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Abstract in user mode. Recursive virtual machines[17], on the other

. . - hand, allow operating systems to be decomposed “verti-
This paper describes a novel approach to providing may lly,” by implementing OS functionality in stackabli-

ular and extens!ble operating system functionaIiFy, and Sllal machine monitors, each of which exports a virtual
Eapsullateéd gnwrlonmehr']ts, based on \?Vs%mhefj's Ofl MIEAchine interface compatible with the “real” machine in-
ernej and virtual machine concepts. We have developgdg, ce on which they themselves run. Traditionally, vir-

virtualizable architecture that allows recursive virtual ma—tlial machines have been implemented on and export ex-

chines ('V|.rtualrr.1ach|nes running on othervirtual T“aCh'”‘% ing hardware architectures so they can support existing
to be efficiently implemented, in software, by a microkern

o . " tiple concurrent virtual machines, all exporting the IBM
This infrastructure allows common OS functionalitys/370 hardware architecture. However, spedigiializ-
such as process management, demand paging, fault t}fs (firmware/hardware) architectures[16, 29] have been

ance, and debugging support, to be provided by cleaphposed, whose design goal is to allow virtual machines
modularized, independent, stackable virtual machine m@anhe stacked much more efficiently.

itors, implemented as ordinary USET processes. It Cahis paper presents a new approach to OS extensibil-
also provide uncommon or unique oS features, 'r.]du.d'ﬂ 'which combines both microkernel and virtual machine
the above features specialized for particular appllcatlora ncepts in one system. We have designed a virtualizable
needs, or virtual machines transparently distributed Cro§$ehitecture and implemented it in software using a mi-
node, or security monitors that allow arbitrary untrusted bﬂ:’r

. ; okernel. The microkernel runs on the “raw” hardware
naries to be safely executed. Our prototype implementat Btform. which together with a set of higher-level proto-
of this model indicates that it is practical to modularize op- '

; : . ‘Cols, exports a virtual machine that provides the extended,
erating systems this way: some types of virtual mach|0

i ) fftualizable architecture (see Figure 2). Virtual machine
layers impose almost no overhead at all, while others 'Monitors (VMMs) executed on this virtual machine can

pose Isome m;erhelgd (.typlcally 10-20%), but only on CEérﬁ‘iciently create additional, recursive virtual machines in
tain classes of applications. which applications or other VMMs can run.

The microkernel's API supports efficient recursion (hi-

1 Introduction erarchical process structuring) in several ways. For mem-

ory resources, the virtual machine hierarchy gets explicit

Increasing operating system modularity and extensibilgyipport fromrelative memory mapping primitives that al-

without excessively hurting performance is a topic of mugbw address spaces to be composed from other address
ongoing research[2, 13, 30, 35, 6]. Microkernels[18, 1] afpaces. For CPU resources, the kernel provides a primi-
tempt to decompose operating systems “horizontally,” iye that supports hierarchical scheduling models. To allow
moving traditional kernel functionalityinto servers running
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Figure 2: Virtual machines based on an extended architec-

safe short-circuiting of the hierarchy, the kernel providddre implemented by a microkerel

a global capability model that suppossective interposi-

tion on communication channels. On top of the microker-

nel interfaces, well-defined IPC interfaces provide I/O afig POSIXs ml ock() ), all of the paging supportis stillin
resource management functionality at a higher level thi&¢ kernel, occupying memory and increasing system over-
in traditional virtual machines, more suited to the needs la¢ad. Even systems that support “external pagers,” such as

modern applications: e.g. file handles instead of device IM®ch, contain considerable paging-related code in the ker-
registers. nel, and most do not allow control over physical memory

management, just backing store. The majority of personal

Terminol Wi introd toh Icomputers are dedicated to the use of a single person; hence
erminology - Ve nowintroduce Some Synonyms, 10 Neigy ;. ;ser security mechanisms are not always needed. A

rgduce awkward gnd repetitious terms. ) ‘|‘—|encef.orth,. \Qﬂ?stem supporting our model would enable such features to
will treat the following terms as equivalent: “recursive virg decomposed into optional virtual machine monitors in-

Eual T”""Ch'”et? “R.\{MI - vr|1r.tual mag[nni :VI\>I/I\I>IA f voked on ademand basis, and only for the parts of a system
environment,” “virtual machine monitor= = for which they are desired.

“nester,” and “hierarchical’= “recursive” = “nested.” . e e . :
. . . Application-specific specialization is often desirable; it
'P ado!ltlon., we will refer to fhe ovexall arch!tecture d.ehas been shown that specialized virtual memory manage-
S‘?r'bEd n this paper as our. model,” to avoid Confus'%ent can yield substantially better performance[30, 21, 25]
with our virtual machine architecture. for certain applications which access memory in an un-
o usual fashion (garbage collectors, object stores, relational
11 Motivation database systems, some numeric applications). Specialized
Recursive virtual machines can be used to apply existimgmory managers are easy to provide in our system.
algorithms and techniques in more flexible ways. Some ex{ncreasing the scope of existing mechanisms: There
amples include: are algorithms and software packages available for com-
Decomposing the kernel: Some features of traditionalmon operating systems to provide features such as dis-
operating systems are usually so tightly integrated into ttrédouted shared memory[8, 26] (DSM) and security against
kernel that it is difficult to eliminate them in situations iruntrusted applications[43]. However, these systems only
which they are not needed. The most obvious examglieectly supportapplicationsrunningina single logical pro-
is demand paging: although it is often possible to disaltlection domain. In a recursive virtual machine, any pro-
it in particular situations on particular regions, (e.g., usess can create further nested subprocesses which are com-



pletely encapsulated within the parent’s virtual machine, We used micro benchmarks to measure the system’s per-
making them invisible to entities outside the parent. Thisrmance in a variety of configurations of the above pro-
allows DSM, checkpointing, security, and other mechgrams and normal applications. These measurements in-
nisms to be applied just as easily to multi-process applicieate a slowdown of about 5-30% per virtual machine
tions or even complete operating environments. layer, in contrast to conventional recursive virtual ma-
Combining OS features: The mechanisms mentioneghines, whose slowdown is 20%-1000%[4] Some virtual
above are usually designed to work only within the scof@achine monitors, such as the process manager and debug-
of a single application; they are difficult or impossible tg€r, do not need to interpose on performance-critical in-
combinein a flexible manner. One might be able to run dgffaces such as memory allocation or file I/O, and hence
application and checkpoint it, or to run an untrusted appfake better advantage of the short-circuit communication
cationin asecure environment, but existing software meéﬂCi”ties prOVided by the microkernel arChitectUre; these
anisms are insufficient to runcheckpointed, untrusted ap- monitors cause almost no slowdown at all. Other moni-
plication. A recursive virtual machine architecture allow®rs, such as the pager and the checkpointer, must inter-

one to combine these features by layering the mechanisfig¢ more to perform their function, and therefore cause
since the interface between each “layer” is the same, some slowdown; however, even this slowdown is fairly

Provision of isolated environments, at which today’s reasonable. These results indicate that, at least for the

OSs are very weak. can also be provided by recursive @pplications we have tested so far, this combined virtual
tual machines. With the advent of Web-based executaBl@chine/microkernel model indeed provides a practical
content, security issues have become more and more W_thod ofincreasing operating system modularity, flexibil-

portant. Some designs, such as Java, try to achieve sectPrnd Power.

through a combination of language features and runtime

verification and control. However, Java requires the u¥s3 Goals

of a special Ianguage,' and recently uncovered pugs havg, goals in this work are to: (i) Explain and compare
demonstrated that the implementation of the runtime el combination of microkernel and recursive virtual ma-

rity mechanisms is error prone. chine concepts. (i) Motivate it by describing useful func-
Virtual machines can provide strong isolation guaranteggnality it can provide. (iii) Elucidate the fundamental ker-
between subsystems[41], addressing denial-of-service gt properties required to efficiently support such an ap-
tacks and information leaks through covert channels as Wehach. (iv) Design and implement such a kernel. (v) Es-
as providing a clean separation between different piecegglish that none of the required kernel properties is incom-
mobile code (Applets). Suchisolationcan also be useful {94tible with a high performance kernel. (vi) Establish IPC-
resource reservation, such as guaranteeing a certain amgy&éd interfaces and protocols that provide high-level func-
of physical memory to real-time applications. tionality, such as file 1/O and memory allocation, in a man-
Another example of operating system functionality thaier consistent with the recursive virtual machine model.
we believe could be implemented efficiently as VMMs i(vii) Exploit the model to demonstrate flexible provision of
this system is a distributed memory manager that provideS features. (viii) Show that the per-layer nesting cost is
virtual machinesransparently distributed over the real ma-moderate and increases only linearly.
chines on a network. l.e., VirtuaIiZing local memory to ap- The rest of this paper is organized as follows. In Sec-
pear distributed to all descendant processes, without th@jh 2, we compare to related work. We describe our

knowledge or cooperation. software-provided virtualizable architecture in Section 3.
Section 4 describes the properties and design of the ker-
1.2 Our Example Virtual Machine Monitors nel we developed to support the virtualizable architecture,

. . i .~ while Section 5 describes the high-level mechanisms and
On top of our software-provided virtualizable architeGs,cols we used to implement virtual machine monitors

ture we have implemented several traditional operating Sy 1o, of this kernel. Section 7 describes the experiments

tems features as independent, stackable virtual machifg resits using the four example VMMs. Finally, we con-
monitors. These and similar components can be usedd@ie with a short reflective summary.

gether in many ways to build highly flexible systems, nat-

urally supporting features that are difficult to implement

in conventional operating systems. For example, a chegk- Ralated Work

pointer can be transparently applied to arbitrary domains

such as a single application, a multi-process user environMost virtual machine systems have, and had, only shal-
ment containing a process manager and multiple applitawv hierarchies, implementing all functionality in a few
tions, or even the entire system. In this paper we demdayers. In fact, in their heyday, VMs were not driven by
strate the following specific examplesosix process man- modularity issues at all. They were created to make better
agement, demand paging, checkpointing and debuggingse of scarce, expensive hardware resources.



Recently, a hypervisor was used to provide fault tolean application and the OS on which it is running. This
ance (replication) on a whole-machine basis on PA-RIS@&m of interposition can be used, for example, to trace
machines [4]. This application of virtual machines can lsystem calls or change the process’s view of the file
approximately compared with our application of RVMs teystem[24], or to provide security against an untrusted
provide a different form of fault tolerance (checkpointingapplication[43]. However, these mechanisms can only be
This comparison further illustrates the relative merits afpplied easily in the scope of a single application process,
each model: The hypervisor approach allows existing cgmd generally cannot be used together (i.e., only one in-
erating systems to be run unmodified (HP-UX in this caségrposition module can be used for a given application).
but only works on a whole-machine basis (e.g., the safgrthermore, although file system access and other system
software cannot be used directly for smaller domains, suzil-based activity can be monitored and virtualized this
as a single process or a group of processes.) Of course,whiyg, it would be difficult to virtualize other resources such
comparison must be taken with a large dose of salt, sirceCPU and memory.
the applications and fault tolerance algorithms in questionThe Exokernel [13] project’s work is orthogonal, and
are quite different. possibly complementary, to ours. They're defining where

Existing hardware-based VM architectures have seveta supervisor boundary is; we don’t care where that bound-
drawbacks: (i) most processor architectures don't sugry is, butonly about the compositional functionality above
port it, since privilege-level information leaks into userit. However, we do care that kernel operations don't have
accessible registers; (ii) hardware interfaces are too lasffects on system resources which can’t be controlled by
level, making stacking inefficient; (iii) duplication of effortVMMs: It's unlikely that the Aegis kernel primitives cur-
(e.g., double paging), as the whole VMM is duplicated atntly provide the three key properties. Both systems sup-
each level; (iv) there is no way to short-circuit layers angbrt the ability for applications to have specialized environ-
selectively interpose. ments, but in EXOS the application binary is modified by

Our RVM model has superficial similarities to Unix'dinkingin OS library code.
hierarchical process organization, in that parent processeSub-systems supporting stackable and interposable func-
can create and control child processes. However, the Utiixality in a particular domain have been an active area of
model falls far short of a true RVM, in at least the followingesearch and development for many years: Jones [24] gives
important respects: (i) Parent processes have only a vatgng list of them. Recent work has benefited from object-
limited degree of control over their children. For exampleriented structuring, including work on Spring’s subcon-
they cannot control memory or cpu usage of their childremacts [19] and filesystems [27]. We believe that the care-
(i) Child processes can allocate and use resources thafftheorking out of domain-specific inter-layer protocols is
parent process doesn't own (and possibly never did). (ifipmplementary to our RVM work: the high-level compo-
All processes are globally visible in a single process IRent of our VM (the “common protocols”) could use those
namespace. (iv) There are explicit privilege levels. Thisotocols for each class of functionality it provides.
doesn’t mean that the Unix process model isn't USEfU'—inA few existing Operating systems, such as KeyKOS[3]
fact, itis very useful, but cannot provide the control needegd 3[34] have implemented checkpointing on a whole-
for the extensibility provided by RVMs. machine basis in the kernel. While this feature appears

The Cambridge CAP computer[45] implements a hargractical and useful in some situations, the checkpointing
ware (microcode) architecture that comes fairly clogeiilt into these systems is inflexibly tied to the machine
to providing a nested process model. It supports Boundary: it cannot be used on smaller scopes such as pro-
arbitrarily-deep process hierarchy, in which parent proesses or groups of processes, or on larger scopes such as
cesses can completely virtualize the memory and CPU nstworked clusters of machines. The nested process model
age of their child processes, as well as trap and systalftows checkpointing and other algorithms to be imple-
call handlers for their children. However, the CAP conmented over more flexible domains.
puter enforced the process hierardiyictly, and did not  Qur system borrows many design concepts and abstrac-
allow communication paths to “short-circuit” the layers agons from other systems, suitably modified to support the
our system does. As noted in retrospect by the desigtyM model, as described in the following sections. For ex-
ers of the system, this weakness made it impractical fgfiple, our hierarchical memory remapping mechanism has
performance reasons to use more than two levels of psgnilarities to (and is inspired by) that of L4[35], and ap-
cess hierarchy (corresponding roughly to the “supervisqiears to provide precisely the “f-map” semantics defined in
and “user” modes of other architectures); thus, the uses1 recursive virtual machine literature[16, 17], our hierar-
nested processers were never actually explored or testeghigal scheduling mechanism is comparable to KeyKOS's
this system. meters[20], or lottery/stride scheduling’surrencies[44].

System call emulation and interposition have been usBlde capability model we use for communication is of
in the past to interpose special software modules betweenirse extremely well-known [31]; many of the details of



the design and the terminology we use are borrowed froather than on bus devices and DMA or programmed 1/O.
Mach 3.0[11]. The ability to export and re-create all kefFhese higher-level IPC-based interfaces eliminate the need
nel object state appears very similar to the Cache K&r-simulate complicated hardware interfaces, and corre-
nel's [9] abilities in that area. Our kernel object modespondingly simplify and speed up implementations of those
in which kernel objects are associated with chunks of useterfaces.

memory, are reminiscent of tagged processor architectures

such as System 38[31] and the Intel i960XA. The design of

our high-level Unix emulation environment borrows hea’t The Kernel

ily from existing Mach-based multiservers, especially the

GNU Hurd[5]. The first major component of our OS is Fluke, a micro-

kernel we designed to support recursive virtual machines.
Fluke was designed “from scratch” and is an entirely new
kernel. Although it is probably possible to implement the
necessary supportfor RVMs in a traditional monolithic ker-
Our virtualizable architecture consists of three compoel, we decided to take a microkernel approach for the
nents: proof-of-concept for two main reasons: (i) We felt it would
First, the extended architecture incorporates onlyuhe be much more difficult to adapt an existing monolithic ker-
privileged, “ non-sensitive’ [17] subset of an existing in- nel, because of the large source base and because the re-
struction set architecture. Limiting the instruction set thiguired changes would be widespread. (ii) A monolithic
way avoids the need to emulate instructions, and makekeitnel provides much less opportunity to make use of the
possible toimplement the virtualizable architecture even BYM model. For example, while our checkpointer ex-
processor architectures such as the PA-RISC, x86, or MIR8\ple would probably still apply, the decomposed pro-
which don't fully support virtual machines based on rawess manager and virtual memory manager wouldn't, since
hardware interfaces[4]. these functions are already hard-wired into existing mono-
Second, alow-level API [14] (implemented by the mi- lithic systems. Of course, because of this decision, our sys-
crokernel) provides simple memory management, sched@ takes the well-known “microkernel performance hit”
ing, and IPC primitives similar to those of conventionlue to the additional decomposition and context switching
“small” microkernels such as the V++ CacheKernel[gfverhead: much more so, in fact, because our microker-
L3/L4[33, 35], and KeyKOS[20, 3]. This AP!I is designed€! is new and entirely unoptimized. We discuss below that
to support recursive virtual machines efficiently by ensuif1ére is nothing about supporting RVM's that is incompati-
ing that it is not necessary for every virtual machine lay&f€ With & high-performance kernel. In addition, this paper
to interpose on and simulate primitive operations such iggrimarily concerned with showing thedative per-layer
/O instructions, page table management, etc. The fun8@st of virtual machine monitors is reasonable, rather than
mental properties required to achieve this efficiency are: R@S€ system performance.
all primitives are completelyelative, implying no global ~ The remainder of this section describes only the aspects
resources (e.g., KeyKos’s “official” space bank), name¥-the kernel that are specifically relevant to the RVM
paces (e.g., Unix’s PIDs, L4’s global thread/task ID’s), #nodel.
privileges (e.g., Unix’s root, NT's ACL-based subject se-
curity). (b) all state contained in primitive kernel objectg 1 Key Properties
(e.g., threads, mappings) ézportable as plain data, in a
form that ordinary programs can later use to regenerate
objects; and (c) all primitive objects aoemned by, or asso-

ciated with, specific virtual machine environments. o : :
Finallv. the virtualizabl hi defi hep RVMs by providing a number of vital properties. These
inally, the virtualizable architecture defines theom- _ abstract properties are described briefly below, and in later

mon protoqols," a set of !PC-based interfgces used 10 Mg iong explored as they are manifest in the Fluke API.
plement high-level functionality such as file I/O and mem- Relativity of kernel abstractions Al kernel objects

ory allocation. In function, these interfaces roughly corre- . .
nd abstractions are completely relative: no absolute,

spond to the device access conventions in traditional | de visible th h
tual machines and actual hardware, such as the regi {8Pa resources or hamespaces are mace visible throug
interface to a SCSI adapter; however, in our architect 3 kemel API. Similarly, there are no special global privi-
these interfaces are much higher-level, closer to the ap es g‘l‘venfo SOME processes but not others (g.g., no con-
£t of “root”), only privileges of processes relative to each

cation interface than to the hardware. For example, the Absolut i iiv be virtualized
mary 1/O interface is based on file systems and stream I%pe.r. solute resources cannot easily be virtualized re-
cutsively, and therefore would tend to cripple the RVM

LWe used the Intel x86 architecture for our initial implementatiofodel.  For 'example, if glob.ally unique idemi'ﬁerls were
however, the concepts described here are not processor-specific. ~ used to designate kernel objects or communication end-

3 “Machine” Architecture

th'e[he Fluke kernel does not actuakgforce a recursive
virtual machine model: its API contains no explicit notion
of a process hierarchy. However, our kernel ARables




points, then migrating or restarting checkpointed enviropage, by specifying thartual address of the object within
ments would be difficult because the “unique” identifietbat address space. A thread can create new kernel objects
used by the migrated environment on the old system mightany memory mapped into its address space that has suf-
conflict with identifiers already used in the new system. ficient permissions; besides the normai protections, an

Exportability of kernel object state: All kernel objects “Objectcreate” permission must be set. The small user-
(e.g., threads, regions) exported through the API are diible chunk of memory associated with an active kernel
signed so thatall of their vital state can be extracted by use®iect is reserved for the kernel's use. Since this memory
level code and later used to rebuild equivalent objects. &N be read and written by untrusted user-level code (even
example, this property is obviously crucial for checkpointhough doing so is a violation of the API), no kernel object
ing to work: otherwise, it would be impossib|e to save argfate is itself store there; instead, itis used to store hints that
restore kernel objects used by checkpointed applicatiopgeed up the kernel's object lookup upon a system call.
such as threads. However, this property is also requiredhis association of kernel objects with user-level
in other cases as well: for example, it enables our out-afiemory provides the notion of object ownership that is
kernel virtual memory manager (MM) and, soon, our diseeded to support recursive virtual machines. We have
tributed memory manager, to demand-page kernel objeetssons unrelated to RVMs—future base performance
as well as ordinary application data. optimizations—for choosing this design for achieving

Object ownership: Finally, our kernel's API is de- the ownership property. More traditional descriptor- or
signed so that all kernel objects associated with a parti@i@ndle-based approaches to representing and addressing
lar process can be located and conclusively determined@snel objects should work as well, as long as the design
be “owned by" that process. This property of “ownershierVideS the key properties outlined in Section 4.1.
or “process association” is vital to providing control over
nested subprocesses to their parents. In justone examp®f Memory Management

this requirement, without it a process manager has no wa . . .
: -"Yoaces are kernel objects representing address spaces in
to ensure reclamation of all resources consumed by a chi

. S wlplch threads can execute. Any number of threads can ex-
process. When its child dies, it needs to be able to trac . ; A

. cute in a particular space. One space object is used for
down all the kernel objects used by that process and any%lgéh avplication process. and by higher-level convention
scendants it may have spawned. In Mach 3.0, for examﬁe PP P ' y nig '

a child task may create new tasks. When the child dies 91nee f(.)r ea(;h memory segment provided to that process, as
explained in Section 6.2.

parent can find a capability to the grandchild, but has no ré- ) )

liable way to determine that the capability actually refers to € actual address space of a Fluke space is defined rela-
a task, and assuming it does, whether that task is logicdlf {0 those of other spaces: itis composed of “views” into
part of the child's state, or was created by some other urfp1€r spaces. To manage memory within spaces, Fluke de-

lated task. Also, the child could have simply destroyed {#§€S two object types: theegion object which “exports
capability to the grandchild, leaving no trace. memory from a space and thepping object which “im-

The following sections describe in more detail the FIulPeOrtS memory |'nto aspace. .
kernel primitives and how they provide the fundamental A M2PPINg object effects “remapping” between spaces,
properties listed above. mapping some or all of the'add'ress space defined .by are-
gion object into anothedestination space. New regions
. covering this area in the destination space can be created,
4.2 Kernel Objects allowing the export of that portion of its address space to a

The Fluke kernel provides only a few types of primitivéhird space, and so on. In this way, mappings and regions
kernel objects, upon which all other functionality is built. forma hierarchy of memory sharing relationships. The ker-
Threads represent independent flows of control and cof€l acts as theoot space, into which all physical memory
tain CPU register state, among other thin@paces, re- is implicitly mapped; it acts as the “ultimate source” of all
gions, and mappings define the address spaces in whidphysical memory.
threads executd?orts, port sets, andport references define  In order to execute user-level code, the kernel internally
communication endpoints. References to non-ports pfoemposes” these space-relative mapping and region ob-
vide handles to most other kinds of kernel objebdisitexes  jects into actual hardware page tables that translate directly
andcondition variables provide synchronization betweerfrom the virtual address space of a particular process into
threads sharing memory (either withina process or betwgsysical memory addresses. This composition mechanism
processes). is similar to thef-maps described in the recursive virtual

All active kernel objects are logically associated with, dpachine literature[16].

“attached to,” a small chunk of physical memory. Any pro- The kernel's memory remapping mechanism provides
cess into which a given page of physical memory is mappthe basic “relative memory” support needed to implement
can invoke kernel operations on any kernel object in thagsted processes. For example, to create a nested subpro-



cess, a process can simply create a new space object, obe capability model used in Fluke supports recursive
or more regions associated with its own space object defiirtual machines in a number of ways. First, it provides the
ing areas of its own virtual address space it is setting asitation of relativity in the communication mechanism es-
for the use of the child, and corresponding mapping objesential to the nested process model: given a capability to a
to map these regions into the child space at the approfiite service, for example, the client need not know where or
ate locationg. Any threads created in the child process willow the file server is implemented, or what intermediaries,
then execute in that address space, and will only be ablé tany, may be interposed on the communication channel.
access memory to which it was given access by the par&mhce a parent process that creates a nested subprocess con-
The parent can revoke or modify the child’s permissionstimls what capabilities it initially gives to the subprocess, it
this memory at any time, allowing the parent to “virtualaltimately controls all communication across the “bound-
ize” the child’s view of memory as desired. Page faults ary” containing the nested subprocess. Ifthe nested subpro-
the child caused by missing permissions are delivereddsss creates further subprocesses, resulting in a full nested
the kernel to the appropriate parent process. environment, then the processes in this environment can

Note that the kernel provides no primitives for “allocatfreely communicate among themselves with no interfer-
ing” memory: storage allocation and management are d@ige from or knowledge by the parent; however, commu-
purely using high-level protocols. For example, in the sification with entities outside of the environment can still
uation described above, if the running child process nedigscontrolled by the parent as desired.
more memory (e.g., needs to grow its heap), it must comSince these are microkernel-mediated capabilities and
municate with an ancestor process; the ancestor can ttemefore not directly accessible to any user process, they
reserve more memory for the child and set up appropean be passed freely between RVM layers, without com-
ate regions and mappings or grow existing ones as nega®mising anyone’s security. This contrasts with the Cam-
sary. The high-level protocol for finding and binding to theridge CAP computer[45], for example, in which capabil-
appropriate memory-serving ancestor process is descrittied could not be passed between process hierarchy layers
later, in Section 5. because the bits representing a capability in one process are
directly accessible to the code runningin its parent process.
The ability of capabilities to be passed arbitrarily between
%ur RVM layers allows communication to short-circuit the
has no explicit abstraction of memory mapping at all; i yers in many cases, as .described later; this property is

’ 'Qlery important for maintaining good performance, because

no “mapping™ object. In that model, (physical) MEMOTY allows parent processes to interpasiectively on IPC
pages are passed around via IPC messages or by a sp%;

Other Hierarchical Memory Management Models:
We considered using a design similar to that in L4, whi

SMnels entering or leaving the subprocess, rather than be-
kernel operation. Hence, there was no kernel-visi 9 g b :

. ; ) . . forced to interpose oall IPC, which would result in a
virtual memory hierarchy, just a physical page hlerarchymu

’ ch larger performance penalty.

Although .th's model may have worked for those man- Even though a parent process does not have direct ac-
agers that d'q not wan.t complete control over memory th.ggss to the raw bits describing capabilities inits nested child
handgq out, |t.made it extremely hard for t'hose that di rocesses, The Fluke API allows a parent to determine if a
Specifically, this would not allow DSM to be implemente

. iven capability refers to an object under its domain of con-
transparently over multiple processes by a user-mode R 81, and if so, which one. For example, our checkpointer

cess. A process several Ievgls removgd from a DSM Mgl this functionality to detect and “passivate” capabilities
ager might flush page mappings from its children, and t Fone part of the checkpointed environment that refer to

manager .WOUld never know. If there IS an explicit Objegkher objects elsewhere in the checkpointed environment,
repr'esentmg an area of memory, it provides a handie for G that these objects and capabilities can be transparently
tecting such cases. restored on restart. Capabilities referring to objects outside
of the checkpointed environment will not be “recognized”
4.4 Interprocess Communication this way and must be handled separately; these issues are

IPCin Fluke is based on a capability model similar to thgiscussed later in Section 6.3.
of Mach 3.0. Aport provides the server endpoint of a com- In providingthe “exportability property,” the determinis-
munication channel, while port reference provides the tic and synchronous Fluke IPC semantics are also relevant.
client-side endpoint. A Fluke message consists of a streBluke IPC has ho message queues, avoiding the problem or
of raw, uninterpreted bytes, plus an optional sequenceimpossibility of retrieving messages in such an intermedi-
port references (capabilities). ate state. If Fluke IPC blocks, e.g., due to a page fault, the

thread state, buffer offset, and residual length are rolled-

The actual method of creating nested child processes in our systglelc 1o g point at the kernel entry boundary. This aids in
described later, is alittle more complicated in order to provide greater flex-

ibility; however, the simple method described here works fine and illub1€ Provision of simple exportable semantics.
trates the basic concept.




45 Scheduling 5.1 Common Protocols

The final type of resource the Fluke kernel directly deaIsA crucial component of our virtualizable machine archi-

V.V'th is CPU time. .As with memory and COMMUNICEsa oy is theommon protocols: a set of standardized inter-
tion, the kernel provides only minimal, completely relaf—

. heduling facilities. Thread hedul ﬁ)ges used to communicate between VM layers. Whereas
tive scheduling facilities. Threads can actas schedulers underlying Fluke IPC mechanism provides primitive

other threads, donating their CPU time to those threads gg;5 -hannels comparable to /O ports in hardware-based

cording to some high-level scheduling policy; those threagﬁtual machine architectures, the common protocols define

can then further subdivide CPU time among still Oth?ﬁe communication protocols used on those ports, analo-

Fhrequ, etc., forminggcheduling h"*""?Chy- The sghedgl- gous to the register programming conventions used to pro-
ing hierarchy normally “follows” the virtual machine hier-

) ; , .~ gram hardware devices.
archy, in a loose sense, but is not required to. The hlgh%

r-
level “common protocols” determine the actual schedulir\}ﬂjhere could be more than one set of common protocols
hierarchy.

ich define distinct virtualized architectures; in this sec-
. . tion we consider the common protocol suite used to imple-

The details O.f scheduling under Flgke [1,5] are beyoqﬁent a partiabosix environment on top of the Fluke ker-
the scope of this paper; only its relative, hierarchical n

) . " 'Hel. While many of the protocols are designed specificall
ture is important to the RVM model. Other hlerarchwe} y P 9 b y

. r POSIX (e.g., the process management interface) some
schedulers, such as thester system in KeyKos[20], and are more general (e.g., the memory management and file

lottery/stride scheduling[44], should also work in ourRVI\/’/O interfaces) and could be applicable to other environ-
model. ments. Theeosixcommon protocols, hereafter referred to

as “the Common Protocols” or CP, are a set of hierarchi-
4.6 Security cally structured interfaces defined in CORBA IDL.

The Fluke kernel currently contains no special securityParent interface. This is the top level interface used
mechanisms; all low-level support for security is integratd@ll Parent/child communication, which effectively acts as a
into the other primitives exported by the kernel. Memony@me service” interface through which the child requests
access security is provided by the memory mapping a#ef€ss o other services. This is thg only interface that
protection mechanism, communication security is provid@dl VMMSs interpose on; a VMM selectively interposes on
by the capability model, and CPU usage security is préther interfaces only as necessary to perform its function.
vided by the hierarchical scheduling mechanism. The overhead of this interposition is minim'aI. because typ-

This suffices for many environments. However, to Sé?_ally only a few requests are made on this interface, dur-

isfy the most demanding security-assurance needs Sucwgéhe child’s initialization phase, to find other interfaces

the most stringent of the TCSEC[39] classes, it appears ﬁt'_lnterest. The parent interface currently provides meth-

portant to provide explicit support for traditional subject(-)OIStO obta'ln '”'“"?" file descriptors (e.g.!; din,stdout,
der r); find a filesystem manager, find a memory man-

based security. We are working with others who are addih i :
such support to Fluke. Our intent is to provide a meafge" find a process manager, and exit.

to virtualize the ensuing security identifiers, preserving theFilesystem interface. The file system interface in our
“relativistic property” of the interface. We are evaluatin§yStém is similar to those of other microkernel-based op-
whether this “security enforcement” can and should be i§fating systems that support independent file servers, such

plemented by an ordinary process or at the kernel level 8 SPring[27] and the GNU Hurd[3]. It provides meth-
is traditionally done. ods closely corresponding wosix file 1/0 calls, such as

It is worth noting that some other kernel-level securit@pen'I i nk, unl i nk, 1 gnarre, mkdi r, etc.
models are likely also to be compatible with the RvM Memory Management interface. The Common Proto-
model, such as the Clan/Chief model used in L3 [320°I!S memory interface exports memasgment and pool

or the hierarchical subject-based security model used@fstractions. A memory segment represents an arbitrary-
VSTa[42]. size chunk of allocated memory which can be mapped into

a process’s address space. The segment interface includes

methods allowing clients to map segments, change the size
5 High-level Protocols of variable length segments, destroy segments, etc. When

a segment is destroyed, all Fluke objects in its memory

In order to demonstrate how our model can be applieddce destroyed and the segment's memory pages freed. A

“real” systems, we have implemented a partialsix en- memory pool is a collection of segments and other (sub)
vironment on top of the Fluke kernel, using VMMs to propools used to account for and reclaim “anonymous” mem-
vide traditional Unix kernel features, such as process mamy. Memory pools provide methods to create and destroy
agement and demand-paged memory, although in a m&ub-pools, and to allocate segments from the pool. De-
flexible way. stroying a pool destroys all segments allocated from it and,



recursively, all sub-pools derived from it. In short, segenism is not constrained to follow the virtual machine hi-
ments represent actual memory while pools provide a c@marchy strictly: mapped file images can be exported from
venient mechanism for resource control and accountingan arbitrary file system server directly into any task that

Process M anagement interface. The process managecan access the server (i.e., has a capability referencing the
ment interface supportsosix process-related functional-server with sufficient permissions).
ity, such ag or k, exec, get pi d, etc. Italso provides the
means for processes to semolsix signals to each other. 5.3 Bootstrapping: the Kernel Server

Besides implementing the basic microkernel API used

5.2 Libraries by all virtual machine layers, the Fluke kernel also im-
plements a minimal Common Protocols interface defining
the environment presented to fivat user-level application
foaded directly on top of the kernel (the “root” virtual ma-

f‘he). This initial CP interface consists of a physical mem-
Ec‘g?g/ interface and a minimal root file system interface.

In our system, most of theosix functions that are tra-
ditionally implemented as system calls are actually impl
mented by the C library residing in the same address sp
as the application using it. These C library functions th

communicate with parent VMMs and external servers rh | d by the k | ide th
necessary to provide the required functionality. For exam- e memory pools exported by the kernel provide the

ple, each process’s file descriptor table and its current dir %mimory pool interface defined by the Common Proto-
tory are tracked in the process itself, as Fluke IPC capabﬁ?—l,s’ ov;/evler, memfory segments aIIocateq from the ker-
ties referring to file servers. The file descriptortable itselfi S pogis always reter to unpageable physu?al memory. If
managed purely by the local C librahyour C library sup- emgnd paging is desired, an appropriate virtual machine
ports multithreaded applications and servers by providiﬂbor"tor must be loaded on top of the kemnel.

a subset of theosix.1b threads interface (“pthreads”). ~ The kemel's root file system interface exports a simple
ﬁmory-based file system whose initial contents are a set

Whereas the common protocols can be considered dules loaded i hvsical by the b
of the machine architecture in that they must be suppor oot mo ules loade Into physica memory y the 00?[
Qader along with the kernel. These files typically contain

at each virtual machine interface in order to provide stack~ ble | ¢ d oth h
ability, the C library is purely internal to VMMs and app”_executa e images for VMMs and other components that

cation processes; VMMs and applications could be Writtgﬁuf;[.lbe Io?ded before af"l real f[le syste(;n. Thg'm|n|ma.I
using completely different libraries without affecting com °°tfll€ System supportsfile creation, reading, writing, etc.;

patibility or VMM stackability. The C library in our system howeyer, as with the root memory pools, all fi'Ies on this
is somewhat comparable to IBM's Conversational Monrigotflle systems are stored in unpageable physical memory.
persistent, disk-based files are needed, then an external

tor System (CMS), a minimal single-application “operatin
y ( ) gie-app P e system must be run on top of the kernel; the kernel's

system” designednlyto run under virtual machines, which il hen be d din ord f
provides high-level services as a convenience to applif@2t '€ system can then be destroyed In order to free up
ysical memory occupied by the initial files.

tions without actually implementing significant OS funcP _
tionality itself. The kernel doesot provide any process management in-

terface at all; therefore, in order to run applications such as
)?hells which create and manipul®esix processes, a pro-
Ress manager must be run on top of the kernel.

The Nesting Library. The nesting library, generally
linked only into virtual machine monitors and not ordinar
servers or applications, provides the “parent-side” comp
ment to the C library: it provides basic facilities to support
f':lpplica.tions that create qested subprocesses. For exan@aleExamme Virtual M achine Monitors
it contains standard functions to spawn a nested subprocess
given an arbitrary executable file image. Use of this library We now detail the user-level applications that take ad-
is again completely optional: applications can always créantage of the model to provide OS features in a more flex-
ate nested virtual machines manually in whatever way tHele way.
desire; this library only provides a “standard” mechanism In the following sections we describe these examples
for creating child virtual machines and providing Commowhich we have implemente@0SiX process management,
Protocols-compatible interfaces to them. demand paging, checkpointing, debugging, and tracing.

Although these libraries are currently statically linked/Ve also outline an unimplemented example: a distributed
once we implement shared libraries in our system, it will teemory manager (DMM) cooperating with other DMMs
possible to share this library code even across VM layeligfough IPC to create one large transparently distributed
This is because the Fluke relative memory mapp|ng megﬁWironment out of several independent environments.

#However, the actual files and “openfile descriptions”, containingse¢k1 The Process M anager

pointers and most other per-open state, are maintained by separate file = . . . .
server processes: this greatly simplifies some of the traditionally hairy V€ implemented a virtual machine monitor that creates a

“multiserver issues.” Posix-like multiple-process environment, with each “pro-



cess” being a separate virtual machine implemented®g2 The Virtual Memory Manager

the process manager. The process rnafnal ger keeps traw'e implemented a user-level demand paged virtual
of process I%S’. ha?dlesmter{ahrocehs'shsulg | ,k()hanq memory manager that creates a virtual machine whose
exec(), and implements other high-level mec an'sn%ﬁwonymous memory is paged to a swap file. Arbitrary pro-

expected in a Unix-like environment, as defined in t ams can be run in this paged virtual machine, such as a

Process:: Common Protocol. The process manager ﬁ1gle application, or a process manager supporting an en-

a completely op'qonal component appl|cgtlons that doQiFe pagedrosixX environment similar to a traditional Unix
fork(), send signals, etc., can be run without one. F

th lik : « microk I-based svst Wstem. Since demand paging is implemented as a sepa-
€rmore, uniike even in most microkernel-pased systelylg,, componentinstead of being lumped with other features
multiple process managers can be run side-by-side or eye

bitrarily * ked” f h oth id i &h as multiuser security, it is much easier to avoid prob-
arbitrarily “stacked" on top of each other to provide mu fems with traditional virtual machine monitors related to

ple independerrosix environments on a single maChineduplication of effort, such as double paging[17, 37].
The process manager’s basic function is to allow multi-
ple peer processes to coexist at the same nesting level e

interact with each other as processes do in traditional S¥3d runs another application program (specified on the
tems. The other nesting modules we implemented can W1's command line) in a virtual memory environment.

run a single nested subprocess at once; “spreading” the rfﬁg memory manager implements the complete Common

is left to the process'manage.r (P.M)' ) _Protocols memory interface, while “passing through” the
The PM communicates with its child processes by ifterfaces such as file systems and process management,
tercepting messages on their process port. It should\{igh no interposition. The MM provides anonymous mem-

pointed out, however, thatthe processes can and do diregily segments backed by a swap file and cached in its own
use the facilities provided by the Fluke kernel API. For inggdress space.

stance, thé or k() operation only registers a new process

with the PM. Creating new memory segments, copying tn%d size from its own memory manager. This segment is

memory segments, copying the kemel objects, and Startljﬁ' physical memory that the MM virtualizésThe MM

the necessary threads in the child process are all done[ I spawns the application to be run, interposing on its
rectly by the parent task.

o Common Protocols parent interface. The manager passes
The PM does not maintain memory. Instead, Whep (via its parent port) all requests on that port except for

queried for its MenPool interface it passes on thepe request for a memory pool, which it provides.

MenPool port reference obtained froms parent, refer- Creation of pools and sub-pools involves allocation of a

ring the tasks it manages to whatever memory mana object and port reference to return to the caller. When

it happens to run under. This can be the kernel Serﬁfﬁemory pool segment creation request is made, the MM

in a realtime system which uses physical memory on locates the necessary address space resources. In addi-

or a virtual memory manager at any point in the nesti In to providing memory pages, the MM must be able to

hierarchy. Future requests are sent directly to thatmempéyum a reference with which a client can map the seg-
manager.

ment with a given protection and it must be able to handle
Multiple Process Manager s page faults that occur within the segment. The Fluke re-
Some microkernel-based OSs, such as Mach, have RggR object provides these capabilities. Use of a region re-
able to run multiple independent high-level operating eQuires that a segment occupy a contiguous range of mem-
vironments simultaneously by running multiple instancqﬁy_ The memory manager accomplishes this by creat-
of the necessary servers. However, doing so generglly 5 separate Fluke space object whose only function is to
required that the “nested” servers be somewhat modifig@ide address space for the segment’s region and mem-

(e.g., #i f defd) in order to conform to the interfacesory. The manager maps ranges of physical memory into
exported by the previously loaded operating environmegjg space as required.

rather than those exported by the “raw” microkernel. Also,When physical memory is freed, either because of ex-
once launched, it was often'd|ff|cult fc.Jr the parent enviro licit segment destruction or because of page replacement,
ment to control the child environment: for example, to co he MM must deal with any Fluke kernel objects that were
trol the amount of memory it uses, or to find and kill all th

. . . .present in the memory. Using a Fluke microkernel call, the
processes it may have created if the sub-environment i tgnager locates all objects in the affected range of mem-
be terminated. These were problems in all of the existig

. In the case of segment destruction, it can then just de-
Mach-based servers, for example, such as UX, Lites, g J

the objects. H er, for page replacement the ob-
the Hurd. Under the nested process model, these probl%ms:y © objects. Howev pag P

do not arise.

ur prototype memory manager (MM) is implemented
n ordinary user-space application program, which loads

On startup the MM obtains a memory segment of a spec-

4Though this segment may in fact be virtualized by a previously-
loaded memory manager, we refer to it throughout this section as the
“physical” memory that the memory manager provides.
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jects need to be preserved and later restored when the mgmoeess checkpointers based on well-known algorithms
ory is paged in. The simplest approach for doing this [i$2, 10] could also be implemented in our environment, in
to move objects (using a Fluke kernel call) into MM prithe same way.
vate memory at pageout time and to move them back atheckpointing memory
pagein time. A more sophisticated method takes advantgggause the checkpointer interposes on the memory allo-
of the microkernel’s ability to completely export kernel obcation interface, it has specific knowledge of what memory
ject state to page objects outalong with “raw” memory jugie application has asked for and what memory itis using.
as the checkpointer does. This direct access is also used to find kernel objects: using a
We have deployed the MM in two configurations. In thEluke microkernel call, the checkpointer locates all objects
simplest configuration, the MM does no paging and is viin the relevant regions.
tualizing memory only in the sense of naming (i.e., remap-Checkpointing kernel objects
ping virtual addresses). Here, requests for new memqtyere are two classes of kernel objects that a Fluke check-
segments are fulfilled by allocating the appropriate amowsinter must deal with. First are those objects created
of physical memory at segment creation time. Thus t@igthin the child environment which only reference kernel
application environment can only allocate as much virtughjects internal to that environment. To preserve the state
memory as the MM has physical memory. Also, since g@these objects we create unique id’s for each object and
page replacement is performed, the MM only implemergpresent inter-object references with these id’s.
destruction of Fluke objects. The second class of objects are those with references to
In a more conventional configuration, the MM allocatg&rnel objects outside of the scope of the checkpointer, for
a Fluke space and region at segment creation time but pRygample a reference to the memory server, or open files.
ical memory is allocated on demand. When a segment pa@§ external reference owned by the child environment
is first referenced, a fault is generated which is directedrifust have been granted to it by its parent. For exam-
the Fluke region’s “keeper” port which is held by the MMple, memory mappings in the child environment will con-
The MM can then allocate physical memory, map itinto thgin references to the exported regions in the checkpointer.
host space at the appropriate location, and return to the #Rese references will be flagged as exported region refer-
plication to retry. During page replacement, the MM cugnces, and replaced with equivalents at restart.
rently just moves objects into its memory. A checkpointer can choose to interpose on as many po-
The MM is free to implement whatever page replacgential external references as it likes. Our implementation
ment policy it chooses. This could be an internal globghooses to interpose on those things necessary for a mini-
policy for its physical memory pool, or segment-specifi;al complete checkpoint, comparable to the functionality
policies negotiated with applications through a higher-levgifered by other user-level checkpointers[36, 40]. These

protocol. are library-based checkpointers, which require re-linking
of the application in order to interpose on its system calls.
6.3 The Checkpointer Standard /0. The port references representing the

We implemented a user-level checkpointer that, like ti& di n, st dout ,andst derr file handles are recognized

demand pager, can operate over a single application oPYhe checkpointer during checkpointing and, on restart,

arbitrary environment, transparently to the target. By loa8l’® reinitialized with the corresponding file handles in the

ing a checkpointer in the “root” virtual machine immedineW environment. Thus, all standard 1/O file descriptors

ately on top of the microkernel, a whole-machine chechgluding descriptors in nested subprocesses of.the appli-
pointed system can be created similar to that providedciﬂt'on) are transparently rerouted to the new environment.
the kernel by KeyKOS[28] and L3[33]. To our knowledge Service Ports. When the sub-environment asks for any

this is the first checkpointer that can operate over arbitrafthe generic service ports—memory allocator, file sys-
domains in this way. tem, or scheduler—the checkpointer hands back a refer-

Checkpointing Algorithm ence and tracks that reference in an internal catalog. These

Our checkpointer currently uses a simplistic sequentRgrvice ports are handled exactly as the Open Files above.
checkpointing algorithm: to take a checkpoint, it stops all Special Files. Our current checkpointer doesn't inter-
the threads in the child process, saves the contents offRge on any file system accesses, but could recognize file
child’s memory (including the state of any kernel objecgpen calls and checkpointfile state (or whole files) with the
the child process has created in its memory), and thenpeocess, in order to provide a more consistent restart.
enables the threads to allow the child process(es) to connknown References. References to things the check-
tinue execution. pointer chose not to intercept, for example arbitrary files,

This algorithm, of course, will not scale well to largavill be replaced with null references. This has similar con-
checkpointed applications or environments, or to digequences to an NFS server going down and leaving stale
tributed environments. However, more efficient singléle handles behind.
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Process I Ds. Since there are no explicit IDs in the RVMbf the original. The tracer transparently forwards messages
model, when restoring eomplete environment conflicts received from the child to the original port and vice versa.
cannot occur. Process ID troubles can occur when checkgesides monitoring RPC activity to aid in debugging, the
point/restoring only part of an environment. In particulagracer can also function as a complete but “null” virtual ma-
since the checkpointer is not currently process-managgtine monitor, in that it interposes on every interface, but
aware, a single process restored under the PM is not @ses nothing except pass data on. This can be used to quan-

signed a process ID. The process interface and the cheigltthe worse-case communication overhead.
pointer can be easily extended to fix this. Another response

to this kind of issue, enabled by the RVM flexibility, is tha —
the user can simply run another copy of the PM under the"5 Distributed Memory Manager
checkpointer, which then runs the target application. A distributed memory manager cooperates with other
IPC state. Processes involved in IPC at the time of BMMs through IPC to create one large transparently dis-
checkpoint will restart the IPC when the checkpointis cortributed environment out of several independent environ-
pleted or restored. The act of “stopping” a thread causestients. A DMM is very similar to a virtual memory man-
kernel to back the thread’s actions out to a re-entry poinager (MM), in that it provides a virtual address space paged
Checkpointer Summary to some external storage location. However, whereas a
Two key features of our RVM model facilitate checkpointyMM pages things primarily to disk or other stable storage,
ing. First, the exportable state of kernel objects allows aByPMM pages things primarily to other nodes. Note that
application to extract and store the state of kernel objedf2¢ exportability of kernel object state should allow a DMM
Second’ the consistent interface provided by the model g?]d|str|bute entireeosix-like Operating enVironmentS, not
capsulates the checkpointer’s target to the extent that féaply memory.
tures previously available only in kernel implementations The DMM and MM functions could be combined into

are feasible outside of the kernel. one program or could remain separate. If they are sepa-
rated, then a DMM could be run either on top of a MM, to
6.4 The Debugger and Tracer provide a distributed memory with each node having sepa-

rate page-out space, or below a MM, with the MM provid-

We implemented a debugger that can be used to deyig, single common paging space for the entire distributed
either ordinary applications or other virtual machine monkyhsystem.

tors. The debugger creates a virtual machine containing th

process or environment being debugged, and its presen BMMs could be implemented to support different co-

is completely transparent to the code running in that virtu %Fency models; however, the kemel architecture is de-
machir?e y P 9 é\lgned to be able to support release-consistent DSM[7] par-

ticularly well. Since all of the kernel objects in use by its

The debugger works by initializing the keeper portrefegypiasks, such as mutexes and condition variables, are fully
ence of the process to be debugged to a portit creates Wiig[hle to it, the DMM should have the perfect tools.
the child process is spawned. When a thread in the chil n addition, the “segment” abstraction of the Common
faults, the kernel sends an exception RPC along with tBF '

: ; I i handl ine th i
thread’s register state to its keeper port. The debugger h otocols provides a handle to determine the granularity of

: : . . ! %?ﬁchronization events. In other words, the CP conven-
dles this message and viaread/write calls on its stdln/stdF r o .
jons provide information as to how much memory must be

communicating via a serial line with a remote host runnin nchronized when a given mutex or condition variable is
GDB. The debugger restarts the thread by sending a replq Q 9

the kernel that includes the thread’s modified register state.

Note that although Mach 3.0 provides a similar abil-
ity to interpose on an exception port, Mach allows a tas,k Experimental Results
to change its own exception port reference, unlike Fluke.
Thus a buggy or uncooperative Mach task could escape thg, order to evaluate the performance effects of recursive
debugger’s control. This is a simple example of the inagirtual machines in our system, we used micro benchmarks,
equacy of existing kernels for implementing recursive vispme drawn from thé nbench suite[38]. These bench-
tual machines. marks are designed to reveal the performance properties of
The Tracer operating systems that directly affect real-world applica-
Finally, we implemented a tracer that can be used ttons. Our primary interestin these tests is to reveal the per-
trace the message activity of an arbitrary application nesfedmance effect of different VMMs in our system on var-
within the tracer. The tracer interposes on the applicatioitsis types of applications; thus, we are mostly concerned
parent port and on any port references the child task veth relative slowdown due to VMMs rather than the abso-
ceives through the parent port. It does this by creatindude performance of the system. All tests were performed
new port reference and passing that to the child task insteach 100MHz Pentium PC with 32MB of RAM.
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Performance effect of complete IPC interposition

Time (uS) 100 ,IN :, I cpo— 1
Null system call 2.0 _ - bw_mmap_rd -+~
Mutex lock 5.2 5 e =
Mutex unlock 5.8 g 80 - B 1
Context switch 1.4 E a
Null cross-domain RPC 54.6 S 60 4
[}
Table 1: Absolute performance of microkernel primitivesg or - i
§ 20 | -
Test Description Fluke Linux
bw.nmemcp Memory bandwidth | 37 MB/s | 42 MB/s 0 0 i é é
bw.mrap_rd | File mrap read 47 MB/s | 74 MB/s Levels of interposition
bw.filerd | Cachedfilereads | 24 MB/s | 23 MB/s
lat.sig Signal handling cos{ 259us | S52us Figure 3: Worst-case slowdown due to IPC interposition

Table 2: Absoluté nmbench results for Fluke and Linux

found slowdownto be linear with the number of layers. The

evaluation, present in Table 1 the absolute times for varidg§t With a MM interposition costing a little bit more than
primitive Fluke microkernel operations, and Table 2 shovasPM Interposition.

absolute times for thenbench benchmark programs we .

will use in later tests running directly on top of the micro- 2;‘3'(5)2940 di ff-fwos E‘:/ft ers

kernel with no intervening VMMs. For reference, we also52486392 26529452 MM PM

showl mbench performance results for Linux, taken from

the original mbench paper[38]. Note that the Linux tests 65;2?2;2 iégigggg m gm m PM
were made on a faster machine (120MHz Pentium) than
used in our tests (L0OOMHz Pentium). Also, since Linux i 997148 15749822 MV PM MM PM PM
’ 16497487 18500339 MM PM MM PM MM PM

a mature, well-optimized monolithic kernel while Fluke i
a mostly unoptimized microkernel, the performance results

for OS-intensive tests are not very comparable. However,

since the performance results of primary interest for this pa-

per are the relative numbers presented below, we felt tgat Conclusion
these discrepancies are not a major issue.

) . We have presented a novel approach to providing modu-
Cost of IPC interposition To measure the Worst-casgyr and extensible operating system functionality based on a
slowdown caused by IPC interposition, we measured g ihesis of microkernel and virtual machine concepts. We
effect on the execution times of various applications causgg,e demonstrated the design and implementation of a mi-

by the complete IPC interposition done by the tracer; thes@kernel architecture that efficiently supports fine-grained

times are shown in Figure 3. This test also reflects thgrsjve virtual machines. Our prototype implementation

performance that might be expected from a security MoBfhis model indicates that it is practical to modularize op-
tor VMM that supervises an untrusted applllcatlon enviroRiating systems this way: some types of virtual machine
ment. However, this test reflectsorst-case interposition Iaﬁ ;ers impose almost no overhead at all, while others im-

cost; other types of VMMs such as process managers e some overhead, but only on certain classes of appli-
need to interpose on some IPC connections, not all. As €Xtions.

pected, applications that make heavy use of IPC (e.g., fiI(?—|owever it remains to be seen how the model will scale

read) s.uffer most from this test, while other applications A a real, fully functional system. Although we addressed
essentially unaffected.

some of the issues of implementing a nested process model
in a Unix-like environment, there are many others, such as
Performance of Various VMM hierarchies We mea- networking and security. In order to address these issues,
sured, under a variety of VMM hierarchies, a programe are working with the Free Software Foundation to port
which forked a chain of five processes. This utilizes bothe GNU Hurd, a fully functional Mach-based multiserver
the process manager and the memory manager ports. Q%e to our Fluke kernel, using our RVM model.
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