Cache-Rings for Memory
Efficient Isosurface
Construction

David M. Weinstein

Email: dweinste@cs.utah.edu

UuCS-97-016

Department of Computer Science
University of Utah
Salt Lake City, UT 84112 USA

February 22, 1998

Abstract

Processor speeds continue to increase at faster rates than memory speeds. As this
performance gap widens, it becomes increasingly important to develop “memory-
conscious” algorithms — programs that still optimize instruction count and algorith-
mic complexity, but that also integrate optimizations for data locality and cache
performance. In this paper we present a topological isosurface extraction algorithm
which utilizes a “cache-ring” data structure to optimize memory performance. We
compare our algorithm to an analogous edge-hashing algorithm which, though func-
tionally equivalent, gives less priority to memory performance. While our algorithm
actually executes more instructions during execution, we nonetheless see a speed-up
over the traditional method, as we more-than-compensate for the extra instructions
with superior memory performance.

1 Introduction

The performance gap continues to grow between applications which haphazardly ac-
cess data and applications designed to optimize memory access patterns. This trend
is a result of the inability of memory speeds to keep pace with processor speeds -
while processor speeds double every two years, memory speeds double only every
eight years [1]. In an effort to mitigate this growing differential, memory designers
have developed increasingly deep, multi-tiered storage hierarchies. The top tiers (reg-
isters and L1 cache) consist of fast storage capable of delivering data to the datapath
fast enough that program execution can continue smoothly with little to no delay.
The next tiers of storage, deeper (L2) caches and main memory, are not stored as close
to the CPU, and as a result accesses to this data can be several orders of magnitude
slower. When enough L1 misses accumulate, the CPU generally stalls program exe-
cution until the requested data arrives from the memory management unit (MMU).
If these stalls occur frequently, as can be the case with haphazard data management,
program execution can suffer drastic, even crippling, slow-downs. This condition has
only been exacerbated with the advent of parallel architectures. Now, not only must
the data be in L1 cache for execution to continue without delay, but it must be in
L1 cache on the right processor. Improving memory performance can no longer be a
matter of hacking the code as an after-thought to improve memory access patterns —
memory performance must be treated as a primary factor in algorithm design.

Recognizing this paradigm-shift, we have developed a topological isosurface extraction
algorithm to optimize cache performance. Our algorithm exploits the predictability
of memory accesses during Marching Cubes [2] surface construction, matching data
structures to these access patterns in order to minimize cache misses. The data
structure we have developed, termed a cache-ring, leverages hardware access mech-
anisms (such as spatial coherence and cache line fetching) to minimize MMU stalls.
Upon analysis, we found that our algorithm actually requires more instructions than
the comparable edge-hashing algorithm (most of these increases are due to book-
keeping operations, as we will discuss later); however, we see moderate performance
improvements, as our cache-performance more than makes up for this overhead by
reducing the number of MMU stalls. As the processor-memory gap widens and paral-
lel processors become increasingly prevalent, we anticipate even greater performance
improvements with such memory-conscious algorithms.

2 Background

[sosurface extraction has become a ubiquitous problem in the scientific visualization
literature. We are all familiar with Lorensen and Cline’s Marching and Dividing
Cubes algorithms [2, 3], Wilhelm and Van Gelder’s hierarchical algorithms [4], and
some of the more recent improvements based on locating the critical points of the field
or reparameterizing the domain based on value with active lists [5], span filters [6],
both active lists and span filters [7], or span-space [8]. While all of these algorithms
fall under the broad umbrella of “isosurfacing” methods, they clearly differ in their
domains of applicability. In this paper we will focus on those methods that generate
a connected, topological surface while extracting. Such a surface is often stored
as a list of vertex positions, and a list of triangle triplets (the three vertex indices
which compose each triangle). This representation is distinct from the “geometric
primitives” format, where each triangle contains its three vertex locations, rather
than indices into a vertex list. The geometric representation is useful when the
surface’s only purpose is to be rendered. In this case, the triangle list can be sent
directly to a graphics pipeline for rendering. In contrast, the topological surface is
more useful when the surface will be operated on for other purposes such as model
editing, boundary condition application, and decimation/refinement. In all of these
cases, it is not just important that the surface “look right” but that it be topologically
connected.

[sosurface extraction is not the only method used for constructing topological surfaces
— indeed, the vision literature is rich with methods for reconstructing models from
range data [9, 10, 11]. For the purpose of this paper, we will restrict our interest
to topological surface generation from scalar field data. Additionally, while there
are many algorithms for extracting isosurfaces from data mapped to unstructured
meshes, we will not be discussing those here. For the moment, we restrict our domain
of interest to topological surface extraction from scalar field data on regular grids.
Such data is prevalent in medical applications, as data from CT and MR scanners
is most often comprised of parallel slices (which can then be stacked up to build a
regular lattice) or a volume of regular hexahedral elements (voxels).

Within the domain of surface extraction from regularly gridded scalar data, several
algorithms have been published. The most intuitive of these, an extension of Marching
Cubes, is the seed-growth algorithm [12]. This algorithm was not motivated by the
need for topological surfaces (that result was merely a by-product); rather, it was
introduced as a way of extracting a single surface connected to a starting node in
order to restrict the surface domain. This algorithm’s strength also turns out to be a
hindrance, though, as the user often wants more than a single connected component as

2

output. Furthermore, this algorithm turns out to be exceedingly difficult to parallelize
because the relevant data can not be easily decomposed into discrete regions.

Another topological, regular grid extraction method is the “Bin and Coalesce” method
- a generalization of Rossignac and Borrel’s algorithm for surface decimation [13]. This
algorithm takes the geometric data discussed above and, for each triangle, bins its
vertices by location. When every triangle has been processed, vertices located in the
same bin are coalesced into a single vertex, and a topologically connected surfaces is
output. The drawbacks to this method are that it requires a fair amount of memory
overhead, does not necessarily preserve the topology of the initial surface, and must
be applied as a post-processing step to an already-extracted surface.

Montani et al. implemented a discrete surface construction method that bisects, rather
than linearly interpolates, the intersected edges [14]. The advantage to their algorithm
is that the output surface can be easily decimated, as the resultant vertices lie within
a finite number of indices. However, as with the original Marching Cubes algorithm,
they must postprocess their data in order to obtain a connected, topological surface.

Finally, there is the edge-hashing method, as described at the end of Wilhelm and Van
Gelder’s octree isosurfacing paper [4]. This method uses hashing to create connected
surfaces during extraction, rather than after. It works from the observation that if
linear interpolation is used to locate surface-lattice intersection, then each edge in the
lattice contains at most one vertex of the isosurface. Additionally, every isosurface
vertex located on an interior (non-boundary) edge of the volume, will be found by
exactly three other voxels - namely those voxels which share that edge. Working from
these observations, Wilhelm and Van Gelder add each vertex location to their list the
first time they encounter it, and then store the new vertex index in the hash table
based on its edge. When this index is needed by the adjoining cells in the future, it is
retrieved from the hash table. Finally, in order to conserve memory, they remove each
interior vertex from the hash table after the fourth (and, by definition, final) time it
is accessed. This method is very efficient, and succeeds in building a topologically
correct surface as output. Furthermore, it can be parallelized in a straightforward
manner - the only complication coming from sharing information about vertices on
the boundaries between processors.

While these algorithms capitalize on much of the continuity of the data, what they

fail to exploit is the predictability with which the data is accessed. In short, none

of the above algorithms has very good cache performance, and hashing, in partic-

ular, has notoriously bad cache performance. As memory performance becomes an

increasingly important factor in overall algorithm performance, it becomes necessary

to give high priority to memory performance when designing algorithms. This is pre-
3

cisely what we have done in implementing our new topological isosurface extraction
algorithm: recognizing the possible structure of memory accesses for topological iso-
surface construction, we have built a data structure and algorithm to match these
access patterns.

3 Methods

We chose a Marching Cubes style algorithm as our base algorithm, opting for its
“embarrassingly parallel” structure over the more elegant, but somewhat irregular,
structure of a seed-growth method. The algorithm consists of moving linearly through
the data, row by row, slice by slice, examining each cell for a possible intersection
with the isosurface. When an intersected cell is located, the edge intersections are
computed and triangles are generated to span those intersections. Viewed all together,
these triangles represent a geometric piecewise linear set of surfaces where each surface
either intersects the boundary of the volume or is closed.

3.1 Predictable Data Traversal

As we march through the data and generate these triangles, we recognize that every
interior edge intersection (i.e. any edge that is not on a bounding face of the volume)
is shared by exactly four voxels. If an edge is intersected by a triangle in one voxel,
it will necessarily be intersected at exactly the same point by triangles in the other
three voxels as well (because Marching Cube surfaces are manifold and piecewise
continuous). Without loss of generality, let us assume that we are traversing our
data in x-major order (i.e. the data is stored as consecutive slices of x, with z-
coordinates changing fastest). If we are currently examining voxel v[i, j, k|, and we
find an intersection point along its (+z, +y) edge, then we know that when we reach
voxel v[i,j + 1, k] we are guaranteed to find a triangle with this same intersection.
Similarly, this intersection point will be repeatedly found in voxel v[i + 1, j, k] and
voxel v[i + 1,7+ 1, k]. Since we can predict exactly when we will be arriving at voxel
v[i+1, 7, k], we should be able to “prefetch” all of the precomputed edge intersections
so we can reuse their values “on the fly.” If the size of our volume is (nz * ny * nz)
nodes, then we have ((nz — 1) * (ny — 1) * (nz — 1)) voxels. It follows that we will
arrive at voxel v[i,j + 1, k] exactly (nz — 1) iterations later; at voxel v[i + 1, j, k],
((nz — 1) * (ny — 1)) iterations later; and at voxel v[i + 1,7 + 1, k], ((nz — 1) * ny)
iterations later.

3.2 Cache-Ring Data Structure

This brings us to the notion of cache-rings. For any given voxel, v[i, j, k], in order to
generate the portion of the surface that intersects that cell, we only need the scalar
field data at the corners of the cell, and the shared-edge intersection information from
the previously visited voxels: v[i, j, k — 1], v[i,j — 1, k], v[i,j — 1,k — 1], v[i — 1, j, k],
v[i—1,7,k—1], and v[i — 1,j — 1, k]. These voxels and edges are shown in Figure 1.

v(i-1,j,k-1) v(i-1,jk)

V(-L-L1K) |

v(ij-1k-1) v(ij-1k)

x

Figure 1: Previously visited, neighboring voxels. The thick, dark lines indicate edges
shared with the current voxel, v[i, 7, k]. The location of the node n[i, j, k] is indicated
with a dark point. The lighter gray lines on the current voxel indicate edges which
have not yet been encountered, and whose intersection nodes might, therefore, need
to be computed. Thinner lines indicate all other voxel edges - none of these are of
interest when extracting at the current voxel.

The edge information from each direction is stored in a data-structure called a “cache-
ring.” Each ring is implemented as a ring-buffer, and stores edge intersection informa-
tion for the neighboring cells of a particular direction. We note that each ring has a
maximum length equal to the the number of cells traversed between that neighboring
voxel and the current voxel. For example, voxel v[i, 7 — 1,k] is (nz — 1) voxels away
from the current voxel v[i, j, k]; therefore, the ring in the y-direction, the y-ring, needs
to have a maximum of nz entries (both sides of the current voxel need to be stored,
which increases the total by one entry). We traverse the data in normal Marching
Cubes fashion, and upon completing each voxel, we record the current information
into all of the rings and advance the pointers. A graphical depiction of three of these
rings is shown in Figure 2.

() (i) —(])

- (f)7 e)

() = (c) =

l(a)— -(b)- -(C)-

X-Ring

() m— =(1)

() ()

Y-Ring

(0 *(?

Z-Ring 7 indicates current voxel

Figure 2: The X-, Y-, and Z-Rings and their contents during data traversal. The left
side of each ring shows the currently active edges whose data is stored in the ring.
As indicated by the axes, the cells are visited from left to right, from top to bottom,
and from back to front. The right side of each diagram depicts the cache-ring storing
the edge information, with arrows indicating the direction of traversal.

In practice, we actually utilize only a small portion of each ring at a time for storing
precomputed indices - most of the voxels between the current voxel and the last voxel
in the ring contain no intersection points, and are empty. Recognizing that ring data
is always accessed deterministically (every entry which is stored is guaranteed to be
accessed, and the accesses will occur in exactly the same order in which they are
stored), we only need to store those edges which contain an intersection. With this
revised implementation, we now store two indices into each ring - one for the voxel
being examined and one for the neighbor information being stored (previously, these
indices were identical, so a single value was sufficient). New data is always inserted
at the last index, and the next intersection index is always read from the head.

3.3 Algorithmic Performance

Implementationally, the cache-ring algorithm operates very similarly to the hash table
- the primary difference is in the data structures used. It turns out that even with a
very fast hashing function, the hash table method is slowed because the table entry
for that edge is rarely still in fast cache when it is accessed by subsequent voxels. And,
most-importantly, when we suffer a cache miss for an edge, we are just as
likely to suffer a miss on lookups of subsequent edges in the same direction.
This is not the case with the cache-ring algorithm. This is because on a cache miss
the memory management unit (MMU) brings in in entire cache line of data, rather
than just the single requested item. This standard technique is generally efficient
because of the law of data locality: if a memory address is being accessed now, its
neighbors are likely to be accessed in the very near future [1]. We turn this mechanism
to our advantage with cache-rings, as we essentially prefetch most of our data.

In practice, we did not see as much speed-up as we had anticipated. This turned
out to be because we were knocking our own data out of the cache as we tried to
keep six rings stored there at the same time. Realizing that all of the necessary data
is redundantly stored in multiple rings, we can begin carefully merging some of the
rings.

The first improvement comes from recognizing that ring

rli,j — 1, k] is exactly the same length as ring r[i,j — 1,k — 1], and the data is all
the same — just shifted over one. To avoid colliding with ourselves in the cache, we
combine these lists by zippering them together into a single ring. The same process
is applied with rings r[i — 1, j, k] and r[i — 1, j, k — 1]. The second improvement comes
from removing r[i, j, k — 1], since this ring only has one element! Instead, the current
and next values from this ring are stored in global variables.

This leave us with three cache-rings: r[i,j — 1,k|, r[i — 1,7,k] and r[i — 1, — 1, k].
Our final optimization is to eliminate the last ring, r[i — 1,5 — 1, k] by combining
it with r[i — 1, j, k]. This operation introduces a complication, though, because ring
rli—1,7—1, k] is nz voxels longer than ring r[i, j — 1, k]. We clean this up by initially
storing the r[i—1, j—1, k| data in ring r[4, j — 1, k| and then copying it into r[i —1, j, k]
when the first ring has cycled. For our final implementation, we are left with two
cache-rings then: r[i — 1,7, k| and r[i,j — 1,k]. For simplicity, we will refer to these
as RX and RY, respectively.

To visualize how these data structures serve the algorithm, we will follow through a
short example. If we are extracting an isosurface of value v and some node ni, j, k|

7

(see Figure 1) has value (v + .1) and node n[i + 1, j, k] has value (v — .1), then the
triangular, linearly interpolated isosurface S, which will be extracted from the volume,
will contain the point p, located at the midpoint of the edge between node nli, j, k|
and node n[i + 1, 7, k]. This edge is shared by four voxels. Specifically:

the (+y, +2) edge of voxel v[i — 1,7 — 1, k] and

)
the (+y, —z) edge of voxel v[i — 1, j, k] and
the (—y, +2) edge of voxel v[i,j — 1, k] and
the (—)

y, —z) edge of voxel v[i, 7, k].

This intersection point is first encountered from voxel v[i — 1,5 — 1, k]. Its location
along the edge is computed, and the index to this new point is placed in rings RX
and RY. The algorithm then continues processing cells. When it arrives at voxel
v[i — 1,7, k], it finds that it has an intersection on the (—y,+z) edge and blindly
grabs the index of point p from cache-ring RY, knowing that the leading entry must
be this intersection node’s index. After all the triangles have been generated for voxel
v[i — 1,7, k], this intersection point is again inserted into the RX cache, so that the
point can be referenced in voxel v[i, j, k.

The only specials cases in this implementation come when we encounter non-interior
(exterior) edges. As defined above, these are edges which lie on boundary faces of
the volume. When we are examining such a cell, we need to take special care to not
assume the usual edge intersections have been precomputed and cached.

3.4 Multiprocessor Implementation

For the multiprocessor implementation of the cache-rings algorithm, we divide the
dataset along the x-dimension into “slabs,” which are independently handled by sep-
arate processors. Each processor stores its first RX cache-ring globally, so the data
can be accessed by the processor sharing those voxel edges. All subsequent cache-
ring loads and stores are done on a local cache-ring, until the final plane of voxels
in the slab is reached. At this point, the processor waits until the processor sharing
the boundary edges of those voxels indicates that it has finished processing storing
that edge information in its global RX cache-ring. In practice, this synchroniza-
tion doesn’t cause any slowdown, because every processor has generally completed

8

processing its first plane of voxels before any processor is ready to process its last
plane.

The dimension of the slabs and the number of utilized processors can be selected by
the user. We found that choosing slabs with less than four voxels of thickness lead to
dramatic slowdowns, as increasing percentages of execution time became necessary
for sharing and copying data at the boundaries.

When each processor has completed its portion of the surface, the pieces are serially
evaluated by a single processor to determine the offsets of the indices in each partial
surface. These offsets are then read in by the processors and, once again proceeding
in parallel, each processor adjusts the indices of the triangles it has extracted. Once
the indices are consistent, the points and triangles can be moved directly into a single
data structure which stores the entire surface.

Performance analysis shows that there is not much delay incurred by the barrier
synchronizations described above. The largest performance hit comes from the extra
work needed to process boundary voxels. When the entire volume is a single slab
(as is the case for single processor execution), there are a minimal number of voxels
touching boundaries. With each added processor, the size of the slabs decreases,
and the percentage of the voxels which share a boundary rapidly rises. Furthermore,
processing voxels which touch the Y and Z boundaries of the model incur a smaller
overhead than voxels which are at an X boundary, and it is the number of X boundary
voxels which is increasing as we divide the volume into more, ever thinner slabs.

3.5 Edge Hashing

For comparison, we also implemented an edge-hashing extraction/construction method
that builds the same connected surfaces as out cache-ring method. Here again we ex-
ploit the predictability of edge accesses, recognizing that an interior node will be
accessed by exactly four voxels. After a node has been accessed four times, we delete
it from the hash table, thus saving time (less likely to have collisions during future
lookups) and memory (only the active node indices are stored).

Every edge spans two voxels. For the purpose of defining a unique, consistent hash-

key for each edge, we use the “smaller” node as the root of our index. (By “smaller”

we mean the node to the left, below, or behind the other node — see Figure 1 for

reference.) The i, j, and k indices of this node are concatenated to form the high-

order bits of the key. These are followed by two bits to encode direction information
9

(right, up, or forward), and two final bits to encode how many times the node has
been referenced. If we have a data set containing less than 2?® (134 million) voxels,
then this hash-key can be constructed as a 32-bit integer. Alternatively, for larger
data sets, we can hash long integer keys.

The multiprocessor implementation of the edge-hashing method utilized the same
synchronization mechanisms as the cache-ring version. The only difference is that a
separate hash table is created for the boundary voxels. This global object is analogous
to the shared boundary cache-ring discussed above.

4 Results

We implemented three algorithms for timing comparisons: standard Marching Cubes
(only building unconnected triangles), edge-hashing, and cache-rings. These algo-
rithms were all timed for isosurface extraction on four radiology data sets. The first
data set is a low-resolution, (32 x 32 x 32), MRI model of a head. The second data
set is the same model, but at twice the resolution in each dimension, (64 % 64 x 64).
The third data set is the same individual’s head imaged during a different MRI scan
and contains (56 * 512 % 512) nodes. The final model is the CT thorax of the Visible
Human Data Set™) [15] and contains (512 * 512 % 168) nodes.

For the MRI data sets, we extract an isosurface values corresponding roughly to the
scalp. The CT data was isosurfaced at a value more appropriate for bone. Screen
images of the extracted surfaces from all of these data sets are included at the end of
the paper (Figures 5-8).

All three algorithms were run on an SGI Power Onyx, with 14 90 MHz R8000 CPU’s.
This machine has a shared memory architecture, with 128 byte cache line, 16 Kb of
L1 cache, 4 Mb of L2 cache, and 4 Gb of main memory. An L1 cache miss costs, on
average, 5 cycles, and an L2 cache miss costs, on average, 100 cycles. For different
timings, we utilized different numbers of the available processors. We note that the
Power Onyx architecture has a main bus which can be saturated by as few as five
processors during heavy utilization.

10

Model | Time* [Marching Edge Cach e
(sec) Cubes Hashing | Ring s

32x32x32| EXT 10.47 0.63] 0.61
Head OH N/A 0.01| 0.01

64x64x64| EXT J2.82 3.60[3.54
Head OH N/A 0.09| 0.08

* key: EXT - Extract Timing
OH - Overhead Timin g

Figure 3: Table 1 Timings for single processor isosurface extraction of two data sets,
using Marching Cubes, edge-hashing, and cache-ring algorithms.

4.1 Single Processor Timings

Table 1 contains timing results from running the three isosurfacing methods on the
smaller MRI data sets, using only a single CPU. The edge-hash and cache-ring build
both a geometric and a topological surface, and so we have included timings for the
“Overhead” of allocating and copying the topological surface. This permits a more
consistent comparison between these methods and the Marching Cubes methods.

4.2 Multiprocessor Timings

Table 2 contains timing results from running the three isosurfacing methods on the
three larger data sets and using varying numbers of processors. Once again we have
included separate timing values indicating the amount of overhead in the hash table
and cache-ring runs. All timings have been summed over the utilized processors.
Additionally, we have included a separate “Wall Clock” timing, to demonstrate the
amount of real-world time that passed during execution.

4.3 Analysis

From the tables above, it is clear that the basic Marching Cubes algorithm is consid-
erably faster than the algorithms which construct topologically connected surfaces.
When connected surfaces are required, edge-hashing and cache-ring extraction meth-
ods produce comparable timing results. This second point is somewhat surprising,
given the increased book-keeping coding necessary for maintaining the rings. We

11

Model |CPUs |Time* | Marching Edge Cach e
(sec) Cubes Hashing |Ring s

EXT | 284 418 4.07
2 OH |NA 012 0.10
64 WC | 154 22p 227
X
64 EXT | 285 536 5.30
X 4 OH |NA 01% 0.15
64 WC | 0.84 168 1.61
Head
EXT | 290 7.66 7.80
20K 1 8 |oH [NA 035 033
7K WC | 050 1.2p 1.26
triangle s
EXT | 319 12.83 12.70
14 OH [N/A 051 047
WC | 040 125 1.22
56x512x EXT |156.34 401.52 385.21
512Head | g OH |N/A 1321 12.42
1am WC |29.65 7150 68.91
voxels, EXT [158.09 613.74 599.72

24M

triangles 14 OH [NA 1246 12.01

WC |19.28 59.p9 58.03

512x512x EXT (246.70 263.94 251.52
168 Torso| g OH N/A 2.1 2.09
WC |29.65 4442 40.07
44 M
Vggg'@ EXT [246.88 252.77 240.38
triangles 14 OH N/A 3.2 3.06
9 WC |22.94 28.63 25.19
* key: EXT - Extract Timin g

OH - Overhead Timin g
WC - Wall Clock Timin g

Figure 4: Table 2 Timings for multiprocessor isosurface extraction of three data sets,
using Marching Cubes, edge-hashing and cache-ring algorithms, and varying numbers
of CPU’s.

conclude that the lack of performance degradation (and actually a small performance
improvement) is due to improved cache performance.

In analyzing the performance of the parallel methods, we see that speedups are sub-
optimal for all of the algorithms. Analyzing the Extract timings, we see that Marching
Cubes had the best speedup, with very little extra computation required when the
work was spread across processors. As expected, edge-hashing and cache-rings had
added computation when split across processors. This increase reflects the overhead
of sharing data at boundaries during triangle extraction, and merging the boundary
data during surface construction.

Examining the Wall Clock timings and total Extraction timings from the various
methods, it is clear that we didn’t have exceptional load-balancing performance. This

12

is an artifact of the uneven distribution of data values, as would be expected from
radiological patient images.

A final point of interest is that these performance numbers come from execution
on 90 MHz R8000 processors. These MIPS processors are relatively lenient in the
penalties they impose for an L1 cache miss. This is primarily due to the fact that
they are running at a relatively slow clock rate. The more stringent cache miss
penalties imposed on faster processors will further improve the relative performance
of cache-ring methods over hashing methods.

5 Conclusions

We have presented a new data structure, the cache-ring, and an augmented Marching
Cubes algorithm for the construction of topologically correct surfaces. The details of
the algorithm and the data structure implementation are not the points of relevance
here. Rather, the primary reason for this paper has been to emphasize the importance
of memory-conscious algorithms. By re-engineering our program so it maps to the
underlying hardware, we have partially alleviated the bottleneck of accessing memory
during isosurface construction.

As we continue to develop new and improved isosurface extraction methods, we be-
lieve it is important to keep abreast of the simultaneous shifts evolving in computa-
tional hardware development. The performance bottleneck in modern architectures
has shifted from computation to memory accesses. This bottleneck becomes even
more pronounced in the case of parallel architectures, where data can be distributed
among multiple CPU’s. As the bottleneck shifts, algorithm development must shift
as well, if methods are to remain optimal in practice. The cache-ring data structure
is an example of updating a method to follow the underlying hardware’s bottleneck
shift. Rather than suffer performance degradations with the random data accesses
of existent codes, we have developed an augmented algorithm and data structure to
alleviate memory-induced stalls.

13

6 Future Work

Having optimized the surface construction method for regularly-gridded scalar fields,
we will now being looking at memory access patterns for other commonly-used algo-
rithms, such as isosurface extraction on irregular grids, and streamline advection.

We look forward to running our code on MIPS R10000 processors in the near future
to obtain accurate statistics on cache performance. We would also like to obtain
performance statistics on machines with other memory architecture configurations
for comparison. Additionally, we would like to have accurate counts of the number
of instructions executed for the various surface extraction methods.

In the mean time, we will investigate developing a small simulator to derive cache-
performance and instruction count data for those architectures where such statistics
are not available. As we can better micro-profile our code to determine architecture-
dependent slow-downs, we will continue to develop new algorithms and data-structures
which better map to the underlying architectures.

Finally, we have not addressed any of the load-balancing issues which arise from
multiprocessor implementations. It would be reasonable to vary the slab thickness
in order to accommodate the varying number of surface intersections throughout
the volume. We will investigate such load-balancing issues in future versions of this
algorithm.

7 Acknowledgments

This work was supported in part by the National Science Foundation. I would like to
thank Peter-Pike Sloan, Helen Hu, Steve Parker, Chuck Hansen and Chris Johnson
for their valuable comments and suggestions.

References

[1] D.A. Patterson and J. L. Hennessy. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 2nd edition, 1996.

14

2]

3]

[10]

[11]

[12]

[13]

[14]

[15]

W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. Computer Graphics, 21(4):163-169, 1987.

H. E. Cline, W. E. Lorensen, S. Ludke, C. R. Crawford, and B. C. Teeter.
Two algorithms for the three-dimensional construction of tomograms. Medical
Physics, 15(3):320-327, 1988.

J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation. ACM
Transactions on Graphics, 11(3):201-227, 1992.

M. Giles and R. Haimes. Advnaced interactive visualization for cfd. Computing
Systems in Engineering, 1(1):51-62, 1990.

R.S. Gallagher. Span filter: An optimization scheme for volume visualization of
large finite element models. In Visualization ‘91, pages 68—75. IEEE Press, 1991.

H.W. Shen and C.R. Johnson. Sweeping simplices: A fast isosurface extraction
algorithm for unstructured grids. In Visualization ‘95, pages 143-150. IEEE
Press, 1995.

H.W. Shen, C.D. Hansen, Y. Livnat, and C.R. Johnson. Isosurfacing in span
space with utmost efficiency (issue). In Visualization ‘96, pages 287-294. IEEE
Press, 1996.

B. Curless and M. Levoy. A volumetric method for building complex models
from range data. In ACM SIGGRAPH Computer Graphics, pages 303-312.
IEEE Press, 1996.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface re-
construction from unorganized points. In ACM SIGGRAPH Computer Graphics,
pages 71-78. IEEE Press, 1992.

G. Turk and M. Levoy. Zippered polygon meshes from range images. In ACM
SIGGRAPH Computer Graphics, pages 311-318. IEEE Press, 1994.

R. Shekhar, E. Fayyad, R. Yagel, and J.F. Cornhill. Octree-based decimation of
marching cubes surfaces. In Visualization ‘96, pages 335-342. IEEE Press, 1996.

J. Rossignac and P. Borrel. Multi-resolution 3D approximations for rendering
complex scenes. In B. Falcidieno and T. Kunii, editors, Modeling in Computer
Graphics: Methods and Applications, pages 455—465. Springer-Verlag, 1993.

C. Montani, R. Scateni, and R. Scopigno. Discretized marching cubes. In Visu-
alization ‘94, pages 281-287. IEEE Press, 1994.

National Library of Medicine. The visible human project, 1995.

15

Figure 5: Scalp isosurface from 32*32*32 (32K) node MRI model of a head. Surface
contains 9492 triangles.

16

Figure 6: Scalp isosurface from 64*64*64 (262K) node MRI model of a head. Surface
contains 47,436 triangles.

17

Figure 7: Scalp isosurface from 56*512*512 (14M) node MRI model of a head. Surface
contains 2,399,382 triangles.

Figure 8: Skeletal isosurface from 512*512*168 (44M) node CT model of Visible
Human Project male thorax. Surface contains 651,594 triangles.

18

