
Cache�Rings for Memory

E�cient Isosurface

Construction

David M� Weinstein

Email� dweinste�cs�utah�edu

UUCS�������

Department of Computer Science
University of Utah

Salt Lake City� UT ����� USA

February ��� ����

Abstract

Processor speeds continue to increase at faster rates than memory speeds� As this
performance gap widens� it becomes increasingly important to develop �memory�
conscious	 algorithms
 programs that still optimize instruction count and algorith�
mic complexity� but that also integrate optimizations for data locality and cache
performance� In this paper we present a topological isosurface extraction algorithm
which utilizes a �cache�ring	 data structure to optimize memory performance� We
compare our algorithm to an analogous edge�hashing algorithm which� though func�
tionally equivalent� gives less priority to memory performance� While our algorithm
actually executes more instructions during execution� we nonetheless see a speed�up
over the traditional method� as we more�than�compensate for the extra instructions
with superior memory performance�

i

� Introduction

The performance gap continues to grow between applications which haphazardly ac�
cess data and applications designed to optimize memory access patterns� This trend
is a result of the inability of memory speeds to keep pace with processor speeds �
while processor speeds double every two years� memory speeds double only every
eight years ���� In an e
ort to mitigate this growing di
erential� memory designers
have developed increasingly deep� multi�tiered storage hierarchies� The top tiers �reg�
isters and L� cache� consist of fast storage capable of delivering data to the datapath
fast enough that program execution can continue smoothly with little to no delay�
The next tiers of storage� deeper �L�� caches and main memory� are not stored as close
to the CPU� and as a result accesses to this data can be several orders of magnitude
slower� When enough L� misses accumulate� the CPU generally stalls program exe�
cution until the requested data arrives from the memory management unit �MMU��
If these stalls occur frequently� as can be the case with haphazard data management�
program execution can su
er drastic� even crippling� slow�downs� This condition has
only been exacerbated with the advent of parallel architectures� Now� not only must
the data be in L� cache for execution to continue without delay� but it must be in
L� cache on the right processor� Improving memory performance can no longer be a
matter of hacking the code as an after�thought to improve memory access patterns

memory performance must be treated as a primary factor in algorithm design�

Recognizing this paradigm�shift� we have developed a topological isosurface extraction
algorithm to optimize cache performance� Our algorithm exploits the predictability
of memory accesses during Marching Cubes ��� surface construction� matching data
structures to these access patterns in order to minimize cache misses� The data
structure we have developed� termed a cache�ring� leverages hardware access mech�
anisms �such as spatial coherence and cache line fetching� to minimize MMU stalls�
Upon analysis� we found that our algorithm actually requires more instructions than
the comparable edge�hashing algorithm �most of these increases are due to book�
keeping operations� as we will discuss later�� however� we see moderate performance
improvements� as our cache�performance more than makes up for this overhead by
reducing the number of MMU stalls� As the processor�memory gap widens and paral�
lel processors become increasingly prevalent� we anticipate even greater performance
improvements with such memory�conscious algorithms�

�

� Background

Isosurface extraction has become a ubiquitous problem in the scienti�c visualization
literature� We are all familiar with Lorensen and Cline�s Marching and Dividing
Cubes algorithms ��� ��� Wilhelm and Van Gelder�s hierarchical algorithms ���� and
some of the more recent improvements based on locating the critical points of the �eld
or reparameterizing the domain based on value with active lists ���� span �lters ����
both active lists and span �lters ���� or span�space ���� While all of these algorithms
fall under the broad umbrella of �isosurfacing	 methods� they clearly di
er in their
domains of applicability� In this paper we will focus on those methods that generate
a connected� topological surface while extracting� Such a surface is often stored
as a list of vertex positions� and a list of triangle triplets �the three vertex indices
which compose each triangle�� This representation is distinct from the �geometric
primitives	 format� where each triangle contains its three vertex locations� rather
than indices into a vertex list� The geometric representation is useful when the
surface�s only purpose is to be rendered� In this case� the triangle list can be sent
directly to a graphics pipeline for rendering� In contrast� the topological surface is
more useful when the surface will be operated on for other purposes such as model
editing� boundary condition application� and decimation�re�nement� In all of these
cases� it is not just important that the surface �look right	 but that it be topologically
connected�

Isosurface extraction is not the only method used for constructing topological surfaces

 indeed� the vision literature is rich with methods for reconstructing models from
range data ��� ��� ���� For the purpose of this paper� we will restrict our interest
to topological surface generation from scalar �eld data� Additionally� while there
are many algorithms for extracting isosurfaces from data mapped to unstructured
meshes� we will not be discussing those here� For the moment� we restrict our domain
of interest to topological surface extraction from scalar �eld data on regular grids�
Such data is prevalent in medical applications� as data from CT and MR scanners
is most often comprised of parallel slices �which can then be stacked up to build a
regular lattice� or a volume of regular hexahedral elements �voxels��

Within the domain of surface extraction from regularly gridded scalar data� several
algorithms have been published� The most intuitive of these� an extension of Marching
Cubes� is the seed�growth algorithm ����� This algorithm was not motivated by the
need for topological surfaces �that result was merely a by�product�� rather� it was
introduced as a way of extracting a single surface connected to a starting node in
order to restrict the surface domain� This algorithm�s strength also turns out to be a
hindrance� though� as the user often wants more than a single connected component as

�

output� Furthermore� this algorithm turns out to be exceedingly di�cult to parallelize
because the relevant data can not be easily decomposed into discrete regions�

Another topological� regular grid extraction method is the �Bin and Coalesce	 method
� a generalization of Rossignac and Borrel�s algorithm for surface decimation ����� This
algorithm takes the geometric data discussed above and� for each triangle� bins its
vertices by location� When every triangle has been processed� vertices located in the
same bin are coalesced into a single vertex� and a topologically connected surfaces is
output� The drawbacks to this method are that it requires a fair amount of memory
overhead� does not necessarily preserve the topology of the initial surface� and must
be applied as a post�processing step to an already�extracted surface�

Montani et al� implemented a discrete surface construction method that bisects� rather
than linearly interpolates� the intersected edges ����� The advantage to their algorithm
is that the output surface can be easily decimated� as the resultant vertices lie within
a �nite number of indices� However� as with the original Marching Cubes algorithm�
they must postprocess their data in order to obtain a connected� topological surface�

Finally� there is the edge�hashing method� as described at the end of Wilhelm and Van
Gelder�s octree isosurfacing paper ���� This method uses hashing to create connected
surfaces during extraction� rather than after� It works from the observation that if
linear interpolation is used to locate surface�lattice intersection� then each edge in the
lattice contains at most one vertex of the isosurface� Additionally� every isosurface
vertex located on an interior �non�boundary� edge of the volume� will be found by
exactly three other voxels � namely those voxels which share that edge� Working from
these observations� Wilhelm and Van Gelder add each vertex location to their list the
�rst time they encounter it� and then store the new vertex index in the hash table
based on its edge� When this index is needed by the adjoining cells in the future� it is
retrieved from the hash table� Finally� in order to conserve memory� they remove each
interior vertex from the hash table after the fourth �and� by de�nition� �nal� time it
is accessed� This method is very e�cient� and succeeds in building a topologically
correct surface as output� Furthermore� it can be parallelized in a straightforward
manner � the only complication coming from sharing information about vertices on
the boundaries between processors�

While these algorithms capitalize on much of the continuity of the data� what they
fail to exploit is the predictability with which the data is accessed� In short� none
of the above algorithms has very good cache performance� and hashing� in partic�
ular� has notoriously bad cache performance� As memory performance becomes an
increasingly important factor in overall algorithm performance� it becomes necessary
to give high priority to memory performance when designing algorithms� This is pre�

�

cisely what we have done in implementing our new topological isosurface extraction
algorithm� recognizing the possible structure of memory accesses for topological iso�
surface construction� we have built a data structure and algorithm to match these
access patterns�

� Methods

We chose a Marching Cubes style algorithm as our base algorithm� opting for its
�embarrassingly parallel	 structure over the more elegant� but somewhat irregular�
structure of a seed�growth method� The algorithm consists of moving linearly through
the data� row by row� slice by slice� examining each cell for a possible intersection
with the isosurface� When an intersected cell is located� the edge intersections are
computed and triangles are generated to span those intersections� Viewed all together�
these triangles represent a geometric piecewise linear set of surfaces where each surface
either intersects the boundary of the volume or is closed�

��� Predictable Data Traversal

As we march through the data and generate these triangles� we recognize that every
interior edge intersection �i�e� any edge that is not on a bounding face of the volume�
is shared by exactly four voxels� If an edge is intersected by a triangle in one voxel�
it will necessarily be intersected at exactly the same point by triangles in the other
three voxels as well �because Marching Cube surfaces are manifold and piecewise
continuous�� Without loss of generality� let us assume that we are traversing our
data in x�major order �i�e� the data is stored as consecutive slices of x� with z�
coordinates changing fastest�� If we are currently examining voxel v�i� j� k�� and we
�nd an intersection point along its ��x��y� edge� then we know that when we reach
voxel v�i� j � �� k� we are guaranteed to �nd a triangle with this same intersection�
Similarly� this intersection point will be repeatedly found in voxel v�i � �� j� k� and
voxel v�i��� j ��� k�� Since we can predict exactly when we will be arriving at voxel
v�i��� j� k�� we should be able to �prefetch	 all of the precomputed edge intersections
so we can reuse their values �on the �y�	 If the size of our volume is �nx � ny � nz�
nodes� then we have ��nx � �� � �ny � �� � �nz � ��� voxels� It follows that we will
arrive at voxel v�i� j � �� k� exactly �nz � �� iterations later� at voxel v�i � �� j� k��
��nz � �� � �ny � ��� iterations later� and at voxel v�i � �� j � �� k�� ��nz � �� � ny�
iterations later�

�

��� Cache�Ring Data Structure

This brings us to the notion of cache�rings� For any given voxel� v�i� j� k�� in order to
generate the portion of the surface that intersects that cell� we only need the scalar
�eld data at the corners of the cell� and the shared�edge intersection information from
the previously visited voxels� v�i� j� k � ��� v�i� j � �� k�� v�i� j � �� k� ��� v�i� �� j� k��
v�i� �� j� k� ��� and v�i� �� j � �� k�� These voxels and edges are shown in Figure ��

v(i,j−1,k−1) x
z

y

v(i,j,k−1)

v(i,j−1,k)

v(i,j,k)

v(i−1,j,k)

v(i−1,j−1,k)

v(i−1,j,k−1)

n(i,j,k)

Figure �� Previously visited� neighboring voxels� The thick� dark lines indicate edges
shared with the current voxel� v�i� j� k�� The location of the node n�i� j� k� is indicated
with a dark point� The lighter gray lines on the current voxel indicate edges which
have not yet been encountered� and whose intersection nodes might� therefore� need
to be computed� Thinner lines indicate all other voxel edges � none of these are of
interest when extracting at the current voxel�

The edge information from each direction is stored in a data�structure called a �cache�
ring�	 Each ring is implemented as a ring�bu
er� and stores edge intersection informa�
tion for the neighboring cells of a particular direction� We note that each ring has a
maximum length equal to the the number of cells traversed between that neighboring
voxel and the current voxel� For example� voxel v�i� j � �� k� is �nz � �� voxels away
from the current voxel v�i� j� k�� therefore� the ring in the y�direction� the y�ring� needs
to have a maximum of nz entries �both sides of the current voxel need to be stored�
which increases the total by one entry�� We traverse the data in normal Marching
Cubes fashion� and upon completing each voxel� we record the current information
into all of the rings and advance the pointers� A graphical depiction of three of these
rings is shown in Figure ��

�

X−Ring

Y−Ring

Z−Ring

x z

y

* o p*

*

*

a

b

c

d

e

f

g

h

i

j

*

k

l

m

n

*

indicates current voxel*

(o) (p)

(a) (b) (c)

(d) (e)

(k) (l)

(m) (n)

(h) (i) (j)

(f) (g)

Figure �� The X�� Y�� and Z�Rings and their contents during data traversal� The left
side of each ring shows the currently active edges whose data is stored in the ring�
As indicated by the axes� the cells are visited from left to right� from top to bottom�
and from back to front� The right side of each diagram depicts the cache�ring storing
the edge information� with arrows indicating the direction of traversal�

In practice� we actually utilize only a small portion of each ring at a time for storing
precomputed indices � most of the voxels between the current voxel and the last voxel
in the ring contain no intersection points� and are empty� Recognizing that ring data
is always accessed deterministically �every entry which is stored is guaranteed to be
accessed� and the accesses will occur in exactly the same order in which they are
stored�� we only need to store those edges which contain an intersection� With this
revised implementation� we now store two indices into each ring � one for the voxel
being examined and one for the neighbor information being stored �previously� these
indices were identical� so a single value was su�cient�� New data is always inserted
at the last index� and the next intersection index is always read from the head�

�

��� Algorithmic Performance

Implementationally� the cache�ring algorithm operates very similarly to the hash table
� the primary di
erence is in the data structures used� It turns out that even with a
very fast hashing function� the hash table method is slowed because the table entry
for that edge is rarely still in fast cache when it is accessed by subsequent voxels� And�
most�importantly� when we su�er a cache miss for an edge� we are just as

likely to su�er a miss on lookups of subsequent edges in the same direction�

This is not the case with the cache�ring algorithm� This is because on a cache miss
the memory management unit �MMU� brings in in entire cache line of data� rather
than just the single requested item� This standard technique is generally e�cient
because of the law of data locality� if a memory address is being accessed now� its

neighbors are likely to be accessed in the very near future ���� We turn this mechanism
to our advantage with cache�rings� as we essentially prefetch most of our data�

In practice� we did not see as much speed�up as we had anticipated� This turned
out to be because we were knocking our own data out of the cache as we tried to
keep six rings stored there at the same time� Realizing that all of the necessary data
is redundantly stored in multiple rings� we can begin carefully merging some of the
rings�

The �rst improvement comes from recognizing that ring
r�i� j � �� k� is exactly the same length as ring r�i� j � �� k � ��� and the data is all
the same
 just shifted over one� To avoid colliding with ourselves in the cache� we
combine these lists by zippering them together into a single ring� The same process
is applied with rings r�i��� j� k� and r�i��� j� k���� The second improvement comes
from removing r�i� j� k� ��� since this ring only has one element� Instead� the current
and next values from this ring are stored in global variables�

This leave us with three cache�rings� r�i� j � �� k�� r�i � �� j� k� and r�i � �� j � �� k��
Our �nal optimization is to eliminate the last ring� r�i � �� j � �� k� by combining
it with r�i� �� j� k�� This operation introduces a complication� though� because ring
r�i��� j��� k� is nz voxels longer than ring r�i� j��� k�� We clean this up by initially
storing the r�i��� j��� k� data in ring r�i� j��� k� and then copying it into r�i��� j� k�
when the �rst ring has cycled� For our �nal implementation� we are left with two
cache�rings then� r�i � �� j� k� and r�i� j � �� k�� For simplicity� we will refer to these
as RX and RY� respectively�

To visualize how these data structures serve the algorithm� we will follow through a
short example� If we are extracting an isosurface of value v and some node n�i� j� k�

�

�see Figure �� has value �v � ��� and node n�i � �� j� k� has value �v � ���� then the
triangular� linearly interpolated isosurface S� which will be extracted from the volume�
will contain the point p� located at the midpoint of the edge between node n�i� j� k�
and node n�i � �� j� k�� This edge is shared by four voxels� Speci�cally�

� the ��y��z� edge of voxel v�i� �� j � �� k� and

� the ��y��z� edge of voxel v�i� �� j� k� and

� the ��y��z� edge of voxel v�i� j � �� k� and

� the ��y��z� edge of voxel v�i� j� k��

This intersection point is �rst encountered from voxel v�i � �� j � �� k�� Its location
along the edge is computed� and the index to this new point is placed in rings RX
and RY� The algorithm then continues processing cells� When it arrives at voxel
v�i � �� j� k�� it �nds that it has an intersection on the ��y��z� edge and blindly
grabs the index of point p from cache�ring RY� knowing that the leading entry must
be this intersection node�s index� After all the triangles have been generated for voxel
v�i � �� j� k�� this intersection point is again inserted into the RX cache� so that the
point can be referenced in voxel v�i� j� k��

The only specials cases in this implementation come when we encounter non�interior
�exterior� edges� As de�ned above� these are edges which lie on boundary faces of
the volume� When we are examining such a cell� we need to take special care to not
assume the usual edge intersections have been precomputed and cached�

��� Multiprocessor Implementation

For the multiprocessor implementation of the cache�rings algorithm� we divide the
dataset along the x�dimension into �slabs�	 which are independently handled by sep�
arate processors� Each processor stores its �rst RX cache�ring globally� so the data
can be accessed by the processor sharing those voxel edges� All subsequent cache�
ring loads and stores are done on a local cache�ring� until the �nal plane of voxels
in the slab is reached� At this point� the processor waits until the processor sharing
the boundary edges of those voxels indicates that it has �nished processing storing
that edge information in its global RX cache�ring� In practice� this synchroniza�
tion doesn�t cause any slowdown� because every processor has generally completed

�

processing its �rst plane of voxels before any processor is ready to process its last
plane�

The dimension of the slabs and the number of utilized processors can be selected by
the user� We found that choosing slabs with less than four voxels of thickness lead to
dramatic slowdowns� as increasing percentages of execution time became necessary
for sharing and copying data at the boundaries�

When each processor has completed its portion of the surface� the pieces are serially
evaluated by a single processor to determine the o
sets of the indices in each partial
surface� These o
sets are then read in by the processors and� once again proceeding
in parallel� each processor adjusts the indices of the triangles it has extracted� Once
the indices are consistent� the points and triangles can be moved directly into a single
data structure which stores the entire surface�

Performance analysis shows that there is not much delay incurred by the barrier
synchronizations described above� The largest performance hit comes from the extra
work needed to process boundary voxels� When the entire volume is a single slab
�as is the case for single processor execution�� there are a minimal number of voxels
touching boundaries� With each added processor� the size of the slabs decreases�
and the percentage of the voxels which share a boundary rapidly rises� Furthermore�
processing voxels which touch the Y and Z boundaries of the model incur a smaller
overhead than voxels which are at an X boundary� and it is the number of X boundary
voxels which is increasing as we divide the volume into more� ever thinner slabs�

��� Edge Hashing

For comparison� we also implemented an edge�hashing extraction�construction method
that builds the same connected surfaces as out cache�ring method� Here again we ex�
ploit the predictability of edge accesses� recognizing that an interior node will be
accessed by exactly four voxels� After a node has been accessed four times� we delete
it from the hash table� thus saving time �less likely to have collisions during future
lookups� and memory �only the active node indices are stored��

Every edge spans two voxels� For the purpose of de�ning a unique� consistent hash�
key for each edge� we use the �smaller	 node as the root of our index� �By �smaller	
we mean the node to the left� below� or behind the other node
 see Figure � for
reference�� The i� j� and k indices of this node are concatenated to form the high�
order bits of the key� These are followed by two bits to encode direction information

�

�right� up� or forward�� and two �nal bits to encode how many times the node has
been referenced� If we have a data set containing less than ��� ���� million� voxels�
then this hash�key can be constructed as a ���bit integer� Alternatively� for larger
data sets� we can hash long integer keys�

The multiprocessor implementation of the edge�hashing method utilized the same
synchronization mechanisms as the cache�ring version� The only di
erence is that a
separate hash table is created for the boundary voxels� This global object is analogous
to the shared boundary cache�ring discussed above�

� Results

We implemented three algorithms for timing comparisons� standard Marching Cubes
�only building unconnected triangles�� edge�hashing� and cache�rings� These algo�
rithms were all timed for isosurface extraction on four radiology data sets� The �rst
data set is a low�resolution� ��� � �� � ���� MRI model of a head� The second data
set is the same model� but at twice the resolution in each dimension� ��� � �� � ����
The third data set is the same individual�s head imaged during a di
erent MRI scan
and contains ��� � ��� � ���� nodes� The �nal model is the CT thorax of the Visible
Human Data Set�TM� ���� and contains ���� � ��� � ���� nodes�

For the MRI data sets� we extract an isosurface values corresponding roughly to the
scalp� The CT data was isosurfaced at a value more appropriate for bone� Screen
images of the extracted surfaces from all of these data sets are included at the end of
the paper �Figures �����

All three algorithms were run on an SGI Power Onyx� with �� �� MHz R���� CPU�s�
This machine has a shared memory architecture� with ��� byte cache line� �� Kb of
L� cache� � Mb of L� cache� and � Gb of main memory� An L� cache miss costs� on
average� � cycles� and an L� cache miss costs� on average� ��� cycles� For di
erent
timings� we utilized di
erent numbers of the available processors� We note that the
Power Onyx architecture has a main bus which can be saturated by as few as �ve
processors during heavy utilization�

��

 Model Time* Marching Edge Cach e
 (sec) Cubes Hashing Ring s

32x32x32
 Head

64x64x64
 Head

* key: EXT − Extract Timing
 OH − Overhead Timin g

EXT 0.47 0.63 0.61
OH N/A 0.01 0.01

EXT 2.82 3.60 3.54
OH N/A 0.09 0.08

Figure �� Table � Timings for single processor isosurface extraction of two data sets�
using Marching Cubes� edge�hashing� and cache�ring algorithms�

��� Single Processor Timings

Table � contains timing results from running the three isosurfacing methods on the
smaller MRI data sets� using only a single CPU� The edge�hash and cache�ring build
both a geometric and a topological surface� and so we have included timings for the
�Overhead	 of allocating and copying the topological surface� This permits a more
consistent comparison between these methods and the Marching Cubes methods�

��� Multiprocessor Timings

Table � contains timing results from running the three isosurfacing methods on the
three larger data sets and using varying numbers of processors� Once again we have
included separate timing values indicating the amount of overhead in the hash table
and cache�ring runs� All timings have been summed over the utilized processors�
Additionally� we have included a separate �Wall Clock	 timing� to demonstrate the
amount of real�world time that passed during execution�

��� Analysis

From the tables above� it is clear that the basic Marching Cubes algorithm is consid�
erably faster than the algorithms which construct topologically connected surfaces�
When connected surfaces are required� edge�hashing and cache�ring extraction meth�
ods produce comparable timing results� This second point is somewhat surprising�
given the increased book�keeping coding necessary for maintaining the rings� We

��

 Model CPUs Time* Marching Edge Cach e
 (sec) Cubes Hashing Ring s

* key: EXT − Extract Timin g

EXT 2.84 4.13 4.07
OH N/A 0.12 0.10
WC 1.54 2.29 2.27

EXT 2.85 5.35 5.30
OH N/A 0.15 0.15
WC 0.84 1.63 1.61

EXT 2.90 7.65 7.80
OH N/A 0.35 0.33
WC 0.50 1.29 1.26

EXT 3.19 12.83 12.70
OH N/A 0.51 0.47
WC 0.40 1.25 1.22

EXT 156.34 401.52 385.21
OH N/A 13.21 12.42
WC 29.65 71.50 68.91

EXT 158.09 613.74 599.72
OH N/A 12.46 12.01
WC 19.28 59.29 58.03

EXT 246.70 263.94 251.52
OH N/A 2.13 2.09
WC 29.65 44.42 40.07

EXT 246.88 252.77 240.38
OH N/A 3.28 3.06
WC 22.94 28.63 25.19

2

4

8

14

8

14

8

14

 64
 x
 64
 x
 64
 Head

 250 K
 voxels,
 47 K
triangle s

 56x512x
 512 Head

 14 M
 voxels,
 2.4 M
 triangles

512x512x
168 Tors o

 44 M
 voxels,
 652 K
 triangles

((

(

(

(

(
OH − Overhead Timin g
WC − Wall Clock Timin g

Figure �� Table � Timings for multiprocessor isosurface extraction of three data sets�
using Marching Cubes� edge�hashing and cache�ring algorithms� and varying numbers
of CPU�s�

conclude that the lack of performance degradation �and actually a small performance
improvement� is due to improved cache performance�

In analyzing the performance of the parallel methods� we see that speedups are sub�
optimal for all of the algorithms� Analyzing the Extract timings� we see that Marching
Cubes had the best speedup� with very little extra computation required when the
work was spread across processors� As expected� edge�hashing and cache�rings had
added computation when split across processors� This increase re�ects the overhead
of sharing data at boundaries during triangle extraction� and merging the boundary
data during surface construction�

Examining the Wall Clock timings and total Extraction timings from the various
methods� it is clear that we didn�t have exceptional load�balancing performance� This

��

is an artifact of the uneven distribution of data values� as would be expected from
radiological patient images�

A �nal point of interest is that these performance numbers come from execution
on �� MHz R���� processors� These MIPS processors are relatively lenient in the
penalties they impose for an L� cache miss� This is primarily due to the fact that
they are running at a relatively slow clock rate� The more stringent cache miss
penalties imposed on faster processors will further improve the relative performance
of cache�ring methods over hashing methods�

� Conclusions

We have presented a new data structure� the cache�ring� and an augmented Marching
Cubes algorithm for the construction of topologically correct surfaces� The details of
the algorithm and the data structure implementation are not the points of relevance
here� Rather� the primary reason for this paper has been to emphasize the importance
of memory�conscious algorithms� By re�engineering our program so it maps to the
underlying hardware� we have partially alleviated the bottleneck of accessing memory
during isosurface construction�

As we continue to develop new and improved isosurface extraction methods� we be�
lieve it is important to keep abreast of the simultaneous shifts evolving in computa�
tional hardware development� The performance bottleneck in modern architectures
has shifted from computation to memory accesses� This bottleneck becomes even
more pronounced in the case of parallel architectures� where data can be distributed
among multiple CPU�s� As the bottleneck shifts� algorithm development must shift
as well� if methods are to remain optimal in practice� The cache�ring data structure
is an example of updating a method to follow the underlying hardware�s bottleneck
shift� Rather than su
er performance degradations with the random data accesses
of existent codes� we have developed an augmented algorithm and data structure to
alleviate memory�induced stalls�

��

� Future Work

Having optimized the surface construction method for regularly�gridded scalar �elds�
we will now being looking at memory access patterns for other commonly�used algo�
rithms� such as isosurface extraction on irregular grids� and streamline advection�

We look forward to running our code on MIPS R����� processors in the near future
to obtain accurate statistics on cache performance� We would also like to obtain
performance statistics on machines with other memory architecture con�gurations
for comparison� Additionally� we would like to have accurate counts of the number
of instructions executed for the various surface extraction methods�

In the mean time� we will investigate developing a small simulator to derive cache�
performance and instruction count data for those architectures where such statistics
are not available� As we can better micro�pro�le our code to determine architecture�
dependent slow�downs� we will continue to develop new algorithms and data�structures
which better map to the underlying architectures�

Finally� we have not addressed any of the load�balancing issues which arise from
multiprocessor implementations� It would be reasonable to vary the slab thickness
in order to accommodate the varying number of surface intersections throughout
the volume� We will investigate such load�balancing issues in future versions of this
algorithm�

� Acknowledgments

This work was supported in part by the National Science Foundation� I would like to
thank Peter�Pike Sloan� Helen Hu� Steve Parker� Chuck Hansen and Chris Johnson
for their valuable comments and suggestions�

References

��� D�A� Patterson and J� L� Hennessy� Computer Architecture� A Quantitative

Approach� Morgan Kaufmann� �nd edition� �����

��

��� W�E� Lorensen and H�E� Cline� Marching cubes� A high resolution �d surface
construction algorithm� Computer Graphics� ���������
���� �����

��� H� E� Cline� W� E� Lorensen� S� Ludke� C� R� Crawford� and B� C� Teeter�
Two algorithms for the three�dimensional construction of tomograms� Medical

Physics� ���������
���� �����

��� J� Wilhelms and A� Van Gelder� Octrees for faster isosurface generation� ACM
Transactions on Graphics� ���������
���� �����

��� M� Giles and R� Haimes� Advnaced interactive visualization for cfd� Computing

Systems in Engineering� �������
��� �����

��� R�S� Gallagher� Span �lter� An optimization scheme for volume visualization of
large �nite element models� In Visualization ���� pages ��
��� IEEE Press� �����

��� H�W� Shen and C�R� Johnson� Sweeping simplices� A fast isosurface extraction
algorithm for unstructured grids� In Visualization ���� pages ���
���� IEEE
Press� �����

��� H�W� Shen� C�D� Hansen� Y� Livnat� and C�R� Johnson� Isosurfacing in span
space with utmost e�ciency �issue�� In Visualization ���� pages ���
���� IEEE
Press� �����

��� B� Curless and M� Levoy� A volumetric method for building complex models
from range data� In ACM SIGGRAPH Computer Graphics� pages ���
����
IEEE Press� �����

���� H� Hoppe� T� DeRose� T� Duchamp� J� McDonald� and W� Stuetzle� Surface re�
construction from unorganized points� In ACM SIGGRAPH Computer Graphics�
pages ��
��� IEEE Press� �����

���� G� Turk and M� Levoy� Zippered polygon meshes from range images� In ACM

SIGGRAPH Computer Graphics� pages ���
���� IEEE Press� �����

���� R� Shekhar� E� Fayyad� R� Yagel� and J�F� Cornhill� Octree�based decimation of
marching cubes surfaces� In Visualization ���� pages ���
���� IEEE Press� �����

���� J� Rossignac and P� Borrel� Multi�resolution �D approximations for rendering
complex scenes� In B� Falcidieno and T� Kunii� editors� Modeling in Computer

Graphics� Methods and Applications� pages ���
���� Springer�Verlag� �����

���� C� Montani� R� Scateni� and R� Scopigno� Discretized marching cubes� In Visu�

alization ��	� pages ���
���� IEEE Press� �����

���� National Library of Medicine� The visible human project� �����

��

Figure �� Scalp isosurface from �������� ���K� node MRI model of a head� Surface
contains ���� triangles�

��

Figure �� Scalp isosurface from �������� ����K� node MRI model of a head� Surface
contains ������ triangles�

��

Figure �� Scalp isosurface from ���������� ���M� node MRI model of a head� Surface
contains ��������� triangles�

Figure �� Skeletal isosurface from ����������� ���M� node CT model of Visible
Human Project male thorax� Surface contains ������� triangles�

��

