linear SPHERE : polynomial

SEIS : linear SEIS : polynomial

Figure 3.2. Comparisons between linear and cubic polynomial interpolations.
One-fourth of the original data size is used for both data sets.

29

SPHERE : linear SPHERE : polynomial

SEIS : linear SEIS : polynomial

Figure 3.3. Comparisons between linear and cubic polynomial interpolations.
One-sixteenth (1/16) of the original data size is used for both data sets.

30

The cubic polynomial interpolation is more accurate interpolation, which gives
more smooth isosurfaces. But the difference between the appearances of the images
is very small for both data sets. The explanation for this is that we are working
with linear tetrahedral cells. In this case the function values can be approximated

by using the linear formula:
Flooy.z) = az+ by + ez + d,

where a, b, ¢, and d are the coefficients of the polynomial, and x, y and z are the
global coordinates. The coefficients a, b, ¢, and d can be calculated by plugging in
the function value and coordinates of the four tetrahedron vertices into the above
formula and solving the four linear equations. For linear tetrahedral cells, linear
interpolation reaches the precision given in the original data.

In Table 3.2, we listed the running time needed for the interpolations. The
interpolation time in the table included the cube searching time. As expected, the
cubic polynomial interpolation takes a little more time than the linear interpola-
tion. Because the cube searching almost costs no time, the running time for the
interpolation increases linearly with the number of QMC points. These results will
also be seen in the following sections.

Also shown in Table 3.2, the time spent in interpolation is just a little more than
that spent in the isosurface extration, but the mesh generation takes a lot more
time.

Comparing the results, we draw the conclusion that linear interpolation is good
enough for the case of linear tetrahedral cells, and higher order cubic polynomial
interpolation does not yield much improvement (though it might be better for
larger compression ratios). Therefore, the rest of the computations in this chapter

are employing linear interpolation, unless mentioned otherwise.

3.3 QMC and Regular Points Comparisons
We use three types of QMC points in our computation, Hammersley, Halton and
Hyperbolic Cross points. Also as discussed in Chapter 1, some of the data reduction

techniques reduce the data by taking a regular subset of the original data. For the

31

structured data sets, this might be done, for example, by taking every other point
in each dimension. As discussed in Chapter 2, the Hyperbolic Cross points are a
subset of the regular grid points. We can also take advantage of this property to
subsample the original data instead of doing interpolations.

This section describes the QMC and regular points comparisons, and also com-

pares the subsamping with interpolation for the Hyperbolic Cross points.

3.3.1 QMC and Regular Points Comparisons

To see the difference among different QMC points and regular grid points in
isosurface extraction, we apply the QMC isosurface extration to two data sets using
these three different QMC points and regular grid points.

Figures 3.4 and 3.5 show the results from different QMC points and regular
grid points for the data sets SPHERE and SEIS respectively. One-eighth of the
original data for each data set is used, which is 62500 points. Table 3.3 shows some
performance statistics on IBM RS6000.

We see that for data set SPHERE, the Hammersley points generate the smoothest
image. The iamge generated by Halton points is similar to that generated by Ham-
mersley points, but probably less smooth. The Hyperbolic cross points generate
an isosurface that is similar to the regular grid points. For data set SEIS, the
Hammersley, Halton and Hyperbolic Cross points all give smoother images than
the regular grid points.

Table 3.3 indicates that generally interpolation just takes slightly more time

than the isosurface extraction, but generating the mesh takes a lot more time than

Table 3.3 Performance of QMC points

(Running time in seconds).

Interpolation Mesh Generation | Isosurface Extraction
SPHERE SEIS | SPHERE SEIS | SPHERE SEIS
Hammersley 19.20 20.14 | 882.62 910.81 11.97 11.18
Halton 19.49 20.95 | 458.41 505.45 12.21 11.74
Hyperbolic 21.85 28.91 | 721.59 730.20 8.0 10.32
Regular 1315.0 676.72 6.55 9.34
Original 74.53 104.27

32

SPHERE : hammersley SPHERE : halton

SPHERE : hyperbolic SPHERE : regular

Figure 3.4. Comparison between QMC and regular points for SPHERE.
One-eighth of the original data is used, which is 62500 points.

33

SEIS : hammersley SEIS : halton

SEIS : hyperbolic SEIS : regular

Figure 3.5. Comparison between QMC and regular points for SEIS. One-eighth
of the original data is used, which 62500 points.

34

interpolation and isosurface extraction. So for the QMC isosurface extraction, most
of the time in the preprocessing step is spent in the mesh generation. For every
single category, the times used for the three sets of QMC points are about the
same. Compared to the time spent in isosurface extraction with the full data set,

on average only one-eighth of the original time is used when using one-eighth of the

original data (1/7 for SPHERE and 1/10 for SEIS).

3.3.2 Subsampling Vs. Interpolation for Hyperbolic
Cross Points

As discussed in Chapter 2, the Hyperbolic Cross points are a subset of the regular
grid points. By carefully arranging the data, we can generate the Hyperbolic Cross
points in such a way that they subsample the original data. By doing this, we take
advantage of the property of the Hyperbolic Cross points and avoid interpolations.
This section shows some comparisons between subsampling and interpolation.

Figures 3.6 and 3.7 show the results from the subsampling (Hyperbolic Cross
points) and interpolation (Hammersley and Halton points) for the data sets SPHERE
and SEIS respectively. The number of points used is 10660 for both data sets. Table
3.4 shows some performance statistics on IBM RS6000.

We see from the figures that for SPHERE, the images produced from all the
QMC points are in the same quality. For SEIS, the Hyperbolic Cross points give a
better image which repproduce the original image better. Seen from Table 3.4, the
time spent in isosurface extraction for the Hyperbolic Cross points is a lot less than
than those for the Hammersley and Halton points. For Hyperbolic Cross points,

because subsampling is used, no time is spent in the interpolation step.

Table 3.4 Performance of subsampling and interpolation

(Running time in seconds).

Interpolation Mesh Generation | Isosurface Extraction
SPHERE SEIS | SPHERE SEIS | SPHERE SEIS
Hammersley 15.63 16.75 | 564.49 585.1 7.29 6.82
Halton 15.8 16.78 308.9 326 7.45 7.18
Hyperbolic 0 0 385.78 641.18 3.42 4.50

35

SPHERE : hyperbolic
(subsampling)

SPHERE : hammersley SPHERE : halton
(interpolation) (interpolation)

Figure 3.6. Comparison between subsampling (for Hyperbolic Cross points) and
interpolation (for Hammersley and Halton points) for SPHERE. The number of
points is 10660.

36

SEIS : hyperbolic
(subsampling)

SEIS : hammersley SEIS : halton
(interpolation) (interpolation)

Figure 3.7. Comparison between subsampling (for Hyperbolic Cross points) and
interpolation (for Hammersley and Halton points) for SEIS. The number of points
is 10660.

37

The Hyperbolic Cross points have the advantage over other QMC points because
they are a subset of the regular grids. As we can directly subsample the original
data, no interpolation is needed. This makes the preprocessing step faster for
the Hyperbolic Cross points than other QMC points. One disadvantage of the

Hyperbolic Cross points is that the number of points cannot be arbitrarily chosen.

3.4 Data Reduction

The key idea of the QMC isosurface extraction is data reduction. Instead of
using the whole data set, which is generally very large, we use QMC points to
generate a smaller data set to do the isosurface extraction. By wisely choosing
the QMC points and data reduction scale, we can extract the isosurfaces fast and
accurate enough.

In this section, we aim to test this data reduction technique by reducing the data
sets to different scales, and use the reduced data sets to extract the same isosurface.
By doing this, we check the effectiveness of this data reduction technique.

We use the two data sets as mentioned before, and reduce them to 1/2, 1/4, 1/8
and 1/16 of the original size. The Hammersley points are used in the computation.

Figures 3.8 and 3.9 show the results for data sets SPHERE and SEIS, respec-
tively.

Figure 3.8 indicates that for the same number of points as in the original data
set, the QMC points give a smoother isosurface than the original one. When we
use 1/2 and 1/4 of the original data, the extracted isosurfaces are still very smooth.
When the data are reduced to 1/8 or 1/16, the extracted isosurfaces still represent
the overall shape of the original one, though they are not as smooth as the original
one, especially when we use 1/16 of the original data.

In Figure 3.9 for SEIS, when the data are reduced to 1/2 and 1/4, the isosurfaces
almost reproduce the original one. When reduced to 1/8 and 1/16, the isosurfaces
still represent the overall shape of the original, though there are slight distorsions
in some part of the isosurfaces.

Figure 3.10 depicts the running time for the interpolation and the isosurface

extraction for different data reduction scales. We conclude that the time spent

38

SPHERE : original SPHERE : hammersley (same)

SPHERE : hammersley (1/2) SPHERE : hammersley (1/4)

SPHERE : hammersley (1/8) SPHERE : hammersley (1/16)

Figure 3.8. Data reduction comparisons for SPHERE.

SEIS : original SEIS : hammersley (same)

SEIS : hammersley (1/2) SEIS : hammersley (1/4)

SEIS : hammersley (1/8) SEIS : hammersley (1/16)

Figure 3.9. Data reduction comparisons for SEIS.

39

SPHERE

200

[N
[6)]
P
)

=
o
Pan
-

Running Time (Seconds)

- - - interpolation

-.—.— ! isosurface extraction

—-——- interpolation + isosurface extraction
O : original isosurface extraction

200

[N
[8)]
Pan
-

Running Time (Seconds)
=
o
Q

50-

02 03 04 05 06 07 08 09 1
Reduction Scale

SEIS

: interpolation
- isosurface extraction
: interpolation + isosurface extraction

O : original isosurface extraction

Figure 3.10. Data reduction perfomance on data sets SPHERE and SEIS.

0.1

02 03 04 05 06 07 08 09 1
Reduction Scale

40

41

in both interpolation and isosurface extraction are reduced linearly with the data
reduction scale. In addition, the time spent in interpolation and isosurface extrac-
tion are about at the same level. So the QMC isosurface extraction demonstrates

a linear speed up with decreasing the number of points.

3.5 Discussion

We can draw the following conclusions from the numerical tests:

e The linear interpolation provides accurate results for linear tetrahedral cells.
Higher order interpolation does not yield much improvement (though it might

be better for larger compression ratios).

o The QMC points generally generate a smooth isosurface that represents the
global shape of the original surface. The differences among different QMC
points are not prominent and depend on the data sets. Generally the QMC

points produce better images than sub regular grid points.

o For large data sets, we usually can reduce the data size remarkbly and still
get a good representation of the original isosurface. The advantage of the

techniques becomes more prominent when the data size gets larger.

o The preprocessing of the QMC isosurface extraction might be time consuming,
but after it is done, the post isosurface extraction is very fast. Most of the

time spent in the preprocessing is used for mesh generation.

CHAPTER 4

QUASI-MONTE CARLO ISOSURFACE
EXTRACTION FOR UNSTRUCTURED
GRIDS

In the previous chapter, we applied the QMC isosurface extraction technique to
the structured data sets. Another main type of data in scientific visualization is
unstructured data. The unstructured data are usually generated by finite element
method. Visualization of unstructured data is particularly important because many
large applications provide only such data. In this chapter, we apply the QMC
technique to some unstructured data sets.

Similar to the visualization of structured data, the QMC isosurface extraction

for unstructured data contains the following steps:

o QMC points generation: generate specified number of quasi-Monte Carlo points,

which will be used as the subdata set to extract the isosurfaces.

e Mesh generation: generate new geometry representation (tedrahetrons) based

on the QMC points.

o Interpolation: interpolate function values from the original data set into the

QMC points.

o [sosurface extraction: extract the isosurfaces from the QMC data sets.

Same as in Chapter 3, we use Hammersley, Halton and Hyperbolic Cross points
in our computation. The algorithms generating these points are presented in
Chapter 2. The isosurface extraction algorithm used is the NOISE algorithm

presented in Chapter 1. The Delauny algorithm is used in the mesh generation.

43

Unlike structured data, the unstructured data are more difficult to deal with,
because we cannot directly reference particular points. The whole volume and all
the points are related by the mesh provided. This chapter intends to present the
algorithm of applying the QMC isosurface extraction technique to unstructured

data. Specificly, we investigate the following questions:
e How essential is the interpolation technique?
o How efficient are different QMC point sets?
e How effective is this data reduction technique?

This chapter is intended to answer these questions. We apply the QMC technique
to various unstructured data sets by using different interpolation techniques, dif-

ferent QMC points, and different data reduction scales. We then draw conclusions.

4.1 Data Sets
We first present the data sets to be used in this chapter. Basicly, three unstruc-
tured data sets will be used in this chapter. These are also shown in the Table
4.1.
All of these sets consist of bio-electric field problems solved using the finite
element method on unstructured tetrahedral grids.

An isosurface of each data set is shown in Figure 4.1.

4.2 Local Natural Coordinate

In the searching and interpolation algorithms for unstructured grids, we utilize

the local natural coordinate system. In this section, we introduce this system.

Table 4.1 Data sets.

Name Source | Type | Vertices Cells
HEART | FEM | U-grid 11504 | 72641
TORSO | FEM | U-grid 34937 | 216607
HEAD FEM | U-grid | 137923 | 884343

44

HEART : isovalue = 0.15

HEAD : isovalue = -5

Figure 4.1. Isosurfaces of some unstructured data sets.

45

Let P (1 = 1,2,3,4) be the vertices of a tedrahedron. Then we can define the
volume coordidate for any point P inside the tedrahedron as (Figure 4.2):

Vi h;

)\i:_:_7
V. H,

i=1,2,3,4,

where V] is the volume of the tedrhedron defined by nodes PP, P3P, V is the
volume of the original tedradedron defined by the nodes P, P, P3Py, hy and H; are
the distances from P and P; to the bottom triangle (P2 PsPy). Apparently A; = 1
for P, and A; = 0 for other vertices, and
dh=1 (4.1)
i=1
The A;s (1 = 1,2,3,4) are also known as the local natural coordinates of the

point P. The global Cartesian coordinates and the local natural coordinates are

related by:

4

Figure 4.2. Volume coordinate for a point inside a tedrahedron.

46

4
y=> v, (4.3)
=1

4
=1

By solving equations 4.1 to 4.4, we get

A —Vasy Xy Y Zy 1
A | L Var —Xo —Y2 —7» Z
Az 6V | —Vie X3 Y3 Z3 y |’
A4 Vies —Xu =Yy, —Z4 z
where the constants can be defined as
Ti X5 Tk
V=1 ¥ Y ¥ |,
2 Ry Rk
1 1 1 1 1 1 1 1 1
X = Y2 Ys Ya ,Y1 = Z9 23 Z4 ,Z1 = Ty T3 T4
Z2 %3 Z4 Ty T3 X4 Y2 Yz VYa

The other constants can be obtained through a cyclic permutation of the subscripts

1,2,3 and 4.

The volume V' of the tedrhedron can be calculated by

1 1 1
l 1 X2 T3z X4
6| Y1 Y2 Ys Ya
Z1 k2 k3 Z4

V=-—

4.3 Search on Unstructured Grids
After the QMC points are generated, the function values need to be interpolated

into these QMC points. This process contains two steps:

e Iind the cell (tedrahetron) in which the QMC point is located.

e Interpolate the function values.

In this section, we describe the searching algorithm. Next section will explain

interpolation algorithms.

47

As discussed in Chapter 3, the searching process is simple for structured data
sets because of the regularity of data. However, for unstructured data, the searching
operation is more complex.

To find a cell containing point P in unstructured grids, the simplest way is to
traverse all the cells in the data set. This is a naive method, and very inefficient.
To speedup the process, people have employed various data structures to help fast
searching.

Livnat et al. (1996) employeed a Kd-tree structure in the NOISE isosurface
extraction algorithm. The Kd-tree was used to search the active cells that intersect
the isosurfaces. We utilize the Kd-tree structure in our searching process as well.
The following sections introduce the Kd-tree structure and present the algorithm

of using Kd-tree in the searching process.

4.3.1 Kd-Trees

Kd-trees were designed by Bentley (1975) as a data structure for efficient associa-
tive searching. In essence, kd-trees are a multidimensional version of binary search
trees. Each node in the tree holds one of the data values and has two subtrees as
children. The subtrees are constructed so that all the nodes in one subtree, the left
one for example, hold values that are less than the parent node’s value, while the
values in the right subtree are greater than the parent node’s value.

Binary trees partition data according to only one dimension. Kd-trees, on the
other hand, utilize multidimensional data and partition the data by alternating
between each of the dimensions of the data at each level of the tree.

A traditional kd-tree maintains links to its two subtrees. This introduces a high
cost in terms of memory requirements. To overcome this, Livnat et al. (1996)
represented a pointerless kd-tree as a one-dimensional array of the nodes. The root
node is placed at the middle of the array, while the first n/2 nodes represent the
left subtree and the last (n — 1)/2 nodes the right subtree.

48

4.3.2 Searching Using Kd-Trees
Given a data set, a kd-tree that contains pointers to the data cells is constructed.
Using this kd-tree as an index to the data set, we can rapidly locate the cell that

contains the given point. The searching using kd-trees contains the following steps:
o Kd-tree construction.
o Traversing the Kd-tree.
e Determination if a point is inside a tedrahetron cell.

In the following sections we talk about these three steps.

4.3.2.1 Kd-Tree Construction

As shown by Livnat et al. (1996), the construction of the kd-trees can be done
recursively in optimal time O(nlog(n)). The approach is to find the median of the
data values along one dimension and store it at the root node. The data are then
partitioned according to the median and recursively stored in the two subtrees. The
partition at each level alternates between the minimum and maximum coordinates.

Our Kd-tree is constructed in a similar way as that of Livnat et al. (1996).
However, the Kd-tree that Livnat et al. used is two-dimensional, which means
the partition and query at each level alternates between minimum and maximum
coordinates in value space. The Kd-tree we used is six-dimensional, the partition
and query at each level alternates among x-minimum, x-maximum, y-minimum,
y-maximum, z-minimum and z-maximum. This six-dimensional Kd-tree is also

constructed recursively.

4.3.2.2 Traversing the Kd-Tree

The traversing of the Kd-tree is to find the tetrahedron cell that contains a cer-
tain point P(x,,y,, z,). This task can be done by searching the kd-tree recursively.
At each level the coordinates of the point are compared to the value stored at the
current node. If the coordinates of the point are within the bounding box of the

current cell, then we step further to check if the point is inside the tetrahedron cell

49

(the algorithm for this step will be presented in next section). If the point is not
inside the current cell, and if the node is to the left of the current coordinate of
the current point, then only the left subtree should be traversed. Otherwise, both
subtrees should be traversed recursively.

For efficiency, similar to what Livnat et al. (1996) have done in the NOISE
algorithm, we define two search routines, search — min — max and search — max —
min. The dimension that we are currently checking is named the first, and the
dimension we still need to search is named the second.

The pseudo-codes for the search —min — max and search — max —min routines

are as following.

search-min-max(P-coord, node, index)

{
if (node.extremal[2*index] < P-coord[index]) {
if (point P is inside node)
interpolate the function value
search-max-min(P-coord, node.right, index);
}
search-max-min(P-coord, node.left, index);
}

search-max-min(P-coord, node, index)

{
if (node.extremal[2*index+1] < P-coord[index]) {
if (point P is inside node)

interpolate the function value

search-max-min(P-coord, node.right, (index+1) % 3);
}

search-max-min(P-coord, node.left, (index+1) % 3);

50

In the above pseudo-codes, we used a parameter index to help searching among

X-min, X-max, y-min, y-max, z-min and z-max at each level.

4.3.2.3 Point Inside a Cell

As shown in the pseudo-codes in the previous section, we need to utilize an
algorithm to determine if a point P(x,,y,, z,) is inside a tetrahedral cell. Actually
this can be done very easily if we work in the local natural coordinates.

Suppose A;,i = 1,2,3,4 are the natural coordinates of the point P(x,,y,, 2,)
corresponding to a certain tetrahedral cell. We know only three of the four \; are

independant, because they are constrained by the following equation:
M+ A+ =1

The following creteria can be used to determine if the point P(x,, y,, z,) is inside

the tetrahedron cell:
A €0,1],1 =1,2,3,4.
The calculation of the natural coordinates A; 1s discussed in Section 4.2.

4.4 Interpolation on the Unstructured Grids
Once we know the tetrahedral cell in which a QMC point P(x,,y,, z,) is located,
we can interpolate the function value to this QMC point by utilizing the local
natural coordinates. In this section, we describe the interpolation algorithms. Two

interpolation algorithms are tested for unstructured grids:

e Linear interpolation.

e Quadratic interpolation.

The following sections explain each of them.

51

4.4.1 Linear Interpolation
The linear interpolation uses the function values at the four vertices to interpo-

late the function value of the point P inside a tedrahedron:
4
fp = Z szfm
=1

where ¢; is the interpolation function that can be defined in the terms of the local

natural coordinates. For linear interpolation, we have
o =Nyt =1,2,3,4.

The fi(z = 1,2,3,4) are the function values at the four vertices of a tetrahedral

cell.

4.4.2 Quadratic Interpolation
The quadratic interpolation uses 10 points to interpolate the function value
inside a tedrahedron. The 10 points used in the interpolation include the four

vertices and the midpoints of the six edges of the tedrahedron, which are shown in

Figure 4.3.

Figure 4.3. Ten points used in quadratic interpolation.

52

The grardratic interpolation function (Kenneth, 1982) can be defined in terms

of the local natural coordinates as:

1
& = 2X(N — 5) 1=1,2,3,4,

Gy = AXid, i F

The interpolation formula is

I = Zﬁbifi + > il

i=1,7=1,i]
If the function values at those midpoints are not defined, we can simply use a

linear interpolation to get the function values at those points:

it
2

fij 7i7j:17273747i7éj'

Then the interpolation formula can be rewritten as:

fp:iﬁbifi—l- 24: sz’jfi;fj-
i=1 i=1,j=1,i#j
4.4.3 Numerical Results

In this section, we apply the above two interpolation algorithms to three un-
structured data sets and compare the results. Hammersley points are used in the
computation.

Figures 4.4 and 4.5 show the results by applying linear and quadratic inter-
polations to three unstructured data sets. The number of points used is half of
the original size of each data set for Figure 4.4 and 1/16 for Figure 4.5. The left
columns are for the linear interpolation, and the right columns are for the quadratic
interpolation. Table 4.2 shows the performance of the two interpolation techniques
on three data sets for using half of the original data. The numbers shown in the
table are the running time in seconds as implemented on IBM RS6000 with 512

MB virtual memory.

33

HEART : linear HEART : quadratic

TORSO : linear

HEAD : linear HEAD : quadratic

Figure 4.4. Comparisons between linear and quadratic interpolation. Half of the
original data size is used for each data set.

54

HEART : linear HEART : quadratic

HEAD : linear HEAD : quadratic

Figure 4.5. Comparisons between linear and quadratic interpolation.
One-sixteenth (1/16) of the original data size is used for each data set.

35

Table 4.2 Interpolation performance

(Running time in seconds).

HEART | TORSO | HEAD
Linear Interpolation 45.62 195.81 | 1270.59
Quadratic Interpolation 45.61 196.01 | 1273.01
Mesh Generation (DELAUNY) | 287.87 | 1056.38 | 412.98
[sosurface Extraction (NOISE) 3.53 12.14 59.07

The quadratic interpolation is more accurate, which gives a smoother isosurface.
But the difference among the appearances of the images is very small. Table 4.2
lists the time spent in the interpolations, which also include the searching time.
Unlike in case of the structured grids, the quadratic interpolation takes about the
same time as the linear interpolation. This is because most of the time spent in
the interpolation is in searching and the local natural coordinates transformation.
The quadratic interpolation does not yield much improvements. The reason is as
we discussed in Chapter 3 and because we are working on linear tetrahedral cells.
In this case linear interpolation is supposed to give enough precision.

Figure 4.6 shows the time spent in linear interpolation and NOISE isosurface
extraction. Unlike in the case of the structured grids, interpolation takes more time
than NOISE isosurface extraction, especially for the large number of QMC points.
This is because seaching the cell and performing the coordinate transformation take
more time. Tabe 4.2 also shows that mesh generation takes a lot more time than
interpolation and isosurface extraction. So in the preprocessing step, most of the
time is spent in generating the tetrahedral cells.

We draw the conclusions that linear interpolation generally povides enough
precision for the linear tetrahedral cells, and quadratic interpolation does not yield
much improvement. Therefore, the rest of the computations in this chapter are

employing linear interpolation, unless otherwise mentioned.

56

1400
—— ! interpolation

1200+ —. :isosurface extraction

1000

T

8001

600

Interpolation Time (Seconds)

400

2001

Number of QMC points

Figure 4.6. Time spent in linear interpolation and NOISE isosurface extraction
for different number of QMC points.

57

4.5 QMC and Regular Points Comparisons

We use three types of QMC points in our computation, Hammersley, Halton and
Hyperbolic Cross points. Also as discussed in Chapter 1, some of the data reduction
techniques reduces the data by taking a regular subset of the original data. For
the unstructured data sets, this might be done, for example, by interpolating the
function values from the unstructured grids into the selected structured grids.

To see the difference among different QMC points and regular grid points in
isosurface extraction, we apply the QMC isosurface extraction to three data sets
using these three different QMC points and regular grid points.

Figures 4.7, 4.8, and 4.9 show the results for data sets HEART, TORSO and
HEAD respectively. One-eighth of the original data size is used for each data set
(1438 points for HEART, 4367 points for TORSO, and 17240 points for HEAD).
Table 4.3 shows some performance statistics on IBM 6000.

For data set HEART, the differences among different grids are not prominent.
This is because the HEART data set is small. Using 1/8 of the original data does
not give a satisfactory image for all the grids. For data set TORSO, Hammersley
and Halton points give better image. This can be seen even better for data set
HEAD. When using 1/8 of the original data, the regular grids greatly distorted the
isosurface for data set HEAD.

Table 4.3 Performance of QMC points

(Running time in seconds).

Hammersley | Halton | Hyperbolic | Regular
HEART 30.42 30.52 32.10 30.42
Interpolation TORSO 114.47 114.64 119.11 112.92
HEAD 638.34 639.71 594.40 633.05
HEART 64.64 48.36 60.41 47.95
Mesh Generation TORSO 213.65 134.77 203.59 135.19
HEAD 999.18 530.58 714.19 530.83
HEART 0.69 0.70 0.51 0.70
[sosurface Extraction | TORSO 2.49 2.55 1.96 2.54
HEAD 13.35 13.33 9.40 13.31

38

HEART : hammersley HEART : halton

HEART : hyperbolic

Figure 4.7. Comparison between QMC and regular points for HEART. One-eighth
of the original data size is used (1438 points).

59

TORSO : hammersley TORSO : halton

N

TORSO : regular

Figure 4.8. Comparison between QMC and regular points for TORSO. One-eighth
of the original data size is used (4367 points).

HEAD : hammersley HEAD : halton

A
f?y. AR
R)
: b 22
=X S Ve o\
(e R 7Y % ‘ﬁﬁ}\
v /\ \) S Q~‘,
> \Y d '
[S ?A V%
/)\/) a . // 8
APE " 7 \ N L) A
7/ f'r 47 s N)
/- E\
it PAC R
,:Lf;: ¥ 1\\,?; §
SO % E‘;‘g %
& 90% Y
e o N
AT L9 o Al vimd AN

HEAD : hyperbolic

Figure 4.9. Comparison between QMC and regular points for HEAD. One-eighth
of the original data size is used (17240 points).

61

Table 4.3 indicates that generally interpolation takes more time than isosurface
extraction. Generating the mesh takes more time than interpolation and isosurface
extraction. So for the QMC isosurface extraction, most of the time in the prepro-
cessing step is spent in the mesh generation. For every single category, the times

used for the three sets of QMC points and regular grid points are about the same.

4.6 Data Reduction

The key idea of the QMC isosurface extraction is data reduction. Instead of using
the whole data set, which is generally very large, we use QMC points to generate
a smaller data sets to extract the isosurfaces. By wisely choosing the QMC points
and data reduction scale, we can extract the isosurfaces fast and accurate enough.

In this section, we aim to test this data reduction technique by reducing the
data sets to different scales, and use the reduced data sets to extract the same
isosurface. By doing this, we check the effectiveness of this data reduction technique
on unstructured data.

We use the three data sets as mentioned before, and reduce them to 1/2, 1/4, 1/8
and 1/16 of the original size. The Hammersley points are used in the computation.

Figures 4.10, 4.11 4.12 show the results for data sets HEART, TORSO and
HEAD, respectively.

From Figures 4.10 and 4.11, we see that for data sets HEART and TORSO,
when using the same number of points as the original data set, the QMC points
give an isosurface of the same quality as the original one. Sometimes the QMC
points might not represent the boundaries very well. When we use 1/2 and 1/4 of
the original data, the extracted isosurfaces are still very smooth. When the data is
reduced to 1/8 or 1/16, the extracted isosurfaces still represent the overall shape
of the original one, though they are not as smooth as the original one, especially
when we use 1/16 of the original data.

For data set HEAD, when using the same number of points, the QMC points
gives a better image than the original one. The reduction by 1/2 and 1/4 gives a very
smooth isosurface. When reduced to 1/8 and 1/16, the isosurface still represents

the overall shape of the original one.

HEART : original HEART : hammersley (same)

HEART : hammersley (1/8) HEART : hammersley (1/16)

Figure 4.10. Data reduction comparisons for HEART.

62

TORSO : original TORSO : hammersley (same)

N

TORSO : hammersley (1/2)

Figure 4.11. Data reduction comparisons for TORSO.

63

HEAD : isovalue = -5 HEAD : hammersley (same)

HEAD : hammersley (1/2)

HEAD : hammersley (1/8) HEAD : hammersley (1/16)

Figure 4.12. Data reduction comparisons for HEAD.

64

65

Figure 4.13 shows the running time for the interpolation and the isosurface
extraction for different data reduction scales for three data sets. The time spent
in both interpolation and isosurface extraction is reduced linearly with the data
reduction scale. Interpolation takes more time than isosurface extraction, especially
when the number of QMC points is large. So the QMC isosurface extraction has a
linear speed up with decreasing the number of points.

When the data size gets larger, the QMC data reduction technique gets more
effective. We can reduce the data by a very large scale and still can reproduce a

good isosurface.

4.7 Discussion
We can draw the following conclusions from the numerical tests performed in

this chapter:

e The linear interpolation provides accurate results for linear tetrahedral cells
for unstructured grids. Higher order interpolation does not yield much im-

provement (though it might be better for large compression ratios).

o The QMC points generally generate a smooth isosurface that represents the
global shape of the original surface. The differences among different QMC
points are not prominent and depend on the data sets. Generally the QMC

points produce better images than subregular grid points.

o For large data sets, we usually can reduce the data size remarkbly and still
get a good representation of the original isosurface. The advantage of the

techniques can be seen more clearly when the data size gets larger.

o The preprocessing of the QMC isosurface extraction might be time consuming,
but after it is done, the postisosurface extraction is very fast. Most of the time

spent in the preprocessing is used for mesh generation.

66

HEART
70
—- interpolation
60— isosurface extraction
O : original isosurface extraction
» 50F
xe)
c
[}
o
Q
Do
Q
£
'_
230
j=
c
3
X
20+
10-
-t
R -
0 4+t T T - \/ L L L L L L \O
0 01 02 03 04 05 06 07 08 09 1
Reduction Scale
TORSO HEAD
350
--:interpolation 2000- --:interpolation
300~ -. :isosurface extraction]]
O : original isosurface extraction 1800~ -. :isosurface extraction
F250- 51600~ O : original isosurface extraction
2 2
3 81400
) 200 &
P 01200+
£ £
= F
2150 .81000
c c
5 S 800+
x 14
100~ 600F
400~
50+
[200~ e
;44~ﬂ*+’r/>\7<4\+k | | | | | 0 4_>—+—~*+T*4\77’\F477>/\ | | |
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Reduction Scale

Reduction Scale

Figure 4.13. Data reduction performance.

CHAPTER 5

DISCUSSION AND CONCLUSIONS

Isosurface extraction and visualization is one of the most effective and powerful
techniques for the investigation of three-dimensional scalar fields. However, for
large three-dimensional data, this process is computationally slow. In this thesis,
a new data reduction algorithm is presented with the use of QQuasi-Monte Carlo
points. The new algorithm is tested on some structured and unstructured data
sets. The new algorithm first generates requested number of QMC points, and
then interpolates the function values into these QMC points. Then this subset of
the original data is used for the fast isosurface extraction.

The following conclusions can be drawn from the numerical tests performed in

this thesis:

o For linear tetrahedral cells, linear interpolation provides accurate results. Higher
order interpolations do not yield much improvement (though it might be better

for large compression ratios).

o The QMC points generally generate a smooth isosurface that represents the
global shape of the original surface. The differences among different QMC
points are not prominent and depend on the data sets. Generally the QMC

points produce better images than subregular grid points.

o For large data sets, we usually can reduce the data size remarkbly and still
get a good representation of the original isosurface. The advantage of the

techniques can be seen more clearly when the data size gets larger.

o Most of the time spent in the preprocessing is used for mesh generation.

68

o The QMC isosurface extraction has a linear speedup with decreasing the

number of QMC points used.

The preprocessing of the QMC isosurface extraction might be time consuming.
However, this is a one-time process. After it is done, the postisosurface extraction
is very fast.

Generally the QMC isosurface extraction technique does not require preknowl-
edge about the data. Sometimes this technique may distort the boundaries of
the original isosurface, if there is not enough QMC points generated along the
boundaries. Some preknowledge about the data set can improve the precision of
the isosurface extracted by QMC method.

Future work should apply this technique to large time-dependant data. Also,
more QMC points should be generated in some crucial regions (such as boundaries)

to yield more precise representation of such regions.

REFERENCES

[1] J. ED Akin, Finite Element Analysis for Undergraduates, Academic Press,
1986.

[2] K. Bathe, Finite Element Procedures, Prentice Hall, 1996.

(3] J. L. Bentley, Multidimentional Binary Search Trees Used for Associative
Search, Communications of the ACM, vol. 18, no. 9 (1975), pp. 509-516.

[4] P. Cignoni, C. Montani, E. Puppo, R. Scopigno, Optimal Isosurface Extraction
from Irregular Volume Data, Proceedings of Symposium on Volume Visualiza-

tion 96, ACM SIGGRAPH, 1996, pp. 31-38.

[5] R. S. Gallagher, Computer Visualization: Graphics Techniques for Scientific
and Engineering Analysis, CRC Press, 1995.

[6] R. S. Gallagher, Span filter: An Optimization Scheme for Volume Visualiza-
tion of Large Finite FElement Models, Proceedings of Visualization 91, IEEE
Computer Society Press, 1991, pp. 68-75.

[7] M. Giles, and R. Haimes, Advanced Interactive Visualization for CFD, Com-
puting Systems in Engeering, vol. 1, no. 1 (1990), pp. 51-62.

[8] Kenneth H Huebner and Earl A. Thornton, The Finite Element Method for
Engineers, Second Edition, A Wiley-Interscience Publication, 1982.

[9] Alexander Keller, The Quasi-Random Walk, Algorithms and Complexity for
Continuous Problems, Dagstuhl-Seminar Report, 1996, pp. 8-9.

[10] T. Itoh, and K. Koyamada, Isosurface Generation by Using Extrema Graphs,
Proceedings of Visualization ’94, IEEE Computer Society Press, 1994, pp.
77-83.

[11] T. Itoh, and K. Koyamada, Volume Thinning for Automatic Isosurface Propa-
gation, Proceedings of Visualization '96, IEEE, Computer Society Press, 1996,
pp. 303-310.

[12] D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific
Computing, Brooks/Cole Publishing Company, 1991.

[13] Y. Livnat, H.W. Shen and C.R. Johnson, A Near Optimal Isosurface Extraction
Algorithm for Structured and Unstructured Grids, IEEE Trans. Vis. Comp.
Graphics, vol. 2, no.1 (1996), pp. 73-84.

70

[14] W. E. Lorensen, and H. E. Cline, Marching Cubes: a High Resolution 3D
Surface Construction Algorithm, Computer Graphics, vol 21, no. 4 (1987), pp.
163-169.

[15] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods,
STAM Press, 1992.

[16] S. H. Paskov and J. F. Traub, Faster Fvaluation of Financial Derivatives, The
Journal of Portfolio Management, vol. 22 (1995), pp. 113-120.

[17] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical
Recipes, Cambridge University Press, 1987.

[18] H.W. Shen and C.R. Johnson, Sweeping Simplices: A Fast Iso-surface Fz-
traction Algorithm for Unstructured Grids, IEEE Visualization ‘95, 1995, pp.
143-150.

[19] H.W. Shen, C.D. Hansen, Y. Livnat, and C.R. Johnson, Isosurfacing in Span
Space With Utmost Efficiency (ISSUE), IEEE Visualization ‘96, 1996, pp. 287-
294.

[20] K. Sikorski, and G. Schuster, Application of the Hammersley Quadrature
Algorithm to 3-D Migration, 1991 Annual UTAM Report, University of Utah,
1991, pp. 234-259.

[21] Y. Sun, G. T. Schuster and K. Sikorski, A Quasi-Monte Carlo Approach to
3-D Migration: Theory, Geophysics, vol. 62, no. 3 (1997), pp. 918-928.

[22] V. N. Temlyakov, Approxzimation Recovery of Periodic Functions of Several
Variables, Math. USSR Sbornik, vol. 56 (1987), pp. 249-261.

[23] V. N. Temlyakov, Private Communication, 1991.

[24] V. N. Temlyakov, On Approzimation Recovery of Functions With Bounded
Mized Derivatives, Journal of Complexity, vol. 9 (1993), pp. 41-59.

[25] V. N. Temlyakov, Approzimation of Periodic Functions, Nova Sci., Compmack,
New York, 1993.

[26] J. E. Traub, and H. Wozniakowski, Breaking Intractability, Scientific American,
vol. 270 (1994), pp. 102-107.

[27] S. Ueng, K. Sikorski, and K. Ma, Efficient Streamline, Streamribbon, and
Streamtube Constructions on Unstructured Grids, IEEF, Trans. on Vis. and

Comp. Graphics, vol. 2, no. 2 (1996), pp. 100-110.

[28] S. Ueng, Scientific Visualization for Finite Element Analysis Data Sets, Ph.D
Thesis, University of Utah, 1996.

[29] S. Ulam, Adventures of a Mathematician, Charles Scribner’s Sons, 1974.

71

[30] S. Ulam, Adventures of a Mathematician, University of California Press, 1991.

[31] J. Wilhelms, and A. V. Gelder, Octrees for Faster Isosurface Generation, ACM
Transactions on Graphics, vol. 11, no. 3 (1992), pp. 201-227.

[32] H. Wozniakowski, Average Case Complexity of Multivariate Integration, Bul-
letin AMS, vol. 24 (1991), pp. 185-194.

[33] H. Wozniakowski, Average Case Complexity of Linear Multivariate Problems,
Part I: Theory; Part II: Application, Journal of Complexity, vol. 8 (1992) pp.
337-372, 373-392.

