The Avalanche Myrinet Simulation Package
— User Manual for V2.0 —*

Chen-Chi Kuo, John B. Carter

{chenchi, retrac}@cs.utah.edu
WWW: http://www.cs.utah.edu/projects/avalanche

UUCS-96-010

Department of Computer Science

University of Utah, Salt Lake City, UT 84112
September 24, 1996

Abstract

This is a user manual for Version 2.0 of the Myrinet simulation package. Users of the V2.0 pack-
age can specify arbitrary network topologies composed of Myrinet switches with different number
of ports. For example, 4-port and 32-port switches can be used in a single system. Because the
V2.0 model supports arbitrary topologies, simple X-then-Y source routing is no longer sufficient
to model the required routing. Thus, users of the V2.0 package must specify the routing table
themselves. In addition, to track improvements to the circuit technologies used in the Myrinet
switches, the clock rate, latency and bandwidth have been parameterized. Users can change the
parameters in order to meet their simulation needs. In the manual, the example-driven method is
used to explain how to build your own Myrinet switch systems.

*This work was supported by the Space and Naval Warfare Systems Command (SPAWAR) and Advanced Research
Projects Agency (ARPA), Communication and Memory Architectures for Scalable Parallel Computing, ARPA order
#B990 under SPAWAR contract #N00039-95-C-0018

Contents
1 Introduction

2 Configuration Files
2.1 System Parameters File
2.2 Topology File o L
2.3 Routing Table File o

3 Interfaces with the Upper Level Simulation Codes

1 Introduction

This is the user manual for the configurable Myrinet[1]! simulation package that has been developed
for the Avalanche project at University of Utah. This package requires the use of the PAINT
architecture simulator[2], which was evolved as part of the Avalanche effort from the University
of Rochester’s MINT simulator[3]. To use this Myrinet simulation package, you must link with
the PAINT library and use PAINT to drive the simulation itself.? Please refer to the Avalanched
project home page at hitp://www.cs.utah.edu/projects /avalanche for more details about the PAINT
simulation and to acquire a copy of PAINT.

Version 2.0 of the Myrinet simulation package was designed to allow a high degree of configura-
bility of the modeled network. Version 1.0 modeled only simple square mesh topologies with 4-port
switches, and users could specify only a limited number of switch parameters. As Myricom released
larger and faster versions of their Myrinet switches, the V1.0 simulation model became obsolete.
Users of the V2.0 package can specify arbitrary network topologies composed of Myrinet switches
with different number of ports. For example, 4-port and 32-port switches can be used in a single
system. Because the V2.0 model supports arbitrary topologies, simple X-then-Y source routing is
no longer sufficient to model the required routing. Thus, users of the V2.0 package must specify
the routing table themselves, as described in Section 2. In addition, to track improvements to the
circuit technologies used in the Myrinet switches, the clock rate, latency and bandwidth have been
parameterized. Users can change the parameters in order to meet their simulation needs.

The remainder of this user manual is organized as follows. In Section 2, the formats of the
system configuration files are explained through a series of examples. Section 3 describes the
interface between the Myrinet simulation package with PAINT, so that users can integrate their
Myrinet network model into their PAINT architecture model.

2 Configuration Files

Users of this package must provide three configuration files:

e a system parameter file that describes the performance parameters of the switches and links

in the system, as well as a small number of global parameters,

e a network topology file that describes how the switches in the system are interconnected (i.e.,
what ports are connected to what other ports), and

e anetwork routing file the describes how to route from every processor to every other processor.

The names of these parameter files can be specified in the PAINT command line using the -k,
-t, and -r flags. For example, sim -n 16 -s 0x1800000 —— -k sfile -t tfile -r rfile barnes <input
indicates that the system parameter file is called sfile, the topology file is called tfile, and the
routing file is called rfile.

! Myrinet is a trademark of Myricom, Inc. For detailed information on Myrinet technology, see the Myricom home
page at hitp://www.myricom.com.

2PAINT is designed to model HP PA-RISC based multiprocessors, while MINT is designed to model MIPS-based
multiprocessors. Although this package requires the use of PAINT, a port to the MINT system should be feasible
with a limited amount of effort. If you perform this port, please send it back to us for inclusion in our release for

others to use, and we will (of course) give you full credit for the port.

The required format of the three configuration files are explained in Sections 2.1 through 2.3
using the example topologies illustrated in Figures 1 and 2. Figure 1 illustrates a simple mesh
topology composed of four and eight node switches, while Figure 2 illustrates a chordal ring topology

composed of only four-node switches

2.1 System Parameters File

The System Parameters File specifies the configuration of the Myrinet switches in the system. An
example is given below, with comments to explain the meanings of each parameter:

Simple Mesh System Parameters File

Total number of the processors in the system
numOfProcessor 16

Maximum number of ports on any single switch in the system

maxNumOfPorts 8

Total number of switches in the system
numOfSwitch 7

Link propagation delay, in cycles where 1 cycle == 10 ns
propDelay 4

Time to perform taxi translation and cross bar setup
for different switch sizes, measured in system cycles
fallThruDelay4 26
fallThruDelay8 27
fallThruDelay16 30
fallThruDelay32 35

Ratio between CPU and Myrinet switch clock rates

For example, if the processor speed is 100MHz and the modeled
Myrinet system clocks at 50MHz, the SpeedFactor is 2
SpeedFactor 2

Myrinet switch slack buffer sizes (see Myrinet technical specs
for discussion of the kg, h, and ks values in the buffer)
buffer_kg 32

buffer_h 16

buffer_ks 32

PO P1 P2 P3
J 0 1
[b 777777 677\
'3 3 l 7
P15 - 0] 1 S1 ?
| 21\"0 21\"0 | 5 -
\3 j }
Pl4 =~ 2 [11 S3 [T
o2k By
o o
yo vl Yo Y1
o 7
P13 =——— - =
2
6 S5 6 S6
P12« - —
3
5 4 5 4
P11 P10 =) P8

Figure 1: Example Topology: Simple Mesh

P4

P5

P7

P5 P4

Figure 2: Example Topology: Chordal Ring

2.2 Topology File

The topology file specifies the interconnections between individual switches in the system. It is
used to define the overall system topology. The following example file is the topology specification
for the simple mesh in Figure 1. The topology file consists of one line per switch that designates
where each of that switch’s ports are connected (either to ports on other switches or to processors).
Each line should have one entry for each port (i.e., the topology entry for a four-port switch must
have four entries, while that for an eight-port switch must have eight).

Simple Mesh Topology File

Some definitions:

S0.1 means port 1 of switch number O
PO means processor number 0O
D means dangling line

S0: PO S1.3 S2.0 P15
Meaning: Port O of Switch O is connected to Processor 0

it Port 1 of Switch O is connected to Port 3 of Switch 1
it Port 2 of Switch 0 is connected to Port O of Switch 2
it Port 3 of Switch O is connected to Processor 15

S1: P1 S54.7 S3.0 S0.1
S2: 50.2 S3.3 S5.0 P14
S3: 51.2 54.6 S5.1 52.1
S4: P2 P3 P4 P5 S6.1 56.0 S3.1 S1.1
55: 52.2 33.2 56.7 S6.6 P10 pll P12 P13
S6: 54.5 54.4 P6 P7 P8 P9 S5.3 55.2

The following example file is the topology specification for the chordal ring.

Chordal Ring Topology File

S0: PO S1.3 83.2 s7.1
S1: P1 S2.3 S6.2 50.1
S2: P2 S3.3 S5.2 51.1
S3: P3 S4.3 S0.2 52.1
S4: P4 S5.3 S7.2 S3.1
S5: P65 S56.3 S52.2 54.1
S6: P6 S7.3 S1.2 S5.1
S7: P7 S0.3 54.2 S6.1

2.3 Routing Table File

Myrinet technology uses a static source routing mechanism. For simple mesh topologies composed
of symmetric switches, a simple X-then-Y routing mechanism suffices to route packets between

input and output ports. However, because the V2.0 simulation package supports arbitrary network
topologies and heterogenous switch sizes, X-then-Y routing is no longer sufficient. Users must
specify the static source routing tables explicitly to specify to the simulation how to compose the
packet headers. A complete routing table file must include N x N routing directions in an N
processor system, one entry for each processor pair. Note that the routing need not be symmetric,
meaning that packets from port X to port Y can take a different path than packets from port Y
to port X. A partial sample routing table is given below. For space purposes, only the routes from
one processor are given. Please refer to the simulation package itself for a complete example.

The syntax of the routing file is as follows. For each processor pair, there must be one line
specifying the order of switch output ports that a message traveling from the source to the destina-
tion must take. Port numbers are designated via a single character, ranging from 0-9 (for the first
ten ports) and then a-z (for the next 26 ports). For the V2.0 product, this results in a maximum
switch size of 36 ports (or, realistically, 32 ports).

In the example routing table below, for Processor 0 (PO) to send a packet to Processor 8 (P8),
the packet will go through port 1 of S0, port 1 of S1, port 4 of 54, and finally port 4 of S6. This
route is directed by the entry in the routing table PO P8 with the sequence 1144.

#3imple Mesh Routing Table File

#sender receiver portnumber-sequences
pO pO 0

pO pl 10
pO p2 110
pO p3 111
pO p4 112
pO p5 113
po p6 1142
pO pP7 1143
po p8 1144
po p° 1145
po plo 224
po pil 225
po pl2 226
pO pl3 227
pO pl4 23
pO pl5 3

3 Interfaces with the Upper Level Simulation Codes

Traditional PAINT architecture simulations consist of models for the CPU, cache controller, direc-
tory controller (for scalable DSM models), network interface, system bus, and other components.
This Myrinet simulation package provides a portion of the router interface to create source-routing
headers, route packets between nodes, model the network delays due to internal buffering con-

straints, etc. It does not, however, model input or output buffering within a node (i.e., between

the system bus and the network device). This level of buffering must be modeled in the archi-

tecture simulation. The network simulation package models packet delivery and flow control at a

cycle-by-cycle level of precision.

To inject packets into the Myrinet fabric, the architecture simulation should invoke the Send

function, which has the following type signature:

Send(task_ptr ptask, int src, int dest, int payload, void *msg_addr, int info_size, void
*usr_ptr, int do_mem_costs)

The meaning of the parameters is as follows:

ptask: the PAINT task that will be scheduled by the Myrinet simulation after the last
flit of the current packet is injected into the interconnect. At that point, the architecture
simulation can issue another Send to ship the next packet. If other pieces of the simulation
need to respond to the event of a packet transmission completing, users of this package must
signal this event within the ptask routine.

src: the processor id of the sending processor

dest: the processor id of the destination processor

payload: the length of the user message body in bytes

msg_addr: the memory address of the user message body, used to perform DMA transfers
info_size: length of the user message header in bytes

usr_ptr: an arbitrary pointer to be used by the communicating peers of the upper level
simulation, which can be to pass information useful for controlling the simulation

domem_costs: a flag to indicate if this Send call needs to DMA the packet data from the
memory, which may cost some delay. A user-define function Memory_read, which is explained
below, will be invoked when do_mem_costs is set.

If the do_mem_costs is set, the function Memory_read, defined by the users, will be invoked in

order to simulate the delay caused by DMAing the packet data from the memory.The type signature

of the Memory_read function is as follows:

Memory_read(task_ptr ptask, int src, void *msg_addr, int payload)

The meaning of the parameters is as follows:

ptask: the PAINT task that MUST be scheduled in the Memory_read, so the Myrinet simu-
lation can finish shipping this packet.

src: the processor id of the sending processor

e msg_addr: the memory address of the user message body, used to perform DMA transfers

e payload: the length of the user message body in bytes

Once the packet arrives at the destination processor, the Receive will be invoked by the Myrinet
simulation. Users of this package must implement this Receive function. When the upper level
simulation has consumed the packet, it MUST schedule the ptask or the Myrinet simulation will
not deliver more packets. The type signature of the Receive function is as follows:

Receive(task_ptr ptask, int src, int dest, int payload, void *msg_addr, int info_size, void
*usr_ptr)

The parameters of Receive are the same as the parameters in Send.

References

[1] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic, and W.-K. Su. Myrinet
— A gigabit-per-second local-area network. IEFE MICRO, 15(February):29-36, February 1995.

[2] L.B. Stoller, R. Kuramkote, and M.R. Swanson. PAINT- PA instruction set interpreter. Technical
report, University of Utah - Computer Science Department, March 1996. Also available via WWW
under http://www.cs.utah.edu/projects/avalanche/paint.ps.

[3] J.E. Veenstra and R.J. Fowler. Mint: A front end for efficient simulation of shared-memory multiproces-

sors. In MASCOTS 1994, January 1994.

