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Abstract
This document describes Paint� an instruction set simulator based on Mint�	
� Paint interprets

the PA�RISC instruction set� and has been extended to support the Avalanche Scalable Computing
Project��
� These extensions include a new process model that allows multiple programs to be run
on each processor and the ability to model both kernel and user code on each processor� In addition�
a new address space model more accurately detects when a program is accessing an illegal virtual
address� allows a program�s virtual address space to grow dynamically� and does lazy allocation of
physical pages as programs need them�

Note that this document is intended to be an addendum to the original Mint technical re�
port� which the reader should consult for an overview of the Mint simulation environment and
terminology�
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� Introduction

This note describes the Paint �PA Interpreter� simulation environment� Paint is based on the
Mint�	
 simulation system developed at the University of Rochester� and has been modi�ed to in�
terpret the PA�RISC��
 instruction set and to support the Avalanche Scalable Computing Project��
�
These changes are documented here� The reader is encouraged to read the original Mint report be�
fore proceeding� but as a review the next few sections present the essential concepts� More detailed
descriptions follow later�

��� Program Driven Simulation

Paint is a program�driven simulator� partitioned into two main parts� a memory reference generator
�the �frontend�� and a target system simulator �the �backend��� The frontend models the execution
of a program by simulating the instruction stream� When an instruction causes or requires special
operation� such as a memory reference or special system instruction� the frontend generates an
event for the backend to operate on� The backend models the memory hierarchy and interconnect
of the target system� including� but not limited to� the �rst level cache� the TLB� the system bus�
main memory� and the network interface� When the operations for carrying out the event have
completed� the backend signals the frontend to continue execution of the instruction stream for
that processor�

Event
Generator

(Front End)

Target
System

Simulator

(Back End)

Events

Process
Control

Figure �� Program Driven Organization

Program execution in Paint is interpreted� the instruction stream consists of a sequence of data
structures representing the actual instructions� The state of the processor is represented in a global
data structure� Processor state includes the values of registers� virtual to physical page translation
tables� the current program counter� etc� As instructions are interpreted� the value of this structure
changes� When the simulator switches to a new processor� a di�erent global structure is installed
as the current processor� and execution continues as before�

When a program is loaded� the text portion of the �le is scanned and converted to a linked list
of structures called instruction codes �or icodes�� The icodes are linked together� for both sequential
and non�sequential execution �branches and jumps�� Each icode stores information about how to
interpret the instruction� as well as a pointer to a function to handle the actual interpretation� In
general� each instruction has a speci�c function� although some have more than one when certain
opportunities for optimization are detected� Execution then consists of calling the function for
each instruction� which may modify the processor state� and which returns a pointer to the next
instruction icode to simulate� which might be the next sequential instruction or the target of a
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Figure �� Execution Timeline

branch or jump�

��� Virtual Memory Model

Memory reference instructions are handled specially by the Paint frontend� Once the user virtual
address is computed from information in the icode structure� a virtual to physical translation must
be performed� Two translations are actually produced� the �rst is a �processor� physical address
that is used by the backend� and the second is a �paint� physical address that corresponds to the
actual location within Paint�s address space� The processor physical address is used by backend
modules that require realistic physical addresses� like a cache or memory bus module� The Paint
physical address is used as the location to actually read and write data to memory� When the TLB
module is in use� the simulated kernel sets the processor physical address using appropriate target
machine instructions� If the TLB is switched o�� the processor physical address is set equal to the
Paint physical address�

��� BackEnd Interface

As mentioned above� the simulator frontend is responsible for executing instructions until something
interesting occurs� such as a memory reference� At this point instruction execution is suspended
and an event is generated for the backend� The event is a data structure that packages up details
about the event so that they may be communicated to the backend� The backend then operates
on the event� possibly scheduling tasks to handle event activities� Tasks are scheduling entities
that contain a time to run and a dispatch function to invoke when the speci�ed time arrives� In
this way� multiple concurrent activities can be in progress� including� instruction execution by
processors that are not blocked waiting for an event to complete� memory hierarchy activities in
support of processor load and store instructions� and network transmission and reception� When
the event is complete� the backend signals the frontend that instruction execution for the speci�ed
processor may proceed �in fact� instruction execution is a task associated with each processor�� See
�gure ��
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� Process Model

By far� the most widely reaching change to Mint was to the process model� Mint was originally
a Single Program� Multiple Data �SPMD� system� A program would start� possibly do some
initialization� and fork one or more children� Each child was considered not a only a new process� but
a new processor as well� In fact� process and processor were essentially the same� The disadvantage
of this model is that multiple programs cannot be run� forcing a particular programming model
that is not always appropriate for distributed memory machines� Further� by not being able to
simulate multiple programs per node� the time and memory e�ects of �kernel mode� cannot be
measured since all operating system functionality was implemented in the simulator itself� This
has the e�ect of making many operations cost free� thus skewing the simulation results�

The process extensions made to Mint allow it to run a functional kernel on each node �see
section ����� and an arbritrary set of user programs on each node� Operationally� each simulated
processor is represented by a single Paint thread� The kernel is the �rst program to run within that
thread� followed by � or more user level programs� Like a real machine� the kernel context switches
bewteen user programs with appropriate target machine instructions that change the register state
of the processor� Paint maintains an association between the di�erent programs and the simulated
processor those programs are running on� which allows Paint to switch the instruction stream and
virtual address context when requested to do so by the kernel�

Before presenting a detailed description of the frontend operation� a user level view of the
process model is given�

��� User Level View

When Paint is started� the program it is given to simulate is the kernel� The kernel then duplicates
itself on each virtual processor as the �rst program using the newvproc� system call� Once the
kernel is running on the new processor� it forks a child� and execs the init program� The init
program reads a setup �le that speci�es which programs to run on each processor� and forks�execs
the programs for its processor� The init program then exits� At this point the kernel goes into an
idle loop� waiting for system calls and interrupts� Of course� the kernel does not actually idle since
executing instructions that do nothing is too costly in a simulated environment� Instead� the kernel
puts itself to sleep� The simulator wakes the kernel up when it needs to do something�

Since the goal is to run �user� program binaries unchanged� and without special compilation�
the system call interface is identical to the one used in the BSD and HPUX kernels� When the
simulator detects a system call in a user program� it vectors the instruction stream for that thread
to a known address in the kernel� Eventually the kernel must handle the system call� For most
calls� it means letting the simulator take care of it �see Section � in the Mint User Manual� by
�calling� the intended system call function� just as the user program did� The di�erence is that
when the kernel calls a system call �say� open������� the simulator intercepts the call and handles the
operation� returning a result �a �le descriptor in the case of open���� The kernel then returns the
value to the user program just as a production kernel does� The goal is to have the kernel catch all
system calls so it can decide which ones are handled in the simulated kernel� and which are passed
onto the simulator itself�

Multiple programs can be run on each node� Additional support from the simulator allows
the kernel to context switch between multiple kernel threads� When the simulator executes one of
several PA instructions �be� ble� r��� the simulated instruction stream is switched to a di�erent set of
instructions� as de�ned by the PA architecture� In other words� a single Paint thread multiplexes
several simulated kernel threads using real context switch code to change register and program





counter values�
Process scheduling is done in the kernel� using the BSD ��� scheduling subsystem� The simu�

lator generates simulated clock interrupts that are delivered asynchronously to the kernel so that
it may update the scheduling data structures� recompute process priorities� and possibly arrange
for the current process to be context switched out� Kernel timers are also supported� The de�
fault period of the clock is ������� cycles� and is a con�gurable option to the simulator using the
VPROC clockperiod parameter value �see section ���

Asynchronous interrupts and traps are handled in a manner similar to system calls� When
a simulation module generates an interrupt or a trap for a processor� the instruction stream for
the currently running process on that processor is vectored to a known location in the kernel� A
standard state save is done �written in assembly language�� then a call is made to a C dispatch
function to handle the interrupt�

The following sections describe the Paint frontend in more detail� Later sections expand further
on key areas�

��� Instruction Execution

Instruction execution is the most basic operation in Paint� At its simplest� the instruction loop
takes the current instruction� represented by a pointer to an icode� calls the dispatch function
contained in the icode� and receives back a pointer to the next instruction to execute� This repeats
until an event is generated� or until a maximum number of instructions have been executed in a
row� At this point a rescheduling operation is performed� and a new task is selected to run� This
new task might invoke the instruction execution loop for a new processor� or it might be a task
that is working on an event for some processor� or it might be an anonymous task that is scheduled
to perform some operation in a simulation module� This operation repeats until there are no more
tasks scheduled to run� at which time the simulation terminates�

When a task does invoke the instruction loop� it begins execution with the current instruction
pointer� Figure 	 shows the icode data structure� Many of the �elds are speci�c to the actual
instruction� For example� the immed �eld holds the signed immediate value for any instruction
whose format includes an immediate� Other �elds have a common usage during execution� and
should be described�

func The function to invoke to handle the actual simulation of the instruction�

next A pointer to the next sequential instruction in the code stream�

target A pointer to the branch target instruction when the instruction is a conditional
or unconditional branch� and the target can be computed statically�

cycles The number of CPU cycles the instruction consumes� not including memory
hierarchy delay� The value is added to a running count as instructions are
simulated�

validregs The set of scaler registers used by the instruction� represented as a bitmask� �
bit for each of 	� registers� This �eld is used to implement stall on use loads
�see section ���

validfregs The set of �oating point registers used by the instruction� represented as a
bitmask� � bit for each of �� singles� or � bits for each of 	� doubles �see section
���
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typedef struct icode �

PFPI func�

char args����

icode�ptr next�

icode�ptr target�

u�long long validfregs�

u�long validregs�

long immed�

u�short cycles �	


form�addr ��


cfield �	


aum ���

char cp�

char s�or�clen�t�

u�long f�flag ��


nullify ��


next�null ��


is�target ��


opnum ���


opflags ���

long addr�

� icode�t
 �icode�ptr�

Figure 	� Instruction Code Data Structure

Each instruction function returns a pointer to the next icode to execute� The next icode is either
the next sequential instruction� or the target of a branch� or a dynamically computed jump target�
The �rst two pointers are computed when the program is loaded� and stored in the icode structure�
The pointer to the next icode for a dynamically computed jump target is returned by the T�I

function� which takes the target address of the jump as its argument� When the instruction loop
is suspended� the last icode pointer is stored in the processor data structure �this is e�ectively the
program counter�� and the cycle count for the processor is incremented� The instruction execution
task for the processor may be rescheduled to run at the new processor cycle count� or it might not
if the loop was suspended due to an event� Time moves forward since each processor runs for a
short time �possibly ahead of other processors�� with all processors eventually getting a chance to
move forward� �see �gure ���

��� Events

While the Paint frontend is primarily concerned with instruction execution� it is the Paint backend
that is responsible for more detailed simulation of selected architectural features� The most obvious
example is the memory hierarchy� In the absence of event generation� all loads and stores would
take a �xed amount of time� which is unrealistic� The backend writer can instead model a detailed
memory hierarchy� Meanwhile� other processors can continue ahead until some synchronizing event
occurs� There are many types of events that can be generated for the backend� This document
will concern itself with just memory events� so the reader should consult the Mint�	
 document for
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typedef struct task �

struct task �next�

struct task �prev�

int priority�

int pid�

mint�time�t time�

PFTASK ufunc�

struct event �pevent�

int ival��

void �uptr��

� task�t
 �task�ptr�

Figure �� Task Data Structure

a discussion of other events�
Events in the Paint frontend look much like an instruction� They are represented by icodes�

but with a function pointer to a routine that initiates the event� These special icodes are placed
into the instruction stream when the program is loaded� The loader scans the instructions� and
in the case of memory reference instructions� creates a duplicate icode� �ags it as an event� and
replaces the function with the appropriate event routine �either event read�� or event write��
The original icode is left as the next sequential icode� In other words� each memory reference icode
is preceded by a new event icode that causes the frontend to suspend execution and invoke the
appropriate backend function� When the backend signals that execution can continue� the original
icode is executed to e�ect the changes in processor state required by the particular instruction�
For example� PA�RISC loads and stores do base register modi�cation� which must occur after the
memory reference completes�

��� Tasks

When the backend function for an event is called� it is given a single argument� a pointer to the
task controlling instruction execution for that processor �see �gure ��� When the backend function
returns� it indicates via a status value whether instruction execution should continue or suspend
until some future time� and whether the task should be put back on the free list� If execution is
suspended� then it is up to the backend to save and eventually reschedule the task so that instruction
execution may proceed� The �elds of the task t data structure are�

next
 prev Queuing elements� These �elds can be used only when the task is not currently
scheduled to run since they are also used by the scheduling system�

time The absolute time at which the task should be run�

priority The task priority� If multiple tasks need to run in the same timestep� and they
need to be ordered� a priority can be assigned to force one task to run before
or after another�

pid The processor ID the task is executing on behalf of�

ufunc The function to invoke when the task runs� This function must return one of�
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T ADVANCE The processor associated with this task may continue executing
instructions�

T FREE This task is put on the free list and the next task with the
minimum time is removed from the task queue and executed�

T YIELD This is the same as T FREE except that the task is not put on
the free list� Only a reschedule is performed�

pevent A pointer to the event data structure that was constructed by the frontend�

ival�
uptr� Storage location for arbitrary values to pass to the function� There are many
more such variables� so the reader should consult the header �le�

When the backend function is invoked� the pevent �eld of the task t data structure points to
the event structure created by the frontend� The event structure is quite large and can accommodate
many types of events� so the reader should consult both the Mint document and the ��event�h��
header �le� The various task scheduling functions are described in the Mint document�

� Paint Address Space

This section describes the changes to address space translation� Paint dynamically translates
addresses during simulation� using a simple address translation formula that converts a program
�virtual� address into an address in Paint�s �physical� space� There were several characteristics of
the original memory model that needed improvement�

� Address space protection� Program errors can easily generate illegal virtual addresses� which
when translated to physical addresses� reference data in another program� or in the simulator
itself� The translation mechanism should check the validity of each virtual addresses presented
for translation�

� Dynamic allocation of memory� The program�s data and stack segments should be allowed
to extend past their original size as needed�

� Lazy allocation of memory� The physical pages for the bss� heap and stack should not require
allocation until they are referenced by the running program� This would reduce the number
of unused� and thus wasted� pages� With a small number of nodes� this is not an issue� but 	�
and �� node simulations of even moderate sized programs become di�cult� even on machines
with hundreds of megabytes of swap space and real memory�

Our approach was to implement page tables in the simulator� Page tables allow us to accurately
detect when a program is accessing an illegal virtual address� to implement dynamically sized
segments� and to allocate physical pages lazily as the program needs them� An additional bene�t
is that TLB information can be stored in the page tables� Finally� a recent optimization allows
cache line status to be stored in additional data structures attached to each page table entry� By
utilizing this information in the frontend� calls to the backend for each and every memory event
can be avoided� resulting in a twofold increase in simulator performance�

TLB support was then implemented using �elds in the page table structure� Before a memory
event is allowed to proceed� the corresponding page table entry is accessed� If the page is marked
as currently being in the TLB� and the read�write access permission bits match the type of access�
the memory event is allowed to proceed normally� If the page is not in the TLB� or if the access
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type is wrong �ie� writing a read�only page�� a TLB miss is generated by calling tlb domiss�� in
��tlb�c��� In addition to some book keeping� a processor trap is generated with vproc trap��

�see section �	�� Subsequent TLB insertion instructions �for the PA� idtlbp and idtlba� executed
by the kernel cause the TLB information for that page to be updated and the instruction retried�
The full cost of the TLB is modeled�

The current TLB model is very simple� A �� entry� fully associative TLB is modeled by
maintaining a list of page table structures that are currently in the TLB� When a capacity miss
requires an entry to be replaced� the oldest entry is removed from the list� and the new one entered�
The size of the TLB can be altered with the TLB numentries parameter �eld �see section ��� While
the PA�RISC supports a rather rich set of TLB options �protection identi�ers� multiple privilege
levels� etc��� the simulated TLB supports only read�write access permissions� By default� TLB
modeling is turned on in the simulator� To turn the TLB o�� use the TLB on parameter �eld�
setting it to ��

The following subsections describe the speci�cs of address translation�

��� Address Space Organization

Figure  shows Paint�s address space organization� Process virtual addresses are mapped to both
a processor physical address� and to a Paint physical address� The processor physical address is
assigned by the simulated kernel� The purpose of this address is to provide realistic processor
physical addresses to simulation modules such as the cache or memory bus� Processor physical
addresses are supplied by the kernel with PA�RISC TLB insertion instructions� When the TLB is
turned o�� the processor physical addresses are always set to the Paint physical address� The page
table entry ��gure �� includes several TLB bits that indicate if the page table entry is currently in
the TLB� and the type of access permissions �read or read�write� that the translation was inserted
with�

Paint physical addresses are locations inside of the Paint program where simulated program
data is actually stored� These addresses are known only to Paint� and are assigned when a memory
reference touches a page for the �rst time� It is not until this point that a page in Paint�s program
space is allocated and the page table entry created �see Figure ��� This lazy allocation of pages
allows larger simulations since it is often the case that programs never reference many of their
pages� This arrangement allows programs to grow more dynamically as well� Like a real kernel�
program segments are assigned a maximum size ��� megabytes for data� � megabytes for stack��
and a vector of page table entry pointers for each possible page is created� A program can grow�
lazily allocating pages until it reaches that maximum� The overhead is small� given that there
are only ���� page table entry pointers for a �� megabyte segment� or ��K bytes of storage per
segment� Both maximum values can be overridden using the parameter �le entries MAX STACK SIZE

and MAX DATA SIZE� Several other �elds in the page table entry should be noted�

type The type of page� currently either a normal data page or a shared memory page�
This information is passed to the backend�

dealloc Flag to indicate whether the underlying physical page should be deallocated
when the page table is reclaimed� This is used when page table entries share a
common physical page �as with shared memory segments��

hits Cache hit information� Used in the frontend to avoid calls to the backend cache
module� The frontend and the backend co�manage this data structure� See
section 	���
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typedef struct �

u�long pframe ���
 �� Paint Physical Page ��

type ����

u�long vframe ���
 �� Program Virtual Page ��

pbits ����

u�long fframe ���
 �� Processor Physical Page ��

dealloc ��


tlbvalid ��


reserve ���

ptcline�t hits�PTCSIZE��

� ptable�entry�t
 pte�t�

Figure �� Page Table Data Structure

��� Shared Memory Support

Shared memory support is provided in Paint through the use of the page table system� The virtual
address range starting at �xC������� is de�ned to be the shared memory address space� Each
processor has a single set of page table entries for the segment� and they are shared among all of
the processes on a processor� The underlying Paint physical pages are shared among all of the page
table entries on all of the processors� Thus� memory accesses on di�erent processors refer to the
same memory location since they share a single page� In the Paint frontend� the only di�erence
when generating the memory event is that it is �agged as being to the shared memory segment�
Any special handling is expected to be done in the backend by the cache module�

��� Fork and Exec

Paint provides the support necessary for both of the UNIX system calls� fork and exec� When a
user process executes a fork or exec system call� the kernel does whatever bookkeeping it requires�
and then passes the call onto Paint itself� In the case of fork� Paint then duplicates both the process
page tables and the contents of the pages� The virtual page addresses are the same in the child�s
version of the page table entries� but there are new Paint physical addresses for each duplicated
page of data� Pages that had not been touched in the parent� and thus were not allocated� are left
unallocated in the child� All of child�s page table entries are marked as not being in TLB� and the
processor physical addresses are cleared� When the process eventually runs� normal TLB misses
will provide the new processor physical addresses� This mimics the operation of a real kernel in
which fork duplicates exactly the virtual address range� but maps those virtual addresses to a new
set of physical pages� For exec� Paint �rst reclaims all of the page table entries and pages� and
then loads the new program� A new set of page table entries is created� and the initialized data is
loaded� All other pages �bss� heap� stack� are allocated lazily as the program references them�

As can be seen� much of the support for fork and exec is contained within Paint itself� The
kernel includes its own support� but is much simpler that a production kernel would be� The bulk
of the machine dependent virtual memory support is contained in ��vm�c�� in the kernel�
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��� Cache Support

The Paint frontend includes several extensions that allow it to optimize memory events� The �rst
is called fasthits mode� and is used to decrease the number of memory references that result in
backend events� Decreasing the number of backend events improves overall simulator performance
since suspending the instruction loop and invoking the backend is a very costly operation� When
fasthits mode is turned on �using the PT fasthits parameter �eld�� the frontend consults the hits
�eld of the page table entry to determine if the cache line being accessed is currently in the cache�
If it is� no backend event is generated� and instruction execution continues immediately� Execution
will continue until a maximum threshold of sequential instructions is reached� at which time a
rescheduling operation is performed so that a new task may run� The threshold defaults to �
instructions� and can be set using the PT fastcount parameter value�

The backend cache module is responsible for telling the frontend which lines are currently in
the cache� There are two functions provided to the backend� one to indicate that a line has been
inserted into the cache and another to indicate that a line has been evicted from the cache� In
addition� the backend provides a function to the frontend so that the frontend can signal when a
fasthit dirties a cache line� Thus� the frontend and the backend co�manage this state information
as the simulation proceeds� The prototypes for the two function called by the backend are�

ptable�cache�validate�int procid
 int spaceid
 unsigned long vaddr��

ptable�cache�invalidate�int procid
 int spaceid
 unsigned long vaddr��

The prototype for the function called by the frontend is�

flc�changestate�dirty�int procid
 int spaceid
 unsigned long vaddr��

For each routine� procid is the processor number� spaceid is the PA�RISC space identi�er for
the access� and vaddr is the virtual address of the line being accessed�

The second optimization mode provided by the frontend is called fastmisses mode� and is
controlled by the PT fastmisses parameter value� Fastmisses mode requires fasthits mode be
turned on� When fastmisses is on� no memory events �except those to I�O space locations� are
generated� Instead� the frontend calls a function in the backend cache module to indicate that a
line has been accessed� This allows the cache to be warmed up with the proper data� but without
the expense of going to the backend� This mode is most useful during startup and initialization
phases where the speed of the simulation is more important than accuracy� The function prototype
provided by the backend is�

flc�fastcache�insert�int procid
 int spaceid
 int pid


unsigned long vaddr
 unsigned long paddr
 int rw��

In order for this mode to be useful� it is necessary to provide a mechanism to turn it o� at some
point during the simulation� switching to the more accurate cache model� A simulated program
level function call is provided that can be used in either the kernel or a user program to turn
fastmisses mode on or o�� This function is trapped by Paint itself�

fastmissmode�int onoff��
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� Stall On Use� Asynchronous Writes� I�O Space

This section describes the changes necessary to support stall on use �SOU�� asynchronous writes�
and I�O space access The PA�RISC cache model employs all of these features� so supporting them
was essential for realistic simulations in the Avalanche project� Stall on use allows the processor to
proceed after a load operation� until the target of the load is referenced in a subsequent instruction�
Only then must the processor stall until the load is complete� Asynchronous writes allow the
processor to proceed immediately after a store� In this case� the cache stalls the processor when
there are no more slots in which to hold the pending store� I�O space memory references are
required to access Avalanche devices that are mapped into regions of the processor�s address space�

Supporting these new features required changes to the frontend and to the interface between
the frontend and the backend�

��� Valid Registers

Stall on use support requires that the frontend know which registers are referenced in each instruc�
tion� For non�memory instructions� the source registers must all be valid� The target registers
must also be valid before allowing the operation to proceed� even though real hardware would not
necessarily require it� This is to prevent prior loads to the same register� that have not completed
yet� from subsequently overwriting the target� We do this as a simpli�cation since it rarely happens
that a register is destroyed before a previous load to that same register is used �and thus� would
stall�� For memory instructions� the base and index registers� as well as the target registers must
all be valid before the instruction can proceed�

In order to determine which registers are referenced by each instruction� and which registers are
currently valid during execution� a validregs data structure was added to the icode t structure�
When a program binary is loaded� the validregs structure for each instruction is initialized with
a list of registers that are referenced in that instruction� A similar structure was also added to
the processor structure� As execution proceeds� the current set of validregs for the processor is
compared against those referenced in each instruction� If all of the referenced registers are valid�
the instruction executes normally� If there are invalid registers� the processor is stalled until the
backend indicates to the frontend that execution can continue�

Load instructions are a special case since they modify the current set of valid registers� The
target register of the load is made invalid� At some later time� the backend will indicate that the
load has completed� and that the register can be made valid again� If the processor had been
stalled because of a subsequent reference to that register� it is restarted� This state change is
communicated to the frontend using the sou load function described below�

The validregs information for each instruction is initialized using the SETVALIDREGmacros �there
are variants for integer� �oating point� and double registers�� See the instruction decode functions
in ��text�c�� for an example�

��� Asynchronous Events

The original interface between the frontend and the backend was through the use of event t

structures� This structure carried all of the information needed by the memory system module to
carry out the operation� This interface is synchronous in nature� the backend must either stall the
processor immediately� or copy all of the information out of the event structure before allowing the
processor to continue� This is because there is just one event structure per instruction execution
task� which is reused for all events that are sent to the backend� All of the information in the event
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typedef struct �

unsigned long value����

unsigned long �paddr�

unsigned long vaddr�

short regnum�

short type�

short spaceid�

short vproc�

short pid�

� rw�trans�t�

Figure �� rw trans t Data Structure

structure must be captured before the frontend is allowed to continue� or it will be lost when the
next event is reached� In order to support a more asynchronous interface between the frontend
and the backend� a new structure� rw trans t was introduced� See �gure �� This new structure
saves the backend from having to copy out the event information� A brief description of the �elds
follows�

value The value being written to memory in a store instruction� or the value being
loaded in an I�O space load� The value is captured since the operation may not
proceed until a later time� and the data might be altered before then by other
tasks� The �eld is large enough to support double word operations�

paddr The Mint �physical� address of the memory location the data is being written
to or read from�

vaddr The program �virtual� address that was referenced�

regnum The register number that is the target of a load instruction�

type Various type bits to indicate such things as the size of the operation� whether
it is to the shared address space� etc�

spaceid A PA�RISC implementation speci�c space identi�er�

vproc The processor number�

pid The global process identi�er�

The above structure is created by the frontend when calling any of the backend functions
sim read��� sim write��� sim flush��� sim purge��� or sim sync��� A pointer to the structure
is placed in the pending slot of the event t structure� The backend function can copy that pointer�
but if it plans to let the processor continue asynchronously� it must set the pointer to NULL before
returning T ADVANCE� This tells the frontend to create a new structure at the next event� This is an
optimization that prevents the creation of a new data structure on each event unless the backend
captures the previous one� All other backend event functions use the original event t structure
interface as described in the Mint document�

Once the backend determines that a load or store operation can proceed� and the contents
of the registers or memory can be changed� it will call either sou load �for load instructions� or
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sou store �for store instructions� to handle the actual operation� This prevents the backend from
having to know numerous internal details of the frontend�

����� sou load��

sou�load�rw�trans�t �ptrans
 mint�time�t simtime��

sou load loads the contents of memory into a register� ptrans points to a rw trans t structure
captured by sim read at some time in the past� The register is marked valid and data transferred�
and if the processor is stalled� it is restarted� simtime is the time at which the processor should be
restarted� A side e�ect of sou load is to free the structure pointed to by ptrans�

����� sou store��

sou�store�rw�trans�t �ptrans��

sou store stores the contents of a register to memory� ptrans points to a rw trans t structure
captured by sim write at some time in the past� The value of the register at the time the store
was done is contained within the rw trans t structure� it is this value that is stored to memory� A
side e�ect of sou store is to free the structure pointed to by ptrans�

����� Simple Read Example

The following example is a simple demonstration of SOU� It is by no means complete� and is not
functionally correct in the presence of asynchronous writes�
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�include �mint�h�

int read�done�task�ptr ptask��

sim�read�task�ptr ptask�

�

rw�trans�t �ptrans � ptask��pevent��pending�

task�ptr �pnewtask�

ptask��pevent��pending � NULL�

�� schedule the read�done�� function �� cycles from now ��

pnewtask � sched�task�ptask
 read�done
 ptask��time � ����

pnewtask��uptr � ptrans�

�� return T�ADVANCE so that execution continues ��

return T�ADVANCE�

�

read�done�task�ptr ptask�

�

rw�trans�t �ptrans � ptask��uptr�

�� Complete the load operation� ��

sou�load�ptrans
 ptask��time��

return T�FREE�

�

��� I�O Space Access

Paint includes extensions to the frontend that allow I�O space references� memory addresses that
are not real memory locations �from the processor�s point of view�� but refer to I�O device registers
that are mapped into the processor�s address space� An I�O space address is any address in which
the upper � bits of the address are set to �� When the frontend is given such an address� it sets
the processor physical and the Paint physical address equal to the virtual address� As far as the
frontend is concerned� this is the only di�erence at the time the event is generated� The event is
then passed to the backend� where it is the responsibility of the cache module to determine what to
do� possibly handing the event o� to another simulation module �say� a network module�� At some
point the I�O space device will complete operation on the event� In the case of an asynchronous
write� it must free the rw trans t structure that was handed to it by the cache module� This
is done with the free ptrans�� routine� For a load� frontend execution must be restarted by
calling sou load��� In both cases� the data to be read or written is contained in the value �eld
of the rw trans t structure� For load instructions� the I�O space device module is responsible for
placing the data in the value �eld before calling sou load��� I�O space devices may operate either
asynchronously or synchronously� it is up to the simulation module writer and the cache module
writer�
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� Machine Dependent Interfaces

In order to run a realistic kernel and user binaries� it is necessary to support several machine
dependent interfaces� System calls� traps� and interrupts are all supported in Paint� The next few
sections describe these interfaces and how they are supported in both the kernel and Paint�

��� System Calls

To avoid special compilation of user programs� Paint must support the system call interface con�
tained within the C Library� Under BSD and HPUX� system calls are invoked by issuing a branch
and link external �ble� instruction to a �xed location in the virtual address space� This special
location is called the gateway page� A production kernel will trap this branch attempt� and then
transfer control to a �xed routine� while raising the privilege level and switching the virtual address
context to that of the kernel� To return from the system call� the kernel will issue a branch external
�be� instruction� which transfers control back to the user program� while lowering the privilege level
and switching the virtual context back to that of the user program�

The requirements for Paint are somewhat less� since the notion of privilege level does not
need to be strictly enforced� Only the transfer of control and virtual address switch needs to be
implemented� Paint does this by trapping all ble and be instructions� examining the target location
of the branch� For bye� the event ble routine looks at the target address� and if it is within the �rst
page starting at virtual address �xC�������� it is assumed to be a system call� Paint then transfers
control to a known text address �marked by the symbol syscall trap� in the kernel by locating
the proper icode for that instruction� and returning it from event ble� Execution continues with
that instruction� When the kernel initiates a return from the system call� a similar sequence of
events occurs in the event be routine� The target address of the branch is checked to ensure that
it is in the user�s program space� after which the proper icode is located and returned� In both
cases� the privilege level of the processor is changed to indicate that a switch occurred� but there
is no check made when executing instructions� a user program may execute privileged instructions
if it wants� So far� this has not presented any problems�

��� Interrupts

Processor interruptions are anomalies that occur during instruction execution which cause the
�ow of control to switch to a known location in the kernel� External Interrupts are processor
interruptions which are delivered asynchronously with respect to the instruction stream� Clock
interrupts and device interrupts are two types of asynchronous interrupts that are supported by
Paint and the kernel� Paint provides a interface that can be used by simulation modules �say�
a clock device� to generate an interrupt for the processor� For example� Paint generates a clock
interrupt every ������� cycles by scheduling a task to call the following function�

vproc�interrupt�int procid
 int interrupt��

where procid is the processor number� and interrupt is a number in the range � to 	� �clock
interrupts are always delivered as number 	��� On the PA�RISC� all external interrupts are deliv�
ered to a single interrupt handling routine� while the actual interrupt is speci�ed using the external
interrupt request register �EIRR�� The system priority level �SPL� is encoded in the external in�
terrupt enable mask �EIEM� register� Interrupts are masked by the processor either by clearing
bits in this mask� or by turning o� all interrupts via the processor status word� As a simpli�cation�
both Paint and the kernel currently agree to use either an interrupts on or interrupts o� policy� the
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kernel is either masking all interrupts� or masking none of them� With so few devices generating
interrupts� this is not expected to be a problem�

When an interrupt is delivered� control is transferred to the external interrupt handler routine
in the kernel� This is an assembly language routine �derived from the PA�RISC version of Mach
	��� which saves the machine state before calling the higher level interrupt handling code� When
the kernel returns from the interrupt� it will restore the machine state and issue an r� instruction�
The interrupt handling code is entirely realistic� only a few lines of code needed to be changed for
it to run under Paint�

��� Traps

Traps are processor interruptions that occur synchronously with respect to the instruction stream�
A data page fault that results in a TLB miss would be one such example� Traps are initiated by
calling the the vproc trap�� routine� which returns the icode of the �rst instruction of the proper
trap handling routine in the kernel� This will be the next instruction to execute instead of the one
that caused the trap� When the kernel is ready to continue the process that caused the trap� it will
restore the machine state� and issue a return from interrupt �r�� instruction� Typically� the kernel
will restart the process at the instruction that caused the trap� To initiate a trap�

icode�ptr

vproc�trap�thread�ptr pthread


icode�ptr picode
 int trapnum
 rw�trans�t �ptrans��

The current set of supported traps are�

I DPGFAULT Data page fault� The requested virtual address translation is not present in the
TLB�

I LPRIVXFER Lower privilege transfer trap� An instruction is about to be executed at a lower
privilege level than the current instruction� and the PSW L�bit is set� This is
used by the kernel to deliver asynchronous transfer traps �AST� in the interrupt
handler�

I DMEM ACC Data memory access trap� The requested virtual address translation is in the
TLB� but the access permission bits are incorrect for the type of access�

� Specifying Simulation Parameters

One of the problems we encountered was command line option explosion� Many of the simulation
modules needed their own set of command line options� and it became confusing and di�cult to
maintain since only a single module can use an option� To address this problem� we added a
parameter �le that can store name�value pairs� much like the Xdefaults �le in the X�� window
system �although much simpler�� The simulator can call the get parameter�� routine to get the
value of a particular parameter�

The default �le name for the parameter �le is ���mint params�� A di�erent �lename can be
speci�ed as a command line option to the simulator �see Section ��� The format of a parameter
�le is very simple� Blank lines and lines beginning with a ��� are ignored� The �rst �eld on a
non�blank line is the name of the parameter� and the second �eld is the value� For example�
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�

� This is a sample parameter file�

�

Useful�parameter�� �

Useful�parameter�� �

A simulation module can then access the parameter values using the following function�

get�parameter�char �parameter�name
 void �value
 int type�

The string pointer parameter name is the name used to match on in the parameter �le� The
match is case sensitive� value is a pointer to storage large enough to hold the parameter value� If
no matching name is found� value is left unchanged� The type argument speci�es what type of
parameter value is expected� The 	 possibilities �de�ned in mint�h� are�

PARAM INT The value is an integer�

PARAM FLOAT The value is a �oat�

PARAM STRING The value is a string� The storage should be large enough to hold the largest
string expected�

A simple code fragment that requests a parameter value follows�

�

int Useful�parameter � ��

get�parameter��Useful�parameter���
 �Useful�parameter
 PARAM�INT��

if �Useful�parameter�

do�something���

�

	 Command Line Arguments

This section describes the command line options that have been changed or added to Paint�

�z Turn on virtual processor mode� By default� Paint runs in SPMD mode for
backwards compatibility and the virtual processor functions described in Sec�
tion � are disabled�

�n count Specify the maximum number of virtual processors when MPMD Paint is en�
abled� The default value is one� The kernel may create this many processors
�using the newvproc�� interface function�� Attempts to create more will result
in a fatal error�

�I Turn on Stall On Usemode� See Section � for a description of SOU mode� When
SOU mode is o�� the backend should treat load instructions synchronously�
returning T ADVANCE only when the load is complete and execution can
proceed normally� The default value is o��
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�k stack size This option is ignored in MPMD Paint� Stack segments grow on demand�
In SPMD mode� this option can be used only when stacks are in the shared
memory space �this occurs when the sproc system call is used��

�m �le The �le speci�es a list of runtime parameters for the simulator� The default
value is �mint params�� See section � for a description of the parameter �le�

�h heap size This option applies only to the kernel heap size in MPMD Paint� The heap
space for user programs grows on demand� See Section 	 for more details� The
default value is �� �K pages�


 Simulator Support for the Kernel

There are several new support functions that are intercepted by the simulator�

��� newvproc��

Create a new simulated processor� This is functionally equivalent to fork�� in that control returns
to the parent and the child at the point following the function call� newvproc�� returns � in the
child� and non�zero in the parent� This function is used by the kernel startup code to duplicate
itself onto as many processors as were requested when Paint was invoked �using the �n option� see
section ���

��� getvproc��

Return the current simulated processor number� The value is an integer in the range � to �Num�
ber of Nodes � ���

��� getmaxnodes��

Return the total number of processors in the simulation� This is set using the �n option to the
simulator� and is made available to the kernel and to user programs with this function�

� Miscellaneous Notes

��� Building Paint

Please consult the README �le in the top level directory for instructions on how to build Paint�
the kernel� and the support programs�

��� An Example Kernel

The kernel that we run is not a production kernel� but rather a subset of the BSD ��� kernel �Lite��
release� that can handle system call trapping� asynchronous interrupts� synchronous traps� signals�
and provides additional functionality required by the Avalanche Scalable Computer Project� These
include message passing and distributed shared memory system calls and interrupt handlers� This
kernel is provided in the distribution� so please consult the README �le in that directory for
instructions on how to build and run the sample kernel�
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��� Who To Contact

If you have questions or comments� please send email to avalanche�jensen�cs�utah�edu� There are
several people responsible for the simulator� so this is your best chance to get a response�

The Avalanche Project requests users of this software to return to avalanche�jensen�cs�utah�edu
improvements that they make and grant the Avalanche Project redistribution rights�

��� Credits

Thanks to Jack Veenstra �veenstra�itagain�mti�sgi�com� for developing the Mint simulator� upon
which Paint is based�
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