
Paint�
PA Instruction Set Interpreter �

Leigh B� Stoller
Mark R� Swanson

Ravindra Kuramkote
E�mail� fstoller�swanson�kuramkotg�cs�utah�edu

WWW� http���www�cs�utah�edu�projects�avalanche

UUCS�������

Department of Computer Science
University of Utah

Salt Lake City� UT ������ USA

September ��� ����

Abstract
This document describes Paint� an instruction set simulator based on Mint�	
� Paint interprets

the PA�RISC instruction set� and has been extended to support the Avalanche Scalable Computing
Project��
� These extensions include a new process model that allows multiple programs to be run
on each processor and the ability to model both kernel and user code on each processor� In addition�
a new address space model more accurately detects when a program is accessing an illegal virtual
address� allows a program�s virtual address space to grow dynamically� and does lazy allocation of
physical pages as programs need them�

Note that this document is intended to be an addendum to the original Mint technical re�
port� which the reader should consult for an overview of the Mint simulation environment and
terminology�

�This work was supported by a grant from Hewlett�Packard� and by the Space and Naval Warfare Systems
Command �SPAWAR� and Advanced Research Projects Agency �ARPA�� Communication and Memory Architectures
for Scalable Parallel Computing� ARPA order �B��� under SPAWAR contract �N���������C���	

�

Contents

� Introduction �
��� Program Driven Simulation � 	
��� Virtual Memory Model �
��	 BackEnd Interface �

� Process Model �
��� User Level View �
��� Instruction Execution �
��	 Events �
��� Tasks �

� Paint Address Space �
	�� Address Space Organization ��
	�� Shared Memory Support ��
	�	 Fork and Exec ��
	�� Cache Support �	

� Stall On Use� Asynchronous Writes� I�O Space ��

��� Valid Registers ��
��� Asynchronous Events ��

����� sou load�� ��
����� sou store�� ��
����	 Simple Read Example ��

��	 I�O Space Access ��

� Machine Dependent Interfaces �	
�� System Calls ��
�� Interrupts ��
�	 Traps ��

 Specifying Simulation Parameters ��

� Command Line Arguments ��

	 Simulator Support for the Kernel ��

��� newvproc�� ��
��� getvproc�� ��
��	 getmaxnodes�� ��

� Miscellaneous Notes ��

��� Building Paint ��
��� An Example Kernel ��
��	 Who To Contact ��
��� Credits ��

�

� Introduction

This note describes the Paint �PA Interpreter� simulation environment� Paint is based on the
Mint�	
 simulation system developed at the University of Rochester� and has been modi�ed to in�
terpret the PA�RISC��
 instruction set and to support the Avalanche Scalable Computing Project��
�
These changes are documented here� The reader is encouraged to read the original Mint report be�
fore proceeding� but as a review the next few sections present the essential concepts� More detailed
descriptions follow later�

��� Program Driven Simulation

Paint is a program�driven simulator� partitioned into two main parts� a memory reference generator
�the �frontend�� and a target system simulator �the �backend��� The frontend models the execution
of a program by simulating the instruction stream� When an instruction causes or requires special
operation� such as a memory reference or special system instruction� the frontend generates an
event for the backend to operate on� The backend models the memory hierarchy and interconnect
of the target system� including� but not limited to� the �rst level cache� the TLB� the system bus�
main memory� and the network interface� When the operations for carrying out the event have
completed� the backend signals the frontend to continue execution of the instruction stream for
that processor�

Event
Generator

(Front End)

Target
System

Simulator

(Back End)

Events

Process
Control

Figure �� Program Driven Organization

Program execution in Paint is interpreted� the instruction stream consists of a sequence of data
structures representing the actual instructions� The state of the processor is represented in a global
data structure� Processor state includes the values of registers� virtual to physical page translation
tables� the current program counter� etc� As instructions are interpreted� the value of this structure
changes� When the simulator switches to a new processor� a di�erent global structure is installed
as the current processor� and execution continues as before�

When a program is loaded� the text portion of the �le is scanned and converted to a linked list
of structures called instruction codes �or icodes�� The icodes are linked together� for both sequential
and non�sequential execution �branches and jumps�� Each icode stores information about how to
interpret the instruction� as well as a pointer to a function to handle the actual interpretation� In
general� each instruction has a speci�c function� although some have more than one when certain
opportunities for optimization are detected� Execution then consists of calling the function for
each instruction� which may modify the processor state� and which returns a pointer to the next
instruction icode to simulate� which might be the next sequential instruction or the target of a

	

Cycle 10

Cycle 35

Cycle 20

Cycle 40

Cycle 15

Cycle 37

P1 P2 P3

Read

Read
Done

Cache
Miss

Handling
Memory

Bus
Activity

Instruction
Execution

Write

Write
Done

Cache
Miss

Handling

Figure �� Execution Timeline

branch or jump�

��� Virtual Memory Model

Memory reference instructions are handled specially by the Paint frontend� Once the user virtual
address is computed from information in the icode structure� a virtual to physical translation must
be performed� Two translations are actually produced� the �rst is a �processor� physical address
that is used by the backend� and the second is a �paint� physical address that corresponds to the
actual location within Paint�s address space� The processor physical address is used by backend
modules that require realistic physical addresses� like a cache or memory bus module� The Paint
physical address is used as the location to actually read and write data to memory� When the TLB
module is in use� the simulated kernel sets the processor physical address using appropriate target
machine instructions� If the TLB is switched o�� the processor physical address is set equal to the
Paint physical address�

��� BackEnd Interface

As mentioned above� the simulator frontend is responsible for executing instructions until something
interesting occurs� such as a memory reference� At this point instruction execution is suspended
and an event is generated for the backend� The event is a data structure that packages up details
about the event so that they may be communicated to the backend� The backend then operates
on the event� possibly scheduling tasks to handle event activities� Tasks are scheduling entities
that contain a time to run and a dispatch function to invoke when the speci�ed time arrives� In
this way� multiple concurrent activities can be in progress� including� instruction execution by
processors that are not blocked waiting for an event to complete� memory hierarchy activities in
support of processor load and store instructions� and network transmission and reception� When
the event is complete� the backend signals the frontend that instruction execution for the speci�ed
processor may proceed �in fact� instruction execution is a task associated with each processor�� See
�gure ��

�

� Process Model

By far� the most widely reaching change to Mint was to the process model� Mint was originally
a Single Program� Multiple Data �SPMD� system� A program would start� possibly do some
initialization� and fork one or more children� Each child was considered not a only a new process� but
a new processor as well� In fact� process and processor were essentially the same� The disadvantage
of this model is that multiple programs cannot be run� forcing a particular programming model
that is not always appropriate for distributed memory machines� Further� by not being able to
simulate multiple programs per node� the time and memory e�ects of �kernel mode� cannot be
measured since all operating system functionality was implemented in the simulator itself� This
has the e�ect of making many operations cost free� thus skewing the simulation results�

The process extensions made to Mint allow it to run a functional kernel on each node �see
section ����� and an arbritrary set of user programs on each node� Operationally� each simulated
processor is represented by a single Paint thread� The kernel is the �rst program to run within that
thread� followed by � or more user level programs� Like a real machine� the kernel context switches
bewteen user programs with appropriate target machine instructions that change the register state
of the processor� Paint maintains an association between the di�erent programs and the simulated
processor those programs are running on� which allows Paint to switch the instruction stream and
virtual address context when requested to do so by the kernel�

Before presenting a detailed description of the frontend operation� a user level view of the
process model is given�

��� User Level View

When Paint is started� the program it is given to simulate is the kernel� The kernel then duplicates
itself on each virtual processor as the �rst program using the newvproc� system call� Once the
kernel is running on the new processor� it forks a child� and execs the init program� The init
program reads a setup �le that speci�es which programs to run on each processor� and forks�execs
the programs for its processor� The init program then exits� At this point the kernel goes into an
idle loop� waiting for system calls and interrupts� Of course� the kernel does not actually idle since
executing instructions that do nothing is too costly in a simulated environment� Instead� the kernel
puts itself to sleep� The simulator wakes the kernel up when it needs to do something�

Since the goal is to run �user� program binaries unchanged� and without special compilation�
the system call interface is identical to the one used in the BSD and HPUX kernels� When the
simulator detects a system call in a user program� it vectors the instruction stream for that thread
to a known address in the kernel� Eventually the kernel must handle the system call� For most
calls� it means letting the simulator take care of it �see Section � in the Mint User Manual� by
�calling� the intended system call function� just as the user program did� The di�erence is that
when the kernel calls a system call �say� open������� the simulator intercepts the call and handles the
operation� returning a result �a �le descriptor in the case of open���� The kernel then returns the
value to the user program just as a production kernel does� The goal is to have the kernel catch all
system calls so it can decide which ones are handled in the simulated kernel� and which are passed
onto the simulator itself�

Multiple programs can be run on each node� Additional support from the simulator allows
the kernel to context switch between multiple kernel threads� When the simulator executes one of
several PA instructions �be� ble� r��� the simulated instruction stream is switched to a di�erent set of
instructions� as de�ned by the PA architecture� In other words� a single Paint thread multiplexes
several simulated kernel threads using real context switch code to change register and program

counter values�
Process scheduling is done in the kernel� using the BSD ��� scheduling subsystem� The simu�

lator generates simulated clock interrupts that are delivered asynchronously to the kernel so that
it may update the scheduling data structures� recompute process priorities� and possibly arrange
for the current process to be context switched out� Kernel timers are also supported� The de�
fault period of the clock is ������� cycles� and is a con�gurable option to the simulator using the
VPROC clockperiod parameter value �see section ���

Asynchronous interrupts and traps are handled in a manner similar to system calls� When
a simulation module generates an interrupt or a trap for a processor� the instruction stream for
the currently running process on that processor is vectored to a known location in the kernel� A
standard state save is done �written in assembly language�� then a call is made to a C dispatch
function to handle the interrupt�

The following sections describe the Paint frontend in more detail� Later sections expand further
on key areas�

��� Instruction Execution

Instruction execution is the most basic operation in Paint� At its simplest� the instruction loop
takes the current instruction� represented by a pointer to an icode� calls the dispatch function
contained in the icode� and receives back a pointer to the next instruction to execute� This repeats
until an event is generated� or until a maximum number of instructions have been executed in a
row� At this point a rescheduling operation is performed� and a new task is selected to run� This
new task might invoke the instruction execution loop for a new processor� or it might be a task
that is working on an event for some processor� or it might be an anonymous task that is scheduled
to perform some operation in a simulation module� This operation repeats until there are no more
tasks scheduled to run� at which time the simulation terminates�

When a task does invoke the instruction loop� it begins execution with the current instruction
pointer� Figure 	 shows the icode data structure� Many of the �elds are speci�c to the actual
instruction� For example� the immed �eld holds the signed immediate value for any instruction
whose format includes an immediate� Other �elds have a common usage during execution� and
should be described�

func The function to invoke to handle the actual simulation of the instruction�

next A pointer to the next sequential instruction in the code stream�

target A pointer to the branch target instruction when the instruction is a conditional
or unconditional branch� and the target can be computed statically�

cycles The number of CPU cycles the instruction consumes� not including memory
hierarchy delay� The value is added to a running count as instructions are
simulated�

validregs The set of scaler registers used by the instruction� represented as a bitmask� �
bit for each of 	� registers� This �eld is used to implement stall on use loads
�see section ���

validfregs The set of �oating point registers used by the instruction� represented as a
bitmask� � bit for each of �� singles� or � bits for each of 	� doubles �see section
���

�

typedef struct icode �

PFPI func�

char args����

icode�ptr next�

icode�ptr target�

u�long long validfregs�

u�long validregs�

long immed�

u�short cycles �	

form�addr ��

cfield �	

aum ���

char cp�

char s�or�clen�t�

u�long f�flag ��

nullify ��

next�null ��

is�target ��

opnum ���

opflags ���

long addr�

� icode�t
 �icode�ptr�

Figure 	� Instruction Code Data Structure

Each instruction function returns a pointer to the next icode to execute� The next icode is either
the next sequential instruction� or the target of a branch� or a dynamically computed jump target�
The �rst two pointers are computed when the program is loaded� and stored in the icode structure�
The pointer to the next icode for a dynamically computed jump target is returned by the T�I

function� which takes the target address of the jump as its argument� When the instruction loop
is suspended� the last icode pointer is stored in the processor data structure �this is e�ectively the
program counter�� and the cycle count for the processor is incremented� The instruction execution
task for the processor may be rescheduled to run at the new processor cycle count� or it might not
if the loop was suspended due to an event� Time moves forward since each processor runs for a
short time �possibly ahead of other processors�� with all processors eventually getting a chance to
move forward� �see �gure ���

��� Events

While the Paint frontend is primarily concerned with instruction execution� it is the Paint backend
that is responsible for more detailed simulation of selected architectural features� The most obvious
example is the memory hierarchy� In the absence of event generation� all loads and stores would
take a �xed amount of time� which is unrealistic� The backend writer can instead model a detailed
memory hierarchy� Meanwhile� other processors can continue ahead until some synchronizing event
occurs� There are many types of events that can be generated for the backend� This document
will concern itself with just memory events� so the reader should consult the Mint�	
 document for

�

typedef struct task �

struct task �next�

struct task �prev�

int priority�

int pid�

mint�time�t time�

PFTASK ufunc�

struct event �pevent�

int ival��

void �uptr��

� task�t
 �task�ptr�

Figure �� Task Data Structure

a discussion of other events�
Events in the Paint frontend look much like an instruction� They are represented by icodes�

but with a function pointer to a routine that initiates the event� These special icodes are placed
into the instruction stream when the program is loaded� The loader scans the instructions� and
in the case of memory reference instructions� creates a duplicate icode� �ags it as an event� and
replaces the function with the appropriate event routine �either event read�� or event write��
The original icode is left as the next sequential icode� In other words� each memory reference icode
is preceded by a new event icode that causes the frontend to suspend execution and invoke the
appropriate backend function� When the backend signals that execution can continue� the original
icode is executed to e�ect the changes in processor state required by the particular instruction�
For example� PA�RISC loads and stores do base register modi�cation� which must occur after the
memory reference completes�

��� Tasks

When the backend function for an event is called� it is given a single argument� a pointer to the
task controlling instruction execution for that processor �see �gure ��� When the backend function
returns� it indicates via a status value whether instruction execution should continue or suspend
until some future time� and whether the task should be put back on the free list� If execution is
suspended� then it is up to the backend to save and eventually reschedule the task so that instruction
execution may proceed� The �elds of the task t data structure are�

next
 prev Queuing elements� These �elds can be used only when the task is not currently
scheduled to run since they are also used by the scheduling system�

time The absolute time at which the task should be run�

priority The task priority� If multiple tasks need to run in the same timestep� and they
need to be ordered� a priority can be assigned to force one task to run before
or after another�

pid The processor ID the task is executing on behalf of�

ufunc The function to invoke when the task runs� This function must return one of�

�

T ADVANCE The processor associated with this task may continue executing
instructions�

T FREE This task is put on the free list and the next task with the
minimum time is removed from the task queue and executed�

T YIELD This is the same as T FREE except that the task is not put on
the free list� Only a reschedule is performed�

pevent A pointer to the event data structure that was constructed by the frontend�

ival�
uptr� Storage location for arbitrary values to pass to the function� There are many
more such variables� so the reader should consult the header �le�

When the backend function is invoked� the pevent �eld of the task t data structure points to
the event structure created by the frontend� The event structure is quite large and can accommodate
many types of events� so the reader should consult both the Mint document and the ��event�h��
header �le� The various task scheduling functions are described in the Mint document�

� Paint Address Space

This section describes the changes to address space translation� Paint dynamically translates
addresses during simulation� using a simple address translation formula that converts a program
�virtual� address into an address in Paint�s �physical� space� There were several characteristics of
the original memory model that needed improvement�

� Address space protection� Program errors can easily generate illegal virtual addresses� which
when translated to physical addresses� reference data in another program� or in the simulator
itself� The translation mechanism should check the validity of each virtual addresses presented
for translation�

� Dynamic allocation of memory� The program�s data and stack segments should be allowed
to extend past their original size as needed�

� Lazy allocation of memory� The physical pages for the bss� heap and stack should not require
allocation until they are referenced by the running program� This would reduce the number
of unused� and thus wasted� pages� With a small number of nodes� this is not an issue� but 	�
and �� node simulations of even moderate sized programs become di�cult� even on machines
with hundreds of megabytes of swap space and real memory�

Our approach was to implement page tables in the simulator� Page tables allow us to accurately
detect when a program is accessing an illegal virtual address� to implement dynamically sized
segments� and to allocate physical pages lazily as the program needs them� An additional bene�t
is that TLB information can be stored in the page tables� Finally� a recent optimization allows
cache line status to be stored in additional data structures attached to each page table entry� By
utilizing this information in the frontend� calls to the backend for each and every memory event
can be avoided� resulting in a twofold increase in simulator performance�

TLB support was then implemented using �elds in the page table structure� Before a memory
event is allowed to proceed� the corresponding page table entry is accessed� If the page is marked
as currently being in the TLB� and the read�write access permission bits match the type of access�
the memory event is allowed to proceed normally� If the page is not in the TLB� or if the access

�

type is wrong �ie� writing a read�only page�� a TLB miss is generated by calling tlb domiss�� in
��tlb�c��� In addition to some book keeping� a processor trap is generated with vproc trap��

�see section �	�� Subsequent TLB insertion instructions �for the PA� idtlbp and idtlba� executed
by the kernel cause the TLB information for that page to be updated and the instruction retried�
The full cost of the TLB is modeled�

The current TLB model is very simple� A �� entry� fully associative TLB is modeled by
maintaining a list of page table structures that are currently in the TLB� When a capacity miss
requires an entry to be replaced� the oldest entry is removed from the list� and the new one entered�
The size of the TLB can be altered with the TLB numentries parameter �eld �see section ��� While
the PA�RISC supports a rather rich set of TLB options �protection identi�ers� multiple privilege
levels� etc��� the simulated TLB supports only read�write access permissions� By default� TLB
modeling is turned on in the simulator� To turn the TLB o�� use the TLB on parameter �eld�
setting it to ��

The following subsections describe the speci�cs of address translation�

��� Address Space Organization

Figure shows Paint�s address space organization� Process virtual addresses are mapped to both
a processor physical address� and to a Paint physical address� The processor physical address is
assigned by the simulated kernel� The purpose of this address is to provide realistic processor
physical addresses to simulation modules such as the cache or memory bus� Processor physical
addresses are supplied by the kernel with PA�RISC TLB insertion instructions� When the TLB is
turned o�� the processor physical addresses are always set to the Paint physical address� The page
table entry ��gure �� includes several TLB bits that indicate if the page table entry is currently in
the TLB� and the type of access permissions �read or read�write� that the translation was inserted
with�

Paint physical addresses are locations inside of the Paint program where simulated program
data is actually stored� These addresses are known only to Paint� and are assigned when a memory
reference touches a page for the �rst time� It is not until this point that a page in Paint�s program
space is allocated and the page table entry created �see Figure ��� This lazy allocation of pages
allows larger simulations since it is often the case that programs never reference many of their
pages� This arrangement allows programs to grow more dynamically as well� Like a real kernel�
program segments are assigned a maximum size ��� megabytes for data� � megabytes for stack��
and a vector of page table entry pointers for each possible page is created� A program can grow�
lazily allocating pages until it reaches that maximum� The overhead is small� given that there
are only ���� page table entry pointers for a �� megabyte segment� or ��K bytes of storage per
segment� Both maximum values can be overridden using the parameter �le entries MAX STACK SIZE

and MAX DATA SIZE� Several other �elds in the page table entry should be noted�

type The type of page� currently either a normal data page or a shared memory page�
This information is passed to the backend�

dealloc Flag to indicate whether the underlying physical page should be deallocated
when the page table is reclaimed� This is used when page table entries share a
common physical page �as with shared memory segments��

hits Cache hit information� Used in the frontend to avoid calls to the backend cache
module� The frontend and the backend co�manage this data structure� See
section 	���

��

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Processor 1

Page 45

Page 110

Page 245

Page 303

Page 450

Page 575

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Processor 2

Paint

Program
Virtual

Address

Processor
Physical
Address

Paint
Physical
Address

Figure � Paint Address Space

��

typedef struct �

u�long pframe ���
 �� Paint Physical Page ��

type ����

u�long vframe ���
 �� Program Virtual Page ��

pbits ����

u�long fframe ���
 �� Processor Physical Page ��

dealloc ��

tlbvalid ��

reserve ���

ptcline�t hits�PTCSIZE��

� ptable�entry�t
 pte�t�

Figure �� Page Table Data Structure

��� Shared Memory Support

Shared memory support is provided in Paint through the use of the page table system� The virtual
address range starting at �xC������� is de�ned to be the shared memory address space� Each
processor has a single set of page table entries for the segment� and they are shared among all of
the processes on a processor� The underlying Paint physical pages are shared among all of the page
table entries on all of the processors� Thus� memory accesses on di�erent processors refer to the
same memory location since they share a single page� In the Paint frontend� the only di�erence
when generating the memory event is that it is �agged as being to the shared memory segment�
Any special handling is expected to be done in the backend by the cache module�

��� Fork and Exec

Paint provides the support necessary for both of the UNIX system calls� fork and exec� When a
user process executes a fork or exec system call� the kernel does whatever bookkeeping it requires�
and then passes the call onto Paint itself� In the case of fork� Paint then duplicates both the process
page tables and the contents of the pages� The virtual page addresses are the same in the child�s
version of the page table entries� but there are new Paint physical addresses for each duplicated
page of data� Pages that had not been touched in the parent� and thus were not allocated� are left
unallocated in the child� All of child�s page table entries are marked as not being in TLB� and the
processor physical addresses are cleared� When the process eventually runs� normal TLB misses
will provide the new processor physical addresses� This mimics the operation of a real kernel in
which fork duplicates exactly the virtual address range� but maps those virtual addresses to a new
set of physical pages� For exec� Paint �rst reclaims all of the page table entries and pages� and
then loads the new program� A new set of page table entries is created� and the initialized data is
loaded� All other pages �bss� heap� stack� are allocated lazily as the program references them�

As can be seen� much of the support for fork and exec is contained within Paint itself� The
kernel includes its own support� but is much simpler that a production kernel would be� The bulk
of the machine dependent virtual memory support is contained in ��vm�c�� in the kernel�

��

��� Cache Support

The Paint frontend includes several extensions that allow it to optimize memory events� The �rst
is called fasthits mode� and is used to decrease the number of memory references that result in
backend events� Decreasing the number of backend events improves overall simulator performance
since suspending the instruction loop and invoking the backend is a very costly operation� When
fasthits mode is turned on �using the PT fasthits parameter �eld�� the frontend consults the hits
�eld of the page table entry to determine if the cache line being accessed is currently in the cache�
If it is� no backend event is generated� and instruction execution continues immediately� Execution
will continue until a maximum threshold of sequential instructions is reached� at which time a
rescheduling operation is performed so that a new task may run� The threshold defaults to �
instructions� and can be set using the PT fastcount parameter value�

The backend cache module is responsible for telling the frontend which lines are currently in
the cache� There are two functions provided to the backend� one to indicate that a line has been
inserted into the cache and another to indicate that a line has been evicted from the cache� In
addition� the backend provides a function to the frontend so that the frontend can signal when a
fasthit dirties a cache line� Thus� the frontend and the backend co�manage this state information
as the simulation proceeds� The prototypes for the two function called by the backend are�

ptable�cache�validate�int procid
 int spaceid
 unsigned long vaddr��

ptable�cache�invalidate�int procid
 int spaceid
 unsigned long vaddr��

The prototype for the function called by the frontend is�

flc�changestate�dirty�int procid
 int spaceid
 unsigned long vaddr��

For each routine� procid is the processor number� spaceid is the PA�RISC space identi�er for
the access� and vaddr is the virtual address of the line being accessed�

The second optimization mode provided by the frontend is called fastmisses mode� and is
controlled by the PT fastmisses parameter value� Fastmisses mode requires fasthits mode be
turned on� When fastmisses is on� no memory events �except those to I�O space locations� are
generated� Instead� the frontend calls a function in the backend cache module to indicate that a
line has been accessed� This allows the cache to be warmed up with the proper data� but without
the expense of going to the backend� This mode is most useful during startup and initialization
phases where the speed of the simulation is more important than accuracy� The function prototype
provided by the backend is�

flc�fastcache�insert�int procid
 int spaceid
 int pid

unsigned long vaddr
 unsigned long paddr
 int rw��

In order for this mode to be useful� it is necessary to provide a mechanism to turn it o� at some
point during the simulation� switching to the more accurate cache model� A simulated program
level function call is provided that can be used in either the kernel or a user program to turn
fastmisses mode on or o�� This function is trapped by Paint itself�

fastmissmode�int onoff��

�	

� Stall On Use� Asynchronous Writes� I�O Space

This section describes the changes necessary to support stall on use �SOU�� asynchronous writes�
and I�O space access The PA�RISC cache model employs all of these features� so supporting them
was essential for realistic simulations in the Avalanche project� Stall on use allows the processor to
proceed after a load operation� until the target of the load is referenced in a subsequent instruction�
Only then must the processor stall until the load is complete� Asynchronous writes allow the
processor to proceed immediately after a store� In this case� the cache stalls the processor when
there are no more slots in which to hold the pending store� I�O space memory references are
required to access Avalanche devices that are mapped into regions of the processor�s address space�

Supporting these new features required changes to the frontend and to the interface between
the frontend and the backend�

��� Valid Registers

Stall on use support requires that the frontend know which registers are referenced in each instruc�
tion� For non�memory instructions� the source registers must all be valid� The target registers
must also be valid before allowing the operation to proceed� even though real hardware would not
necessarily require it� This is to prevent prior loads to the same register� that have not completed
yet� from subsequently overwriting the target� We do this as a simpli�cation since it rarely happens
that a register is destroyed before a previous load to that same register is used �and thus� would
stall�� For memory instructions� the base and index registers� as well as the target registers must
all be valid before the instruction can proceed�

In order to determine which registers are referenced by each instruction� and which registers are
currently valid during execution� a validregs data structure was added to the icode t structure�
When a program binary is loaded� the validregs structure for each instruction is initialized with
a list of registers that are referenced in that instruction� A similar structure was also added to
the processor structure� As execution proceeds� the current set of validregs for the processor is
compared against those referenced in each instruction� If all of the referenced registers are valid�
the instruction executes normally� If there are invalid registers� the processor is stalled until the
backend indicates to the frontend that execution can continue�

Load instructions are a special case since they modify the current set of valid registers� The
target register of the load is made invalid� At some later time� the backend will indicate that the
load has completed� and that the register can be made valid again� If the processor had been
stalled because of a subsequent reference to that register� it is restarted� This state change is
communicated to the frontend using the sou load function described below�

The validregs information for each instruction is initialized using the SETVALIDREGmacros �there
are variants for integer� �oating point� and double registers�� See the instruction decode functions
in ��text�c�� for an example�

��� Asynchronous Events

The original interface between the frontend and the backend was through the use of event t

structures� This structure carried all of the information needed by the memory system module to
carry out the operation� This interface is synchronous in nature� the backend must either stall the
processor immediately� or copy all of the information out of the event structure before allowing the
processor to continue� This is because there is just one event structure per instruction execution
task� which is reused for all events that are sent to the backend� All of the information in the event

��

typedef struct �

unsigned long value����

unsigned long �paddr�

unsigned long vaddr�

short regnum�

short type�

short spaceid�

short vproc�

short pid�

� rw�trans�t�

Figure �� rw trans t Data Structure

structure must be captured before the frontend is allowed to continue� or it will be lost when the
next event is reached� In order to support a more asynchronous interface between the frontend
and the backend� a new structure� rw trans t was introduced� See �gure �� This new structure
saves the backend from having to copy out the event information� A brief description of the �elds
follows�

value The value being written to memory in a store instruction� or the value being
loaded in an I�O space load� The value is captured since the operation may not
proceed until a later time� and the data might be altered before then by other
tasks� The �eld is large enough to support double word operations�

paddr The Mint �physical� address of the memory location the data is being written
to or read from�

vaddr The program �virtual� address that was referenced�

regnum The register number that is the target of a load instruction�

type Various type bits to indicate such things as the size of the operation� whether
it is to the shared address space� etc�

spaceid A PA�RISC implementation speci�c space identi�er�

vproc The processor number�

pid The global process identi�er�

The above structure is created by the frontend when calling any of the backend functions
sim read��� sim write��� sim flush��� sim purge��� or sim sync��� A pointer to the structure
is placed in the pending slot of the event t structure� The backend function can copy that pointer�
but if it plans to let the processor continue asynchronously� it must set the pointer to NULL before
returning T ADVANCE� This tells the frontend to create a new structure at the next event� This is an
optimization that prevents the creation of a new data structure on each event unless the backend
captures the previous one� All other backend event functions use the original event t structure
interface as described in the Mint document�

Once the backend determines that a load or store operation can proceed� and the contents
of the registers or memory can be changed� it will call either sou load �for load instructions� or

�

sou store �for store instructions� to handle the actual operation� This prevents the backend from
having to know numerous internal details of the frontend�

����� sou load��

sou�load�rw�trans�t �ptrans
 mint�time�t simtime��

sou load loads the contents of memory into a register� ptrans points to a rw trans t structure
captured by sim read at some time in the past� The register is marked valid and data transferred�
and if the processor is stalled� it is restarted� simtime is the time at which the processor should be
restarted� A side e�ect of sou load is to free the structure pointed to by ptrans�

����� sou store��

sou�store�rw�trans�t �ptrans��

sou store stores the contents of a register to memory� ptrans points to a rw trans t structure
captured by sim write at some time in the past� The value of the register at the time the store
was done is contained within the rw trans t structure� it is this value that is stored to memory� A
side e�ect of sou store is to free the structure pointed to by ptrans�

����� Simple Read Example

The following example is a simple demonstration of SOU� It is by no means complete� and is not
functionally correct in the presence of asynchronous writes�

��

�include �mint�h�

int read�done�task�ptr ptask��

sim�read�task�ptr ptask�

�

rw�trans�t �ptrans � ptask��pevent��pending�

task�ptr �pnewtask�

ptask��pevent��pending � NULL�

�� schedule the read�done�� function �� cycles from now ��

pnewtask � sched�task�ptask
 read�done
 ptask��time � ����

pnewtask��uptr � ptrans�

�� return T�ADVANCE so that execution continues ��

return T�ADVANCE�

�

read�done�task�ptr ptask�

�

rw�trans�t �ptrans � ptask��uptr�

�� Complete the load operation� ��

sou�load�ptrans
 ptask��time��

return T�FREE�

�

��� I�O Space Access

Paint includes extensions to the frontend that allow I�O space references� memory addresses that
are not real memory locations �from the processor�s point of view�� but refer to I�O device registers
that are mapped into the processor�s address space� An I�O space address is any address in which
the upper � bits of the address are set to �� When the frontend is given such an address� it sets
the processor physical and the Paint physical address equal to the virtual address� As far as the
frontend is concerned� this is the only di�erence at the time the event is generated� The event is
then passed to the backend� where it is the responsibility of the cache module to determine what to
do� possibly handing the event o� to another simulation module �say� a network module�� At some
point the I�O space device will complete operation on the event� In the case of an asynchronous
write� it must free the rw trans t structure that was handed to it by the cache module� This
is done with the free ptrans�� routine� For a load� frontend execution must be restarted by
calling sou load��� In both cases� the data to be read or written is contained in the value �eld
of the rw trans t structure� For load instructions� the I�O space device module is responsible for
placing the data in the value �eld before calling sou load��� I�O space devices may operate either
asynchronously or synchronously� it is up to the simulation module writer and the cache module
writer�

��

� Machine Dependent Interfaces

In order to run a realistic kernel and user binaries� it is necessary to support several machine
dependent interfaces� System calls� traps� and interrupts are all supported in Paint� The next few
sections describe these interfaces and how they are supported in both the kernel and Paint�

��� System Calls

To avoid special compilation of user programs� Paint must support the system call interface con�
tained within the C Library� Under BSD and HPUX� system calls are invoked by issuing a branch
and link external �ble� instruction to a �xed location in the virtual address space� This special
location is called the gateway page� A production kernel will trap this branch attempt� and then
transfer control to a �xed routine� while raising the privilege level and switching the virtual address
context to that of the kernel� To return from the system call� the kernel will issue a branch external
�be� instruction� which transfers control back to the user program� while lowering the privilege level
and switching the virtual context back to that of the user program�

The requirements for Paint are somewhat less� since the notion of privilege level does not
need to be strictly enforced� Only the transfer of control and virtual address switch needs to be
implemented� Paint does this by trapping all ble and be instructions� examining the target location
of the branch� For bye� the event ble routine looks at the target address� and if it is within the �rst
page starting at virtual address �xC�������� it is assumed to be a system call� Paint then transfers
control to a known text address �marked by the symbol syscall trap� in the kernel by locating
the proper icode for that instruction� and returning it from event ble� Execution continues with
that instruction� When the kernel initiates a return from the system call� a similar sequence of
events occurs in the event be routine� The target address of the branch is checked to ensure that
it is in the user�s program space� after which the proper icode is located and returned� In both
cases� the privilege level of the processor is changed to indicate that a switch occurred� but there
is no check made when executing instructions� a user program may execute privileged instructions
if it wants� So far� this has not presented any problems�

��� Interrupts

Processor interruptions are anomalies that occur during instruction execution which cause the
�ow of control to switch to a known location in the kernel� External Interrupts are processor
interruptions which are delivered asynchronously with respect to the instruction stream� Clock
interrupts and device interrupts are two types of asynchronous interrupts that are supported by
Paint and the kernel� Paint provides a interface that can be used by simulation modules �say�
a clock device� to generate an interrupt for the processor� For example� Paint generates a clock
interrupt every ������� cycles by scheduling a task to call the following function�

vproc�interrupt�int procid
 int interrupt��

where procid is the processor number� and interrupt is a number in the range � to 	� �clock
interrupts are always delivered as number 	��� On the PA�RISC� all external interrupts are deliv�
ered to a single interrupt handling routine� while the actual interrupt is speci�ed using the external
interrupt request register �EIRR�� The system priority level �SPL� is encoded in the external in�
terrupt enable mask �EIEM� register� Interrupts are masked by the processor either by clearing
bits in this mask� or by turning o� all interrupts via the processor status word� As a simpli�cation�
both Paint and the kernel currently agree to use either an interrupts on or interrupts o� policy� the

��

kernel is either masking all interrupts� or masking none of them� With so few devices generating
interrupts� this is not expected to be a problem�

When an interrupt is delivered� control is transferred to the external interrupt handler routine
in the kernel� This is an assembly language routine �derived from the PA�RISC version of Mach
	��� which saves the machine state before calling the higher level interrupt handling code� When
the kernel returns from the interrupt� it will restore the machine state and issue an r� instruction�
The interrupt handling code is entirely realistic� only a few lines of code needed to be changed for
it to run under Paint�

��� Traps

Traps are processor interruptions that occur synchronously with respect to the instruction stream�
A data page fault that results in a TLB miss would be one such example� Traps are initiated by
calling the the vproc trap�� routine� which returns the icode of the �rst instruction of the proper
trap handling routine in the kernel� This will be the next instruction to execute instead of the one
that caused the trap� When the kernel is ready to continue the process that caused the trap� it will
restore the machine state� and issue a return from interrupt �r�� instruction� Typically� the kernel
will restart the process at the instruction that caused the trap� To initiate a trap�

icode�ptr

vproc�trap�thread�ptr pthread

icode�ptr picode
 int trapnum
 rw�trans�t �ptrans��

The current set of supported traps are�

I DPGFAULT Data page fault� The requested virtual address translation is not present in the
TLB�

I LPRIVXFER Lower privilege transfer trap� An instruction is about to be executed at a lower
privilege level than the current instruction� and the PSW L�bit is set� This is
used by the kernel to deliver asynchronous transfer traps �AST� in the interrupt
handler�

I DMEM ACC Data memory access trap� The requested virtual address translation is in the
TLB� but the access permission bits are incorrect for the type of access�

� Specifying Simulation Parameters

One of the problems we encountered was command line option explosion� Many of the simulation
modules needed their own set of command line options� and it became confusing and di�cult to
maintain since only a single module can use an option� To address this problem� we added a
parameter �le that can store name�value pairs� much like the Xdefaults �le in the X�� window
system �although much simpler�� The simulator can call the get parameter�� routine to get the
value of a particular parameter�

The default �le name for the parameter �le is ���mint params�� A di�erent �lename can be
speci�ed as a command line option to the simulator �see Section ��� The format of a parameter
�le is very simple� Blank lines and lines beginning with a ��� are ignored� The �rst �eld on a
non�blank line is the name of the parameter� and the second �eld is the value� For example�

��

�

� This is a sample parameter file�

�

Useful�parameter�� �

Useful�parameter�� �

A simulation module can then access the parameter values using the following function�

get�parameter�char �parameter�name
 void �value
 int type�

The string pointer parameter name is the name used to match on in the parameter �le� The
match is case sensitive� value is a pointer to storage large enough to hold the parameter value� If
no matching name is found� value is left unchanged� The type argument speci�es what type of
parameter value is expected� The 	 possibilities �de�ned in mint�h� are�

PARAM INT The value is an integer�

PARAM FLOAT The value is a �oat�

PARAM STRING The value is a string� The storage should be large enough to hold the largest
string expected�

A simple code fragment that requests a parameter value follows�

�

int Useful�parameter � ��

get�parameter��Useful�parameter���
 �Useful�parameter
 PARAM�INT��

if �Useful�parameter�

do�something���

�

	 Command Line Arguments

This section describes the command line options that have been changed or added to Paint�

�z Turn on virtual processor mode� By default� Paint runs in SPMD mode for
backwards compatibility and the virtual processor functions described in Sec�
tion � are disabled�

�n count Specify the maximum number of virtual processors when MPMD Paint is en�
abled� The default value is one� The kernel may create this many processors
�using the newvproc�� interface function�� Attempts to create more will result
in a fatal error�

�I Turn on Stall On Usemode� See Section � for a description of SOU mode� When
SOU mode is o�� the backend should treat load instructions synchronously�
returning T ADVANCE only when the load is complete and execution can
proceed normally� The default value is o��

��

�k stack size This option is ignored in MPMD Paint� Stack segments grow on demand�
In SPMD mode� this option can be used only when stacks are in the shared
memory space �this occurs when the sproc system call is used��

�m �le The �le speci�es a list of runtime parameters for the simulator� The default
value is �mint params�� See section � for a description of the parameter �le�

�h heap size This option applies only to the kernel heap size in MPMD Paint� The heap
space for user programs grows on demand� See Section 	 for more details� The
default value is �� �K pages�

 Simulator Support for the Kernel

There are several new support functions that are intercepted by the simulator�

��� newvproc��

Create a new simulated processor� This is functionally equivalent to fork�� in that control returns
to the parent and the child at the point following the function call� newvproc�� returns � in the
child� and non�zero in the parent� This function is used by the kernel startup code to duplicate
itself onto as many processors as were requested when Paint was invoked �using the �n option� see
section ���

��� getvproc��

Return the current simulated processor number� The value is an integer in the range � to �Num�
ber of Nodes � ���

��� getmaxnodes��

Return the total number of processors in the simulation� This is set using the �n option to the
simulator� and is made available to the kernel and to user programs with this function�

� Miscellaneous Notes

��� Building Paint

Please consult the README �le in the top level directory for instructions on how to build Paint�
the kernel� and the support programs�

��� An Example Kernel

The kernel that we run is not a production kernel� but rather a subset of the BSD ��� kernel �Lite��
release� that can handle system call trapping� asynchronous interrupts� synchronous traps� signals�
and provides additional functionality required by the Avalanche Scalable Computer Project� These
include message passing and distributed shared memory system calls and interrupt handlers� This
kernel is provided in the distribution� so please consult the README �le in that directory for
instructions on how to build and run the sample kernel�

��

��� Who To Contact

If you have questions or comments� please send email to avalanche�jensen�cs�utah�edu� There are
several people responsible for the simulator� so this is your best chance to get a response�

The Avalanche Project requests users of this software to return to avalanche�jensen�cs�utah�edu
improvements that they make and grant the Avalanche Project redistribution rights�

��� Credits

Thanks to Jack Veenstra �veenstra�itagain�mti�sgi�com� for developing the Mint simulator� upon
which Paint is based�

��

References

��
 Hewlett�Packard Co� PA�RISC ��� Architecture and Instruction Set Reference Manual�
February �����

��
 Swanson� M�� Kuramkote� R�� Tateyama� T�� and Stoller� L� Message Passing Support
in the Avalanche Widget� Tech� Rep� UUCS�������� University of Utah � Computer Science
Department� March �����

�	
 Veenstra� J� Mint Tutorial and User Manual� Tech� Rep� ��� University of Rochester
Computer Science Department� May ���	�

�	

