
D R A F T — UUCS-96-004
Microkernels Meet Recursive Virtual Machines

Bryan Ford Mike Hibler Jay Lepreau Patrick Tullmann
Godmar Back Shantanu Goel Steven Clawson

Department of Computer Science
University of Utah

Salt Lake City, UT 84112

flux@cs.utah.edu

http://www.cs.utah.edu/projects/flux/

May 10, 1996

Abstract

This paper describes a novel approach to providing mod-
ular and extensible operating system functionality, and en-
capsulated environments, based on a synthesis of micro-
kernel and virtual machine concepts. We have developed a
virtualizable architecture that allows recursive virtual ma-
chines (virtualmachines runningon other virtual machines)
to be efficiently implemented, in software, by a microkernel
running on generic hardware. A complete virtual machine
interface is provided at each level; efficiency derives from
needing to implement onlynew functionality at each level.

This infrastructure allows common OS functionality,
such as process management, demand paging, fault toler-
ance, and debugging support, to be provided by cleanly
modularized, independent, stackable virtual machine mon-
itors, implemented as ordinary user processes. It can
also provide uncommon or unique OS features, including
the above features specialized for particular applications’
needs, or virtual machines transparently distributed cross-
node, or security monitors that allow arbitrary untrusted bi-
naries to be safely executed. Our prototype implementation
of this model indicates that it is practical to modularize op-
erating systems this way: some types of virtual machine
layers impose almost no overhead at all, while others im-
pose some overhead (typically 10–20%), but only on cer-
tain classes of applications.

1 Introduction

Increasing operating system modularityand extensibility
without excessively hurting performance is a topic of much
ongoing research[2, 13, 30, 35, 6]. Microkernels[18, 1] at-
tempt to decompose operating systems “horizontally,” by
moving traditionalkernel functionality into servers running

in user mode. Recursive virtual machines[17], on the other
hand, allow operating systems to be decomposed “verti-
cally,” by implementing OS functionality in stackablevir-
tual machine monitors, each of which exports a virtual
machine interface compatible with the “real” machine in-
terface on which they themselves run. Traditionally, vir-
tual machines have been implemented on and export ex-
isting hardware architectures so they can support existing
“naive” operating systems. (see Figure 1). For example,
the most well-known virtual machine system, VM/370[22,
23], provides virtual memory and security between mul-
tiple concurrent virtual machines, all exporting the IBM
S/370 hardware architecture. However, specialvirtualiz-
able (firmware/hardware) architectures[16, 29] have been
proposed, whose design goal is to allow virtual machines
to be stacked much more efficiently.

This paper presents a new approach to OS extensibil-
ity which combines both microkernel and virtual machine
concepts in one system. We have designed a virtualizable
architecture and implemented it in software using a mi-
crokernel. The microkernel runs on the “raw” hardware
platform, which together with a set of higher-level proto-
cols, exports a virtual machine that provides the extended,
virtualizable architecture (see Figure 2). Virtual machine
monitors (VMMs) executed on this virtual machine can
efficiently create additional, recursive virtual machines in
which applications or other VMMs can run.

The microkernel’s API supports efficient recursion (hi-
erarchical process structuring) in several ways. For mem-
ory resources, the virtual machine hierarchy gets explicit
support fromrelative memory mapping primitives that al-
low address spaces to be composed from other address
spaces. For CPU resources, the kernel provides a primi-
tive that supports hierarchical scheduling models. To allow



Bare Machine

Virtual Machine

Monitor
Virtual Machine

Virtual Machine

System
Kernel

Operating

App

Process

App

Process Virtual Machine

System
Kernel

Operating

App

Process

App

Process

Interface

Process
Interface

Hardware Monitor
Virtual Machine

Figure 1: Traditional virtual machines based on hardware
architectures

safe short-circuiting of the hierarchy, the kernel provides
a global capability model that supportsselective interposi-
tion on communication channels. On top of the microker-
nel interfaces, well-defined IPC interfaces provide I/O and
resource management functionality at a higher level than
in traditional virtual machines, more suited to the needs of
modern applications: e.g. file handles instead of device I/O
registers.

Terminology We now introduce some synonyms, to help
reduce awkward and repetitious terms. Henceforth, we
will treat the following terms as equivalent: “recursive vir-
tual machine”� “RVM” � “virtual machine”� “VM” �
“environment,” “virtual machine monitor”� “VMM” �

“nester,” and “hierarchical”� “recursive”� “nested.”

In addition, we will refer to the overall architecture de-
scribed in this paper as our “model,” to avoid confusion
with our virtual machine architecture.

1.1 Motivation
Recursive virtual machines can be used to apply existing

algorithms and techniques in more flexible ways. Some ex-
amples include:

Decomposing the kernel: Some features of traditional
operating systems are usually so tightly integrated into the
kernel that it is difficult to eliminate them in situations in
which they are not needed. The most obvious example
is demand paging: although it is often possible to disable
it in particular situations on particular regions, (e.g., us-

C Library

App

Debug VMM Paging VMM

C Library

App

Checkpointer

VMM
Process Mgmt

C Library

App

C Library

App

Interface
Hardware Microkernel

Virtualizable
Architecture
Interface

Bare Machine

VMM
Process Mgmt

Figure 2: Virtual machines based on an extended architec-
ture implemented by a microkernel

ing POSIX’s mlock()), all of the paging support is still in
the kernel, occupying memory and increasing system over-
head. Even systems that support “external pagers,” such as
Mach, contain considerable paging-related code in the ker-
nel, and most do not allow control over physical memory
management, just backing store. The majority of personal
computers are dedicated to the use of a single person; hence
multi-user security mechanisms are not always needed. A
system supporting our model would enable such features to
be decomposed into optional virtual machine monitors in-
voked on a demand basis, and only for the parts of a system
for which they are desired.

Application-specific specialization is often desirable; it
has been shown that specialized virtual memory manage-
ment can yield substantially better performance[30, 21, 25]
for certain applications which access memory in an un-
usual fashion (garbage collectors, object stores, relational
database systems, some numeric applications). Specialized
memory managers are easy to provide in our system.

Increasing the scope of existing mechanisms: There
are algorithms and software packages available for com-
mon operating systems to provide features such as dis-
tributed shared memory[8, 26] (DSM) and security against
untrusted applications[43]. However, these systems only
directly supportapplications running in a single logical pro-
tection domain. In a recursive virtual machine, any pro-
cess can create further nested subprocesses which are com-

2



pletely encapsulated within the parent’s virtual machine,
making them invisible to entities outside the parent. This
allows DSM, checkpointing, security, and other mecha-
nisms to be applied just as easily to multi-process applica-
tions or even complete operating environments.

Combining OS features: The mechanisms mentioned
above are usually designed to work only within the scope
of a single application; they are difficult or impossible to
combine in a flexible manner. One might be able to run an
application and checkpoint it, or to run an untrusted appli-
cation in a secure environment, but existing software mech-
anisms are insufficient to run acheckpointed, untrusted ap-
plication. A recursive virtual machine architecture allows
one to combine these features by layering the mechanisms,
since the interface between each “layer” is the same,

Provision of isolated environments, at which today’s
OSs are very weak. can also be provided by recursive vir-
tual machines. With the advent of Web-based executable
content, security issues have become more and more im-
portant. Some designs, such as Java, try to achieve security
through a combination of language features and runtime
verification and control. However, Java requires the use
of a special language, and recently uncovered bugs have
demonstrated that the implementation of the runtime secu-
rity mechanisms is error prone.

Virtualmachines can provide strong isolation guarantees
between subsystems[41], addressing denial-of-service at-
tacks and information leaks throughcovert channels as well
as providing a clean separation between different pieces of
mobile code (Applets). Such isolationcan also be useful for
resource reservation, such as guaranteeing a certain amount
of physical memory to real-time applications.

Another example of operating system functionality that
we believe could be implemented efficiently as VMMs in
this system is a distributed memory manager that provides
virtual machinestransparently distributedover the real ma-
chines on a network. I.e., virtualizing local memory to ap-
pear distributed to all descendant processes, without their
knowledge or cooperation.

1.2 Our Example Virtual Machine Monitors

On top of our software-provided virtualizable architec-
ture we have implemented several traditionaloperatingsys-
tems features as independent, stackable virtual machine
monitors. These and similar components can be used to-
gether in many ways to build highly flexible systems, nat-
urally supporting features that are difficult to implement
in conventional operating systems. For example, a check-
pointer can be transparently applied to arbitrary domains
such as a single application, a multi-process user environ-
ment containing a process manager and multiple applica-
tions, or even the entire system. In this paper we demon-
strate the followingspecific examples:POSIXprocess man-
agement, demand paging, checkpointing and debugging.

We used micro benchmarks to measure the system’s per-
formance in a variety of configurations of the above pro-
grams and normal applications. These measurements in-
dicate a slowdown of about 5–30% per virtual machine
layer, in contrast to conventional recursive virtual ma-
chines, whose slowdown is 20%–1000%[4] Some virtual
machine monitors, such as the process manager and debug-
ger, do not need to interpose on performance-critical in-
terfaces such as memory allocation or file I/O, and hence
take better advantage of the short-circuit communication
facilities provided by the microkernel architecture; these
monitors cause almost no slowdown at all. Other moni-
tors, such as the pager and the checkpointer, must inter-
fere more to perform their function, and therefore cause
some slowdown; however, even this slowdown is fairly
reasonable. These results indicate that, at least for the
applications we have tested so far, this combined virtual
machine/microkernel model indeed provides a practical
method of increasing operating system modularity, flexibil-
ity, and power.

1.3 Goals

Our goals in this work are to: (i) Explain and compare
our combination of microkernel and recursive virtual ma-
chine concepts. (ii) Motivate it by describing useful func-
tionality it can provide. (iii) Elucidate the fundamental ker-
nel properties required to efficiently support such an ap-
proach. (iv) Design and implement such a kernel. (v) Es-
tablish that none of the required kernel properties is incom-
patible with a high performance kernel. (vi) Establish IPC-
based interfaces and protocols that provide high-level func-
tionality, such as file I/O and memory allocation, in a man-
ner consistent with the recursive virtual machine model.
(vii) Exploit the model to demonstrate flexible provision of
OS features. (viii) Show that the per-layer nesting cost is
moderate and increases only linearly.

The rest of this paper is organized as follows. In Sec-
tion 2, we compare to related work. We describe our
software-provided virtualizable architecture in Section 3.
Section 4 describes the properties and design of the ker-
nel we developed to support the virtualizable architecture,
while Section 5 describes the high-level mechanisms and
protocols we used to implement virtual machine monitors
on top of this kernel. Section 7 describes the experiments
and results using the four example VMMs. Finally, we con-
clude with a short reflective summary.

2 Related Work

Most virtual machine systems have, and had, only shal-
low hierarchies, implementing all functionality in a few
layers. In fact, in their heyday, VMs were not driven by
modularity issues at all. They were created to make better
use of scarce, expensive hardware resources.

3



Recently, a hypervisor was used to provide fault toler-
ance (replication) on a whole-machine basis on PA-RISC
machines [4]. This application of virtual machines can be
approximately compared with our application of RVMs to
provide a different form of fault tolerance (checkpointing).
This comparison further illustrates the relative merits of
each model: The hypervisor approach allows existing op-
erating systems to be run unmodified (HP-UX in this case),
but only works on a whole-machine basis (e.g., the same
software cannot be used directly for smaller domains, such
as a single process or a group of processes.) Of course, this
comparison must be taken with a large dose of salt, since
the applications and fault tolerance algorithms in question
are quite different.

Existing hardware-based VM architectures have several
drawbacks: (i) most processor architectures don’t sup-
port it, since privilege-level information leaks into user-
accessible registers; (ii) hardware interfaces are too low-
level, making stacking inefficient; (iii) duplication of effort
(e.g., double paging), as the whole VMM is duplicated at
each level; (iv) there is no way to short-circuit layers and
selectively interpose.

Our RVM model has superficial similarities to Unix’s
hierarchical process organization, in that parent processes
can create and control child processes. However, the Unix
model falls far short of a true RVM, in at least the following
important respects: (i) Parent processes have only a very
limited degree of control over their children. For example,
they cannot control memory or cpu usage of their children.
(ii) Child processes can allocate and use resources that the
parent process doesn’t own (and possibly never did). (iii)
All processes are globally visible in a single process ID
namespace. (iv) There are explicit privilege levels. This
doesn’t mean that the Unix process model isn’t useful—in
fact, it is very useful, but cannot provide the control needed
for the extensibility provided by RVMs.

The Cambridge CAP computer[45] implements a hard-
ware (microcode) architecture that comes fairly close
to providing a nested process model. It supports an
arbitrarily-deep process hierarchy, in which parent pro-
cesses can completely virtualize the memory and CPU us-
age of their child processes, as well as trap and system
call handlers for their children. However, the CAP com-
puter enforced the process hierarchystrictly, and did not
allow communication paths to “short-circuit” the layers as
our system does. As noted in retrospect by the design-
ers of the system, this weakness made it impractical for
performance reasons to use more than two levels of pro-
cess hierarchy (corresponding roughly to the “supervisor”
and “user” modes of other architectures); thus, the uses of
nested processers were never actually explored or tested in
this system.

System call emulation and interposition have been used
in the past to interpose special software modules between

an application and the OS on which it is running. This
form of interposition can be used, for example, to trace
system calls or change the process’s view of the file
system[24], or to provide security against an untrusted
application[43]. However, these mechanisms can only be
applied easily in the scope of a single application process,
and generally cannot be used together (i.e., only one in-
terposition module can be used for a given application).
Furthermore, although file system access and other system
call-based activity can be monitored and virtualized this
way, it would be difficult to virtualize other resources such
as CPU and memory.

The Exokernel [13] project’s work is orthogonal, and
possibly complementary, to ours. They’re defining where
the supervisor boundary is; we don’t care where that bound-
ary is, but only about the compositional functionalityabove
it. However, we do care that kernel operations don’t have
effects on system resources which can’t be controlled by
VMMs: It’s unlikely that the Aegis kernel primitives cur-
rently provide the three key properties. Both systems sup-
port the ability for applications to have specialized environ-
ments, but in ExOS the application binary is modified by
linking in OS library code.

Sub-systems supportingstackable and interposable func-
tionality in a particular domain have been an active area of
research and development for many years: Jones [24] gives
a long list of them. Recent work has benefited from object-
oriented structuring, including work on Spring’s subcon-
tracts [19] and filesystems [27]. We believe that the care-
ful working out of domain-specific inter-layer protocols is
complementary to our RVM work: the high-level compo-
nent of our VM (the “common protocols”) could use those
protocols for each class of functionality it provides.

A few existing operating systems, such as KeyKOS[3]
and L3[34] have implemented checkpointing on a whole-
machine basis in the kernel. While this feature appears
practical and useful in some situations, the checkpointing
built into these systems is inflexibly tied to the machine
boundary: it cannot be used on smaller scopes such as pro-
cesses or groups of processes, or on larger scopes such as
networked clusters of machines. The nested process model
allows checkpointing and other algorithms to be imple-
mented over more flexible domains.

Our system borrows many design concepts and abstrac-
tions from other systems, suitably modified to support the
RVM model, as described in the followingsections. For ex-
ample, our hierarchical memory remapping mechanism has
similarities to (and is inspired by) that of L4[35], and ap-
pears to provide precisely the “f-map” semantics defined in
the recursive virtual machine literature[16, 17], our hierar-
chical scheduling mechanism is comparable to KeyKOS’s
meters[20], or lottery/stride scheduling’scurrencies[44].
The capability model we use for communication is of
course extremely well-known [31]; many of the details of

4



the design and the terminology we use are borrowed from
Mach 3.0[11]. The ability to export and re-create all ker-
nel object state appears very similar to the Cache Ker-
nel’s [9] abilities in that area. Our kernel object model,
in which kernel objects are associated with chunks of user
memory, are reminiscent of tagged processor architectures
such as System 38[31] and the Intel i960XA. The design of
our high-level Unix emulation environment borrows heav-
ily from existing Mach-based multiservers, especially the
GNU Hurd[5].

3 “Machine” Architecture

Our virtualizable architecture consists of three compo-
nents:
First, the extended architecture incorporates only theun-
privileged, “non-sensitive”[17] subset of an existing in-
struction set architecture. Limiting the instruction set this
way avoids the need to emulate instructions, and makes it
possible to implement the virtualizablearchitecture even on
processor architectures such as the PA-RISC, x86, or MIPS,
which don’t fully support virtual machines based on raw
hardware interfaces[4].�

Second, a low-level API [14] (implemented by the mi-
crokernel) provides simple memory management, schedul-
ing, and IPC primitives similar to those of conventional
“small” microkernels such as the V++ CacheKernel[9],
L3/L4[33, 35], and KeyKOS[20, 3]. This API is designed
to support recursive virtual machines efficiently by ensur-
ing that it is not necessary for every virtual machine layer
to interpose on and simulate primitive operations such as
I/O instructions, page table management, etc. The funda-
mental properties required to achieve this efficiency are: (a)
all primitives are completelyrelative, implying no global
resources (e.g., KeyKos’s “official” space bank), names-
paces (e.g., Unix’s PIDs, L4’s global thread/task ID’s), or
privileges (e.g., Unix’s root, NT’s ACL-based subject se-
curity). (b) all state contained in primitive kernel objects
(e.g., threads, mappings) isexportable as plain data, in a
form that ordinary programs can later use to regenerate the
objects; and (c) all primitive objects areowned by, or asso-
ciated with, specific virtual machine environments.

Finally, the virtualizable architecture defines the“com-
mon protocols,” a set of IPC-based interfaces used to im-
plement high-level functionality such as file I/O and mem-
ory allocation. In function, these interfaces roughly corre-
spond to the device access conventions in traditional vir-
tual machines and actual hardware, such as the register
interface to a SCSI adapter; however, in our architecture
these interfaces are much higher-level, closer to the appli-
cation interface than to the hardware. For example, the pri-
mary I/O interface is based on file systems and stream I/O,

�We used the Intel x86 architecture for our initial implementation;
however, the concepts described here are not processor-specific.

rather than on bus devices and DMA or programmed I/O.
These higher-level IPC-based interfaces eliminate the need
to simulate complicated hardware interfaces, and corre-
spondinglysimplifyand speed up implementations of those
interfaces.

4 The Kernel

The first major component of our OS is Fluke, a micro-
kernel we designed to support recursive virtual machines.
Fluke was designed “from scratch” and is an entirely new
kernel. Although it is probably possible to implement the
necessary support for RVMs in a traditional monolithicker-
nel, we decided to take a microkernel approach for the
proof-of-concept for two main reasons: (i) We felt it would
be much more difficult to adapt an existing monolithic ker-
nel, because of the large source base and because the re-
quired changes would be widespread. (ii) A monolithic
kernel provides much less opportunity to make use of the
RVM model. For example, while our checkpointer ex-
ample would probably still apply, the decomposed pro-
cess manager and virtual memory manager wouldn’t, since
these functions are already hard-wired into existing mono-
lithic systems. Of course, because of this decision, our sys-
tem takes the well-known “microkernel performance hit”
due to the additional decomposition and context switching
overhead: much more so, in fact, because our microker-
nel is new and entirely unoptimized. We discuss below that
there is nothing about supporting RVM’s that is incompati-
ble with a high-performance kernel. In addition, this paper
is primarily concerned with showing thatrelative per-layer
cost of virtual machine monitors is reasonable, rather than
base system performance.

The remainder of this section describes only the aspects
of the kernel that are specifically relevant to the RVM
model.

4.1 Key Properties

The Fluke kernel does not actuallyenforce a recursive
virtual machine model: its API contains no explicit notion
of a process hierarchy. However, our kernel APIenables
RVMs by providing a number of vital properties. These
abstract properties are described briefly below, and in later
sections explored as they are manifest in the Fluke API.

Relativity of kernel abstractions: All kernel objects
and abstractions are completely relative: no absolute,
global resources or namespaces are made visible through
the kernel API. Similarly, there are no special global privi-
leges given to some processes but not others (e.g., no con-
cept of “root”), only privileges of processes relative to each
other. Absolute resources cannot easily be virtualized re-
cursively, and therefore would tend to cripple the RVM
model. For example, if globally unique identifiers were
used to designate kernel objects or communication end-

5



points, then migrating or restarting checkpointed environ-
ments would be difficult because the “unique” identifiers
used by the migrated environment on the old system might
conflict with identifiers already used in the new system.

Exportabilityof kernel object state: All kernel objects
(e.g., threads, regions) exported through the API are de-
signed so that all of their vital state can be extracted by user-
level code and later used to rebuild equivalent objects. For
example, this property is obviously crucial for checkpoint-
ing to work: otherwise, it would be impossible to save and
restore kernel objects used by checkpointed applications,
such as threads. However, this property is also required
in other cases as well: for example, it enables our out-of-
kernel virtual memory manager (MM) and, soon, our dis-
tributed memory manager, to demand-page kernel objects
as well as ordinary application data.

Object ownership: Finally, our kernel’s API is de-
signed so that all kernel objects associated with a particu-
lar process can be located and conclusively determined to
be “owned by” that process. This property of “ownership”
or “process association” is vital to providing control over
nested subprocesses to their parents. In just one example of
this requirement, without it a process manager has no way
to ensure reclamation of all resources consumed by a child
process. When its child dies, it needs to be able to track
down all the kernel objects used by that process and any de-
scendants it may have spawned. In Mach 3.0, for example,
a child task may create new tasks. When the child dies the
parent can find a capability to the grandchild, but has no re-
liable way to determine that the capability actually refers to
a task, and assuming it does, whether that task is logically
part of the child’s state, or was created by some other unre-
lated task. Also, the child could have simply destroyed its
capability to the grandchild, leaving no trace.

The following sections describe in more detail the Fluke
kernel primitives and how they provide the fundamental
properties listed above.

4.2 Kernel Objects

The Fluke kernel provides only a few types of primitive
kernel objects, upon which all other functionality is built.
Threads represent independent flows of control and con-
tain CPU register state, among other things.Spaces, re-
gions, andmappings define the address spaces in which
threads execute.Ports, port sets, andport references define
communication endpoints. References to non-ports pro-
vide handles to most other kinds of kernel objects.Mutexes
andcondition variables provide synchronization between
threads sharing memory (either withina process or between
processes).

All active kernel objects are logically associated with, or
“attached to,” a small chunk of physical memory. Any pro-
cess into which a given page of physical memory is mapped
can invoke kernel operations on any kernel object in that

page, by specifying thevirtual address of the object within
that address space. A thread can create new kernel objects
in any memory mapped into its address space that has suf-
ficient permissions; besides the normalrw protections, an
“object create” permission must be set. The small user-
visible chunk of memory associated with an active kernel
object is reserved for the kernel’s use. Since this memory
can be read and written by untrusted user-level code (even
though doing so is a violation of the API), no kernel object
state is itself store there; instead, it is used to store hints that
speed up the kernel’s object lookup upon a system call.

This association of kernel objects with user-level
memory provides the notion of object ownership that is
needed to support recursive virtual machines. We have
reasons unrelated to RVMs—future base performance
optimizations—for choosing this design for achieving
the ownership property. More traditional descriptor- or
handle-based approaches to representing and addressing
kernel objects should work as well, as long as the design
provides the key properties outlined in Section 4.1.

4.3 Memory Management

Spaces are kernel objects representing address spaces in
which threads can execute. Any number of threads can ex-
ecute in a particular space. One space object is used for
each application process, and by higher-level convention,
one for each memory segment provided to that process, as
explained in Section 6.2.

The actual address space of a Fluke space is defined rela-
tive to those of other spaces: it is composed of “views” into
other spaces. To manage memory within spaces, Fluke de-
fines two object types: theregion object which “exports”
memory from a space and themapping object which “im-
ports” memory into a space.

A mapping object effects “remapping” between spaces,
mapping some or all of the address space defined by a re-
gion object into another,destination space. New regions
covering this area in the destination space can be created,
allowing the export of that portion of its address space to a
third space, and so on. In this way, mappings and regions
form a hierarchy of memory sharing relationships. The ker-
nel acts as theroot space, into which all physical memory
is implicitly mapped; it acts as the “ultimate source” of all
physical memory.

In order to execute user-level code, the kernel internally
“composes” these space-relative mapping and region ob-
jects into actual hardware page tables that translate directly
from the virtual address space of a particular process into
physical memory addresses. This composition mechanism
is similar to thef-maps described in the recursive virtual
machine literature[16].

The kernel’s memory remapping mechanism provides
the basic “relative memory” support needed to implement
nested processes. For example, to create a nested subpro-

6



cess, a process can simply create a new space object, one
or more regions associated with its own space object defin-
ing areas of its own virtual address space it is setting aside
for the use of the child, and corresponding mapping objects
to map these regions into the child space at the appropri-
ate locations.� Any threads created in the child process will
then execute in that address space, and will only be able to
access memory to which it was given access by the parent.
The parent can revoke or modify the child’s permissions to
this memory at any time, allowing the parent to “virtual-
ize” the child’s view of memory as desired. Page faults in
the child caused by missing permissions are delivered by
the kernel to the appropriate parent process.

Note that the kernel provides no primitives for “allocat-
ing” memory: storage allocation and management are done
purely using high-level protocols. For example, in the sit-
uation described above, if the running child process needs
more memory (e.g., needs to grow its heap), it must com-
municate with an ancestor process; the ancestor can then
reserve more memory for the child and set up appropri-
ate regions and mappings or grow existing ones as neces-
sary. The high-level protocol for finding and binding to the
appropriate memory-serving ancestor process is described
later, in Section 5.

Other Hierarchical Memory Management Models:
We considered using a design similar to that in L4, which
has no explicit abstraction of memory mapping at all; i.e.,
no “mapping” object. In that model, (physical) memory
pages are passed around via IPC messages or by a special
kernel operation. Hence, there was no kernel-visible
virtual memory hierarchy, just a physical page hierarchy.

Although this model may have worked for those man-
agers that did not want complete control over memory they
handed out, it made it extremely hard for those that did.
Specifically, this would not allow DSM to be implemented
transparently over multiple processes by a user-mode pro-
cess. A process several levels removed from a DSM man-
ager might flush page mappings from its children, and the
manager would never know. If there is an explicit object
representing an area of memory, it provides a handle for de-
tecting such cases.

4.4 Interprocess Communication

IPC in Fluke is based on a capability model similar to that
of Mach 3.0. Aport provides the server endpoint of a com-
munication channel, while aport reference provides the
client-side endpoint. A Fluke message consists of a stream
of raw, uninterpreted bytes, plus an optional sequence of
port references (capabilities).

�The actual method of creating nested child processes in our system,
described later, is a little more complicated in order to providegreater flex-
ibility; however, the simple method described here works fine and illus-
trates the basic concept.

The capability model used in Fluke supports recursive
virtual machines in a number of ways. First, it provides the
notion of relativity in the communication mechanism es-
sential to the nested process model: given a capability to a
file service, for example, the client need not know where or
how the file server is implemented, or what intermediaries,
if any, may be interposed on the communication channel.
Since a parent process that creates a nested subprocess con-
trols what capabilities it initially gives to the subprocess, it
ultimately controls all communication across the “bound-
ary” containing the nested subprocess. If the nested subpro-
cess creates further subprocesses, resulting in a full nested
environment, then the processes in this environment can
freely communicate among themselves with no interfer-
ence from or knowledge by the parent; however, commu-
nication with entities outside of the environment can still
be controlled by the parent as desired.

Since these are microkernel-mediated capabilities and
therefore not directly accessible to any user process, they
can be passed freely between RVM layers, without com-
promising anyone’s security. This contrasts with the Cam-
bridge CAP computer[45], for example, in which capabil-
ities could not be passed between process hierarchy layers
because the bits representing a capability in one process are
directly accessible to the code running in its parent process.
The ability of capabilities to be passed arbitrarily between
our RVM layers allows communication to short-circuit the
layers in many cases, as described later; this property is
very important for maintaining good performance, because
it allows parent processes to interposeselectively on IPC
channels entering or leaving the subprocess, rather than be-
ing forced to interpose onall IPC, which would result in a
much larger performance penalty.

Even though a parent process does not have direct ac-
cess to the raw bits describing capabilities in its nested child
processes, The Fluke API allows a parent to determine if a
given capability refers to an object under its domain of con-
trol, and if so, which one. For example, our checkpointer
uses this functionality to detect and “passivate” capabilities
in one part of the checkpointed environment that refer to
other objects elsewhere in the checkpointed environment,
so that these objects and capabilities can be transparently
restored on restart. Capabilities referring to objects outside
of the checkpointed environment will not be “recognized”
this way and must be handled separately; these issues are
discussed later in Section 6.3.

In providing the “exportabilityproperty,” the determinis-
tic and synchronous Fluke IPC semantics are also relevant.
Fluke IPC has no message queues, avoiding the problem or
impossibility of retrieving messages in such an intermedi-
ate state. If Fluke IPC blocks, e.g., due to a page fault, the
thread state, buffer offset, and residual length are rolled-
back to a point at the kernel entry boundary. This aids in
the provision of simple exportable semantics.

7



4.5 Scheduling

The final type of resource the Fluke kernel directly deals
with is CPU time. As with memory and communica-
tion, the kernel provides only minimal, completely rela-
tive scheduling facilities. Threads can act as schedulers for
other threads, donating their CPU time to those threads ac-
cording to some high-level scheduling policy; those threads
can then further subdivide CPU time among still other
threads, etc., forming ascheduling hierarchy. The schedul-
ing hierarchy normally “follows” the virtual machine hier-
archy, in a loose sense, but is not required to. The higher-
level “common protocols” determine the actual scheduling
hierarchy.

The details of scheduling under Fluke [15] are beyond
the scope of this paper; only its relative, hierarchical na-
ture is important to the RVM model. Other hierarchical
schedulers, such as themeter system in KeyKos[20], and
lottery/stridescheduling[44], should also work in our RVM
model.

4.6 Security

The Fluke kernel currently contains no special security
mechanisms; all low-level support for security is integrated
into the other primitives exported by the kernel. Memory
access security is provided by the memory mapping and
protectionmechanism, communication security is provided
by the capability model, and CPU usage security is pro-
vided by the hierarchical scheduling mechanism.

This suffices for many environments. However, to sat-
isfy the most demanding security-assurance needs such as
the most stringent of the TCSEC[39] classes, it appears im-
portant to provide explicit support for traditional subject-
based security. We are working with others who are adding
such support to Fluke. Our intent is to provide a means
to virtualize the ensuing security identifiers, preserving the
“relativistic property” of the interface. We are evaluating
whether this “security enforcement” can and should be im-
plemented by an ordinary process or at the kernel level, as
is traditionally done.

It is worth noting that some other kernel-level security
models are likely also to be compatible with the RVM
model, such as the Clan/Chief model used in L3 [32],
or the hierarchical subject-based security model used in
VSTa[42].

5 High-level Protocols

In order to demonstrate how our model can be applied to
“real” systems, we have implemented a partialPOSIX en-
vironment on top of the Fluke kernel, using VMMs to pro-
vide traditional Unix kernel features, such as process man-
agement and demand-paged memory, although in a more
flexible way.

5.1 Common Protocols

A crucial component of our virtualizable machine archi-
tecture is thecommon protocols: a set of standardized inter-
faces used to communicate between VM layers. Whereas
the underlying Fluke IPC mechanism provides primitive
I/O channels, comparable to I/O ports in hardware-based
virtual machine architectures, the common protocols define
the communication protocols used on those ports, analo-
gous to the register programming conventions used to pro-
gram hardware devices.

There could be more than one set of common protocols
which define distinct virtualized architectures; in this sec-
tion we consider the common protocol suite used to imple-
ment a partialPOSIX environment on top of the Fluke ker-
nel. While many of the protocols are designed specifically
for POSIX (e.g., the process management interface) some
are more general (e.g., the memory management and file
I/O interfaces) and could be applicable to other environ-
ments. ThePOSIX common protocols, hereafter referred to
as “the Common Protocols” or CP, are a set of hierarchi-
cally structured interfaces defined in CORBA IDL.

Parent interface. This is the top level interface used
for parent/child communication, which effectively acts as a
“name service” interface through which the child requests
access to other services. This is the only interface that
all VMMs interpose on; a VMM selectively interposes on
other interfaces only as necessary to perform its function.
The overhead of this interposition is minimal because typ-
ically only a few requests are made on this interface, dur-
ing the child’s initialization phase, to find other interfaces
of interest. The parent interface currently provides meth-
ods to obtain initial file descriptors (e.g.,stdin,stdout,
stderr); find a filesystem manager, find a memory man-
ager, find a process manager, and exit.

Filesystem interface. The file system interface in our
system is similar to those of other microkernel-based op-
erating systems that support independent file servers, such
as Spring[27] and the GNU Hurd[5]. It provides meth-
ods closely corresponding toPOSIX file I/O calls, such as
open, link, unlink, rename, mkdir, etc.

Memory Management interface. The Common Proto-
cols memory interface exports memorysegment andpool
abstractions. A memory segment represents an arbitrary-
size chunk of allocated memory which can be mapped into
a process’s address space. The segment interface includes
methods allowing clients to map segments, change the size
of variable length segments, destroy segments, etc. When
a segment is destroyed, all Fluke objects in its memory
are destroyed and the segment’s memory pages freed. A
memory pool is a collection of segments and other (sub)
pools used to account for and reclaim “anonymous” mem-
ory. Memory pools provide methods to create and destroy
sub-pools, and to allocate segments from the pool. De-
stroying a pool destroys all segments allocated from it and,

8



recursively, all sub-pools derived from it. In short, seg-
ments represent actual memory while pools provide a con-
venient mechanism for resource control and accounting.

Process Management interface. The process manage-
ment interface supportsPOSIX process-related functional-
ity, such asfork,exec,getpid, etc. It also provides the
means for processes to sendPOSIX signals to each other.

5.2 Libraries

In our system, most of thePOSIX functions that are tra-
ditionally implemented as system calls are actually imple-
mented by the C library residing in the same address space
as the application using it. These C library functions then
communicate with parent VMMs and external servers as
necessary to provide the required functionality. For exam-
ple, each process’s file descriptor table and its current direc-
tory are tracked in the process itself, as Fluke IPC capabili-
ties referring to file servers. The file descriptor table itself is
managed purely by the local C library.� Our C library sup-
ports multithreaded applications and servers by providing
a subset of thePOSIX.1b threads interface (“pthreads”).

Whereas the common protocols can be considered part
of the machine architecture in that they must be supported
at each virtual machine interface in order to provide stack-
ability, the C library is purely internal to VMMs and appli-
cation processes; VMMs and applications could be written
using completely different libraries without affecting com-
patibilityor VMM stackability. The C library in our system
is somewhat comparable to IBM’s Conversational Moni-
tor System (CMS), a minimal single-application“operating
system” designedonly to run under virtual machines, which
provides high-level services as a convenience to applica-
tions without actually implementing significant OS func-
tionality itself.

The Nesting Library. The nesting library, generally
linked only into virtual machine monitors and not ordinary
servers or applications, provides the “parent-side” comple-
ment to the C library: it provides basic facilities to support
applications that create nested subprocesses. For example,
it contains standard functions to spawn a nested subprocess
given an arbitrary executable file image. Use of this library
is again completely optional: applications can always cre-
ate nested virtual machines manually in whatever way they
desire; this library only provides a “standard” mechanism
for creating child virtual machines and providing Common
Protocols-compatible interfaces to them.

Although these libraries are currently statically linked,
once we implement shared libraries in our system, it will be
possible to share this library code even across VM layers.
This is because the Fluke relative memory mapping mech-

�However, the actual files and “openfile descriptions”, containingseek
pointers and most other per-open state, are maintained by separate file
server processes; this greatly simplifies some of the traditionally hairy
“multiserver issues.”

anism is not constrained to follow the virtual machine hi-
erarchy strictly: mapped file images can be exported from
an arbitrary file system server directly into any task that
can access the server (i.e., has a capability referencing the
server with sufficient permissions).

5.3 Bootstrapping: the Kernel Server
Besides implementing the basic microkernel API used

by all virtual machine layers, the Fluke kernel also im-
plements a minimal Common Protocols interface defining
the environment presented to thefirst user-level application
loaded directly on top of the kernel (the “root” virtual ma-
chine). This initialCP interface consists of a physical mem-
ory interface and a minimal root file system interface.

The memory pools exported by the kernel provide the
full memory pool interface defined by the Common Proto-
cols; however, memory segments allocated from the ker-
nel’s pools always refer to unpageable physical memory. If
demand paging is desired, an appropriate virtual machine
monitor must be loaded on top of the kernel.

The kernel’s root file system interface exports a simple
memory-based file system whose initial contents are a set
of boot modules loaded into physical memory by the boot
loader along with the kernel. These files typically contain
executable images for VMMs and other components that
must be loaded before a “real” file system. The minimal
root file system supports file creation, reading, writing, etc.;
however, as with the root memory pools, all files on this
root file systems are stored in unpageable physical memory.
If persistent, disk-based files are needed, then an external
file system must be run on top of the kernel; the kernel’s
root file system can then be destroyed in order to free up
physical memory occupied by the initial files.

The kernel doesnot provide any process management in-
terface at all; therefore, in order to run applications such as
shells which create and manipulatePOSIXprocesses, a pro-
cess manager must be run on top of the kernel.

6 Example Virtual Machine Monitors
We now detail the user-level applications that take ad-

vantage of the model to provide OS features in a more flex-
ible way.

In the following sections we describe these examples
which we have implemented:POSIX process management,
demand paging, checkpointing, debugging, and tracing.
We also outline an unimplemented example: a distributed
memory manager (DMM) cooperating with other DMMs
through IPC to create one large transparently distributed
environment out of several independent environments.

6.1 The Process Manager
We implemented a virtual machine monitor that creates a

POSIX-like multiple-process environment, with each “pro-

9



cess” being a separate virtual machine implemented by
the process manager. The process manager keeps track
of process IDs, handles interprocess signals,fork() and
exec(), and implements other high-level mechanisms
expected in a Unix-like environment, as defined in the
Process:: Common Protocol. The process manager is
a completely optional component: applications that don’t
fork(), send signals, etc., can be run without one. Fur-
thermore, unlike even in most microkernel-based systems,
multiple process managers can be run side-by-side or even
arbitrarily “stacked” on top of each other to provide multi-
ple independentPOSIX environments on a single machine.

The process manager’s basic function is to allow multi-
ple peer processes to coexist at the same nesting level and
interact with each other as processes do in traditional sys-
tems. The other nesting modules we implemented can only
run a single nested subprocess at once; “spreading” the tree
is left to the process manager (PM).

The PM communicates with its child processes by in-
tercepting messages on their process port. It should be
pointed out, however, that the processes can and do directly
use the facilities provided by the Fluke kernel API. For in-
stance, thefork() operation only registers a new process
with the PM. Creating new memory segments, copying the
memory segments, copying the kernel objects, and starting
the necessary threads in the child process are all done di-
rectly by the parent task.

The PM does not maintain memory. Instead, when
queried for its MemPool interface it passes on the
MemPool port reference obtained fromits parent, refer-
ring the tasks it manages to whatever memory manager
it happens to run under. This can be the kernel server
in a realtime system which uses physical memory only,
or a virtual memory manager at any point in the nesting
hierarchy. Future requests are sent directly to that memory
manager.

Multiple Process Managers
Some microkernel-based OSs, such as Mach, have been
able to run multiple independent high-level operating en-
vironments simultaneously by running multiple instances
of the necessary servers. However, doing so generally
required that the “nested” servers be somewhat modified
(e.g., #ifdef’d) in order to conform to the interfaces
exported by the previously loaded operating environment
rather than those exported by the “raw” microkernel. Also,
once launched, it was often difficult for the parent environ-
ment to control the child environment: for example, to con-
trol the amount of memory it uses, or to find and kill all the
processes it may have created if the sub-environment is to
be terminated. These were problems in all of the existing
Mach-based servers, for example, such as UX, Lites, and
the Hurd. Under the nested process model, these problems
do not arise.

6.2 The Virtual Memory Manager

We implemented a user-level demand paged virtual
memory manager that creates a virtual machine whose
anonymous memory is paged to a swap file. Arbitrary pro-
grams can be run in this paged virtual machine, such as a
single application, or a process manager supporting an en-
tire pagedPOSIX environment similar to a traditional Unix
system. Since demand paging is implemented as a sepa-
rate component instead of being lumped with other features
such as multiuser security, it is much easier to avoid prob-
lems with traditional virtual machine monitors related to
duplication of effort, such as double paging[17, 37].

Our prototype memory manager (MM) is implemented
as an ordinary user-space application program, which loads
and runs another application program (specified on the
MM’s command line) in a virtual memory environment.
The memory manager implements the complete Common
Protocols memory interface, while “passing through” the
interfaces such as file systems and process management,
with no interposition. The MM provides anonymous mem-
ory segments backed by a swap file and cached in its own
address space.

On startup the MM obtains a memory segment of a spec-
ified size from its own memory manager. This segment is
the physical memory that the MM virtualizes.� The MM
then spawns the application to be run, interposing on its
Common Protocols parent interface. The manager passes
on (via its parent port) all requests on that port except for
the request for a memory pool, which it provides.

Creation of pools and sub-pools involves allocation of a
new object and port reference to return to the caller. When
a memory pool segment creation request is made, the MM
allocates the necessary address space resources. In addi-
tion to providing memory pages, the MM must be able to
return a reference with which a client can map the seg-
ment with a given protection and it must be able to handle
page faults that occur within the segment. The Fluke re-
gion object provides these capabilities. Use of a region re-
quires that a segment occupy a contiguous range of mem-
ory. The memory manager accomplishes this by creat-
ing a separate Fluke space object whose only function is to
provide address space for the segment’s region and mem-
ory. The manager maps ranges of physical memory into
this space as required.

When physical memory is freed, either because of ex-
plicit segment destruction or because of page replacement,
the MM must deal with any Fluke kernel objects that were
present in the memory. Using a Fluke microkernel call, the
manager locates all objects in the affected range of mem-
ory. In the case of segment destruction, it can then just de-
stroy the objects. However, for page replacement the ob-

�Though this segment may in fact be virtualized by a previously-
loaded memory manager, we refer to it throughout this section as the
“physical” memory that the memory manager provides.

10



jects need to be preserved and later restored when the mem-
ory is paged in. The simplest approach for doing this is
to move objects (using a Fluke kernel call) into MM pri-
vate memory at pageout time and to move them back at
pagein time. A more sophisticated method takes advantage
of the microkernel’s ability to completely export kernel ob-
ject state to page objects out along with “raw” memory just
as the checkpointer does.

We have deployed the MM in two configurations. In the
simplest configuration, the MM does no paging and is vir-
tualizing memory only in the sense of naming (i.e., remap-
ping virtual addresses). Here, requests for new memory
segments are fulfilled by allocating the appropriate amount
of physical memory at segment creation time. Thus the
application environment can only allocate as much virtual
memory as the MM has physical memory. Also, since no
page replacement is performed, the MM only implements
destruction of Fluke objects.

In a more conventional configuration, the MM allocates
a Fluke space and region at segment creation time but phys-
ical memory is allocated on demand. When a segment page
is first referenced, a fault is generated which is directed to
the Fluke region’s “keeper” port which is held by the MM.
The MM can then allocate physical memory, map it into the
host space at the appropriate location, and return to the ap-
plication to retry. During page replacement, the MM cur-
rently just moves objects into its memory.

The MM is free to implement whatever page replace-
ment policy it chooses. This could be an internal global
policy for its physical memory pool, or segment-specific
policies negotiated with applications througha higher-level
protocol.

6.3 The Checkpointer

We implemented a user-level checkpointer that, like the
demand pager, can operate over a single application or an
arbitrary environment, transparently to the target. By load-
ing a checkpointer in the “root” virtual machine immedi-
ately on top of the microkernel, a whole-machine check-
pointed system can be created similar to that provided in
the kernel by KeyKOS[28] and L3[33]. To our knowledge
this is the first checkpointer that can operate over arbitrary
domains in this way.

Checkpointing Algorithm
Our checkpointer currently uses a simplistic sequential
checkpointing algorithm: to take a checkpoint, it stops all
the threads in the child process, saves the contents of the
child’s memory (including the state of any kernel objects
the child process has created in its memory), and then re-
enables the threads to allow the child process(es) to con-
tinue execution.

This algorithm, of course, will not scale well to large
checkpointed applications or environments, or to dis-
tributed environments. However, more efficient single-

process checkpointers based on well-known algorithms
[12, 10] could also be implemented in our environment, in
the same way.

Checkpointing memory
Because the checkpointer interposes on the memory allo-
cation interface, it has specific knowledge of what memory
the application has asked for and what memory it is using.
This direct access is also used to find kernel objects: using a
Fluke microkernel call, the checkpointer locates all objects
in the relevant regions.

Checkpointing kernel objects
There are two classes of kernel objects that a Fluke check-
pointer must deal with. First are those objects created
within the child environment which only reference kernel
objects internal to that environment. To preserve the state
of these objects we create unique id’s for each object and
represent inter-object references with these id’s.

The second class of objects are those with references to
kernel objects outside of the scope of the checkpointer, for
example a reference to the memory server, or open files.
Any external reference owned by the child environment
must have been granted to it by its parent. For exam-
ple, memory mappings in the child environment will con-
tain references to the exported regions in the checkpointer.
These references will be flagged as exported region refer-
ences, and replaced with equivalents at restart.

A checkpointer can choose to interpose on as many po-
tential external references as it likes. Our implementation
chooses to interpose on those things necessary for a mini-
mal complete checkpoint, comparable to the functionality
offered by other user-level checkpointers[36, 40]. These
are library-based checkpointers, which require re-linking
of the application in order to interpose on its system calls.

Standard I/O. The port references representing the
stdin,stdout, andstderrfile handles are recognized
by the checkpointer during checkpointing and, on restart,
are reinitialized with the corresponding file handles in the
new environment. Thus, all standard I/O file descriptors
(including descriptors in nested subprocesses of the appli-
cation) are transparently rerouted to the new environment.

Service Ports. When the sub-environment asks for any
of the generic service ports—memory allocator, file sys-
tem, or scheduler—the checkpointer hands back a refer-
ence and tracks that reference in an internal catalog. These
service ports are handled exactly as the Open Files above.

Special Files. Our current checkpointer doesn’t inter-
pose on any file system accesses, but could recognize file
open calls and checkpoint file state (or whole files) with the
process, in order to provide a more consistent restart.

Unknown References. References to things the check-
pointer chose not to intercept, for example arbitrary files,
will be replaced with null references. This has similar con-
sequences to an NFS server going down and leaving stale
file handles behind.

11



Process IDs. Since there are no explicit IDs in the RVM
model, when restoring acomplete environment conflicts
cannot occur. Process ID troubles can occur when check-
point/restoring only part of an environment. In particular,
since the checkpointer is not currently process-manager-
aware, a single process restored under the PM is not as-
signed a process ID. The process interface and the check-
pointer can be easily extended to fix this. Another response
to this kind of issue, enabled by the RVM flexibility, is that
the user can simply run another copy of the PM under the
checkpointer, which then runs the target application.

IPC state. Processes involved in IPC at the time of a
checkpoint will restart the IPC when the checkpoint is com-
pleted or restored. The act of “stopping” a thread causes the
kernel to back the thread’s actions out to a re-entry point.

Checkpointer Summary
Two key features of our RVM model facilitate checkpoint-
ing. First, the exportable state of kernel objects allows any
application to extract and store the state of kernel objects.
Second, the consistent interface provided by the model en-
capsulates the checkpointer’s target to the extent that fea-
tures previously available only in kernel implementations
are feasible outside of the kernel.

6.4 The Debugger and Tracer

We implemented a debugger that can be used to debug
either ordinary applications or other virtual machine moni-
tors. The debugger creates a virtual machine containing the
process or environment being debugged, and its presence
is completely transparent to the code running in that virtual
machine.

The debugger works by initializing the keeper port refer-
ence of the process to be debugged to a port it creates when
the child process is spawned. When a thread in the child
faults, the kernel sends an exception RPC along with the
thread’s register state to its keeper port. The debugger han-
dles this message and via read/write calls on its stdin/stderr,
communicating via a serial line with a remote host running
GDB. The debugger restarts the thread by sending a reply to
the kernel that includes the thread’s modified register state.

Note that although Mach 3.0 provides a similar abil-
ity to interpose on an exception port, Mach allows a task
to change its own exception port reference, unlike Fluke.
Thus a buggy or uncooperative Mach task could escape the
debugger’s control. This is a simple example of the inad-
equacy of existing kernels for implementing recursive vir-
tual machines.

The Tracer
Finally, we implemented a tracer that can be used to

trace the message activity of an arbitrary application nested
within the tracer. The tracer interposes on the application’s
parent port and on any port references the child task re-
ceives through the parent port. It does this by creating a
new port reference and passing that to the child task instead

of the original. The tracer transparently forwards messages
received from the child to the original port and vice versa.

Besides monitoringRPC activity to aid in debugging, the
tracer can also function as a complete but “null” virtual ma-
chine monitor, in that it interposes on every interface, but
does nothingexcept pass data on. This can be used to quan-
tify the worse-case communication overhead.

6.5 Distributed Memory Manager

A distributed memory manager cooperates with other
DMMs through IPC to create one large transparently dis-
tributed environment out of several independent environ-
ments. A DMM is very similar to a virtual memory man-
ager (MM), in that it provides a virtual address space paged
to some external storage location. However, whereas a
VMM pages things primarily to disk or other stable storage,
a DMM pages things primarily to other nodes. Note that
the exportabilityof kernel object state should allow a DMM
to distribute entirePOSIX-like operating environments, not
simply memory.

The DMM and MM functions could be combined into
one program or could remain separate. If they are sepa-
rated, then a DMM could be run either on top of a MM, to
provide a distributed memory with each node having sepa-
rate page-out space, or below a MM, with the MM provid-
ing a single common paging space for the entire distributed
subsystem.

DMMs could be implemented to support different co-
herency models; however, the kernel architecture is de-
signed to be able to support release-consistent DSM[7] par-
ticularly well. Since all of the kernel objects in use by its
subtasks, such as mutexes and condition variables, are fully
visible to it, the DMM should have the perfect tools.

In addition, the “segment” abstraction of the Common
Protocols provides a handle to determine the granularity of
synchronization events. In other words, the CP conven-
tions provide information as to how much memory must be
synchronized when a given mutex or condition variable is
used.

7 Experimental Results

In order to evaluate the performance effects of recursive
virtualmachines in our system, we used micro benchmarks,
some drawn from thelmbench suite[38]. These bench-
marks are designed to reveal the performance properties of
operating systems that directly affect real-world applica-
tions. Our primary interest in these tests is to reveal the per-
formance effect of different VMMs in our system on var-
ious types of applications; thus, we are mostly concerned
with relative slowdown due to VMMs rather than the abso-
lute performance of the system. All tests were performed
on a 100MHz Pentium PC with 32MB of RAM.

12



Time (�s)
Null system call 2.0
Mutex lock 5.2
Mutex unlock 5.8
Context switch 1.4
Null cross-domain RPC 54.6

Table 1: Absolute performance of microkernel primitives

Test Description Fluke Linux
bw mem cp Memory bandwidth 37 MB/s 42 MB/s
bw mmap rd File mmap read 47 MB/s 74 MB/s
bw file rd Cached file reads 24 MB/s 23 MB/s
lat sig Signal handling cost 259�s 52�s

Table 2: Absolutelmbench results for Fluke and Linux

Absolute performance: To provide a baseline for further
evaluation, present in Table 1 the absolute times for various
primitive Fluke microkernel operations, and Table 2 shows
absolute times for thelmbench benchmark programs we
will use in later tests running directly on top of the micro-
kernel with no intervening VMMs. For reference, we also
showlmbench performance results for Linux, taken from
the originallmbench paper[38]. Note that the Linux tests
were made on a faster machine (120MHz Pentium) than we
used in our tests (100MHz Pentium). Also, since Linux is
a mature, well-optimized monolithic kernel while Fluke is
a mostly unoptimized microkernel, the performance results
for OS-intensive tests are not very comparable. However,
since the performance results of primary interest for this pa-
per are the relative numbers presented below, we felt that
these discrepancies are not a major issue.

Cost of IPC interposition To measure the worst-case
slowdown caused by IPC interposition, we measured the
effect on the execution times of various applications caused
by the complete IPC interposition done by the tracer; these
times are shown in Figure 3. This test also reflects the
performance that might be expected from a security moni-
tor VMM that supervises an untrusted application environ-
ment. However, this test reflectsworst-case interposition
cost; other types of VMMs such as process managers only
need to interpose on some IPC connections, not all. As ex-
pected, applications that make heavy use of IPC (e.g., file
read) suffer most from this test, while other applications are
essentially unaffected.

Performance of Various VMM hierarchies We mea-
sured, under a variety of VMM hierarchies, a program
which forked a chain of five processes. This utilizes both
the process manager and the memory manager ports. We

0

20

40

60

80

100

0 1 2 3

R
el

at
iv

e 
pe

rf
or

m
an

ce
 (

pe
rc

en
t)

Levels of interposition

Performance effect of complete IPC interposition

bw_mem_cp
bw_mmap_rd

bw_file_rd
lat_sig

Figure 3: Worst-case slowdown due to IPC interposition

found slowdownto be linear with the number of layers. The
marginal cost of the PM is about 24%. The data are consis-
tent with a MM interposition costing a little bit more than
a PM interposition.

fw05 diff-fw05 Nesters
25956940 PM
52486392 26529452 MM PM
65405272 12918880 MM PM PM
82247326 16842054 MM PM MM PM
97997148 15749822 MM PM MM PM PM
116497487 18500339 MM PM MM PM MM PM

8 Conclusion

We have presented a novel approach to providing modu-
lar and extensible operating system functionalitybased on a
synthesis of microkernel and virtual machine concepts. We
have demonstrated the design and implementation of a mi-
crokernel architecture that efficiently supports fine-grained
recursive virtual machines. Our prototype implementation
of this model indicates that it is practical to modularize op-
erating systems this way: some types of virtual machine
layers impose almost no overhead at all, while others im-
pose some overhead, but only on certain classes of appli-
cations.

However, it remains to be seen how the model will scale
to a real, fully functional system. Although we addressed
some of the issues of implementing a nested process model
in a Unix-like environment, there are many others, such as
networking and security. In order to address these issues,
we are working with the Free Software Foundation to port
the GNU Hurd, a fully functional Mach-based multiserver
OS, to our Fluke kernel, using our RVM model.

13



References

[1] N. Batlivala, B. Gleeson, J. Hamrick, S. Lurndal,
D. Price, and J. Soddy. Experience with SVR4 over
Chorus. InProc. of the USENIX Workshop on Micro-
kernels and Other Kernel Architectures, pages 223–
241, Apr. 1992.

[2] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, and S. Eg-
gers. Extensibility, safety, and performance in the
SPIN operating system. InProc. of the 15th ACM
Symposium on Operating Systems Principles, pages
267–284, Copper Mountain, CO, Dec. 1995.

[3] A. C. Bomberger and N. Hardy. The KeyKOS nanok-
ernel architecture. InProc. of the USENIX Work-
shop on Micro-kernels and Other Kernel Architec-
tures, pages 95–112, Seattle, WA, Apr. 1992.

[4] T. C. Bressoud and F. B. Schneider. Hyporvisor-based
fault-tolerance. InProc. of the Fifteenth ACM Sym-
posium on Operating System Principles, pages 1–11,
December 1995.

[5] M. I. Bushnell. Towards a new strategy of OS design.
In GNU’s Bulletin, Cambridge, MA, Jan. 1994. Also
http://www.cs.pdx.edu/̃trent/gnu/hurd-paper.html.

[6] P. Cao, E. W. Felten, and K. Li. Implementation and
performance of application-controlledfile caching. In
Proc. of the First Symp. on Operating Systems Design
and Implementation, pages 165–177, Monterey, CA,
Nov. 1994. USENIX Assoc.

[7] J. Carter, J. Bennett, and W. Zwaenepoel. Implemen-
tation and performance of Munin. InProc. of the 13th
ACM Symposium on Operating Systems Principles,
pages 152–164, Asilomar, CA, Oct. 1991.

[8] J. Carter, D. Khandekar, and L. Kamb. Distributed
shared memory: Where we are and where we should
be headed. InProceedings of the Fifth Workshop
on Hot Topics in Operating Systems, pages 119–122,
May 1995.

[9] D. R. Cheriton and K. J. Duda. A caching model
of operating system kernel functionality. InProc. of
the First Symp. on Operating Systems Design and Im-
plementation, pages 179–193. USENIX Association,
Nov. 1994.

[10] G. Deconinck, J. Vounckx, R. Cuyvers, and R. Lauw-
ereins. Survey of checkpointing and rollback tech-
niques. Technical Report O3.1.8 and O3.1.12, ESAT-
ACCA Laboratory Katholieke Universiteit Leuven,
Belgium, June 1993.

[11] R. P. Draves. A revised ipc interface. InProc. of
the USENIX Mach Workshop, pages 101–121, Octo-
ber 1990.

[12] E. N. Elnoxzahy, D. B. Johnson, and W. Zwaenepoel.
The performance of consistent checkpointing. In11th
Symposium on Reliable Distributed Systems, pages
39–47, October 1992.

[13] D. R. Engler, M. F. Kaashoek, and J. O. Jr. Exoker-
nel: An operating system architecture for application-
level resource management. InProc. of the 15th ACM
Symposium on Operating Systems Principles, pages
251–266, Copper Mountain, CO, Dec. 1995.

[14] B. Ford and M. Hibler. Fluke: Flexible�-kernel en-
vironment — application programming interface ref-
erence (draft). 121 pp. University of Utah. Available
as ftp://mancos.cs.utah.edu/papers/sa-flukeref.ps.gz
and http://www.cs.utah.edu/projects/flux/fluke/html/-
sa-flukeref/ (HTML format), 1996.

[15] B. A. Ford and S. Susarla. Flexible multi-policy
scheduling based on cpu inheritance. Submitted for
publication., May 1996.

[16] R. P. Goldberg. Architecture of virtual machines. In
AFIPS Conf. Proc., June 1973.

[17] R. P. Goldberg. Survey of virtual machine reseach.
IEEE Computer Magazine, pages 34–45, June 1974.

[18] D. Golub, R. Dean, A. Forin, and R. Rashid. Unix
as an application program. InProc. of the Summer
1990 USENIX Conference, pages 87–96, Anaheim,
CA, June 1990.

[19] G. Hamilton, M. L. Powell, and J. J. Mitchell. Sub-
contract: A flexible base for distributed program-
ming. InProc. of the 14th ACM Symposium on Oper-
ating Systems Principles, pages 69–79, 1993.

[20] N. Hardy. The keykos architecture.Operating Sys-
tems Review, September 1985.

[21] K. Harty and D. Cheriton. Application-controled
physical memory using external page-cache manage-
ment. In Proc. of the Fifth International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, pages 187–199,
September 1992.

[22] Ibm virtual machine facility /370 planning guide.
Technical Report GC20-1801-0, IBM Corporation,
1972.

[23] Ibm virtual machine facility /370: Release 2 planning
guide. Technical Report GC20-1814-0, IBM Corpo-
ration, 1973.

14



[24] M. Jones. Interposition agents: Transparently inter-
posing user code at the system interface. InProc. of
the Fourteenth ACM Symposium on Operating Sys-
tem Principles, pages 80–93, December 1993.

[25] A. V. K. Krueger, D. Loftesness and T. Anderson.
Tools for the development of application-specific vir-
tual memory management. InProc. of ACM Conf. on
Object-Oriented Programming Systems, Languages
and Applications, Oct. 1993.

[26] P. Keleher, A. L. Cox, S. Dwarkadas, and
W. Zwaenepoel. Treadmarks: Distributed shared
memory on standard workstations and operating
systems. InProc. of hte 1994 Winter USENIX
Conference, pages 115–132, January 1994.

[27] Y. A. Khalidi and M. N. Nelson. Extensible file sys-
tems in Spring. InProc. of the Fourteenth ACM Sym-
posium on Operating Systems Principles, pages 1–14,
1993.

[28] C. Landau. The checkpoint mechanism in keykos. In
Proc. Second International Workshop on Object Ori-
entation in Operating Systems, September 1992.

[29] H. C. Lauer and D. Wyeth. A recursive virtual
machine architecture. InACM SIGARCH-SIGOPS
Workshop on Virtual Computer Systems, pages 113–
116, March 1973.

[30] C. H. Lee, M. C. Chen, and R. C. Chang. HiPEC:
High performance external virtual memory caching.
In Proc. of the First Symp. on Operating Systems De-
sign and Implementation, pages 153–164, Monterey,
CA, Nov. 1994. USENIX Association.

[31] H. M. Levy. Capability Based Computer Systems.
Digital Press, 1984.

[32] J. Liedtke. Clans and chiefs. InProceedings
12. GI/ITG-Fachtagung Architektur von Rechensys-
temen, 1992.

[33] J. Liedtke. Improving IPC by kernel design. InProc.
of the 14th ACM Symposium on Operating Systems
Principles, Asheville, NC, Dec. 1993.

[34] J. Liedtke. A persistent system in real use – experi-
ences of the first 13 years. InProc. of the Third Inter-
national Workshop on Object Orientation in Operat-
ing Systems, pages 2–11, December 1993.

[35] J. Liedtke. On micro-kernel construction. InProc.
of the 15th ACM Symposium on Operating Systems
Principles, pages 237–250, Copper Mountain, CO,
Dec. 1995.

[36] M. Litzkow and M. Solomon. Supportingcheckpoint-
ing and process migration outside the unix kernel. In
Proc. of the Winter 1992 USENIX Conference, 1992.

[37] J. H. March. The design and implementation of a vir-
tual machine operating system using a virtual access
method. InAFIPS Conf. Proc., June 1973.

[38] L. McVoy and C. Staelin. lmbench: Portable tools for
performance analysis. InProc. of 1996 USENIX Con-
ference, page xxx, Jan. 1996.

[39] National Computer Security Center.Department of
Defense Trusted Computer System Evaluation Crite-
ria. 1985. DoD 5200.28-STD.

[40] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent checkpointing under unix. InProc. of the
Winter 1995 USENIX Technical Conference, January
1995.

[41] G. J. Popek and C. Kline. Verifiable secure operating
systems software. InAFIPS Conf. Proc., June 1973.

[42] A. Valencia. An overview of the vsta micro-
kernel. http://www.igcom.net/— —jeske/VSTa/-
vsta intro.html.

[43] D. Wagner, I. Goldberg, and R. Thomas. A secure en-
vironment for untrusted helper applications. InProc.
of the 6th USENIX Unix Security Symposium, 1996.

[44] C. Waldspurger. Lottery and Stride Scheduling:
Flexible Proportional-Share Resource Management.
PhD thesis, Massachusettes Institute of Technology,
September 1995.

[45] M. V. Wilkes and R. M. Needham.The Cambridge
CAP Computer and its Operating System. North Hol-
land, NY, 1979.

15


