
Etyma� A Framework for Modular Systems�

Guruduth Banavary

Gary Lindstrom

Douglas Orr

Department of Computer Science

University of Utah� Salt Lake City� UT ����� USA

fbanavar�lindstrom�dbog�cs�utah�edu

Abstract

Modularity� i�e� support for the �exible construction� adaptation� and combination of units
of software� is an important goal in many systems� In most cases� however� systems achieve only
a few aspects of modularity� The problem can be traced to the in�exibility� or the limited view
of modularity taken by the underlying architecture of these systems� As a remedy� we show that
the notions fundamental to object�oriented programming� i�e� classes and inheritance� can be
formulated as a simple meta�level architecture that can be e�ectively reused in a wide variety
of contexts� We have realized such an architecture as an O�O framework� and constructed
two signi�cant and distinct completions of it� Systems based on this framework bene�t not only
from design and code reuse� but also from the �exibility that the architecture o�ers� In addition�
the architecture represents a uni�cation of the fundamental ideas of several similar but subtly
di�erent module systems�

�This research was sponsored by the Defense Advanced Research Projects Agency �DOD�� monitored by the
Department of the Navy� O�ce of the Chief of Naval Research� under Grant number N���������J����	 and by the
Department of the Army under Grant number DABT	
����C����� The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing o�cial policies� either expressed or
implied� of the Defense Advanced Research Projects Agency or the US Government

yPrimary contact author Phone ������������
��� fax ��������������

�

� Introduction

It is widely agreed that software design reuse is bene�cial� Functional factoring and interface design

are indeed di�cult tasks� and it is worthwhile to reuse the fruits of these activities� Object oriented

programming helps us achieve design reuse through inheritance and polymorphism�

The basic thrust of this paper is that the ideas underlying object�oriented programming are

themselves worthy of reuse� O�O classes and inheritance appear in many forms in various languages

and systems� Throughout� their basic goal is the same� to support the construction� adaptation�

and combination of units of software� We claim� therefore� that a suitably designed model of classes�

one that is malleable enough to express various forms of combination and adaptation� can be reused

in many contexts� including some that are not usually thought of as object�oriented programming�

We believe we have designed such a model� based on an austere notion of classes coupled with

a powerful suite of operators to manipulate them� borrowed from a module manipulation language

called Jigsaw�BL�	
� We have designed an O�O framework called Etyma that incorporates this

notion of classes as well as abstractions covering much of the value space and type space commonly

found in module�based languages� Besides the concepts of classes and their instances� Etyma

models records� functions� primitive values� variables �locations�� and their corresponding types�

The high�level design of Etyma is simple� yet completions of this framework are surprisingly

powerful in their ability to manipulate classes�

Etyma is a meta�level language architecture similar to those of familiar languages such as

Smalltalk and CLOS MOP� It has the same advantages of enabling the construction of reective�

exible� and extensible programming systems�BL��
� However� the di�erences are crucial� Firstly�

and most importantly� classes and inheritance in most systems are composite notions serving many

purposes� In Etyma� classes are very simple units of software that can be composed using a

powerful set of operators� The merit of Etyma arises primarily from the fact that this architecture

can be reused outside the realm of traditional O�O programming� For example� we have reused it

in the design of a programmable linker�loader� which we describe in Section ��

Secondly� Etyma can not only be used to construct processors for dynamic reective languages�

but also for compiled languages� since it supports static typechecking and separate compilation� A

compiler can use the abstractions in Etyma for representing the semantics of language constructs in

an intermediate form� Such compiler frameworks can augment the evolvability and maintainability

of compilers written using them�

Thirdly� by virtue of its structuring� Etyma can be used to layer object systems on top of

existing� even non O�O� languages� This is in addition to its more obvious use for building a

processor for a new language� We describe the design of an object system layered on top of ANSI

�

C in Section �� as well as an extended CORBA Interface De�nition Language �COR��
 in Section

��

In Section 	� we introduce our model of classes and inheritance and describe its realization in

the design of the abstract and concrete classes of the Etyma framework in Section �� We then

examine our linker completion in Section �� and outline our IDL completion in Section �� Finally�

we sketch related and future work and conclude�

� Model of Classes and Inheritance

The concepts outlined in this section� drawn from the module manipulation language Jigsaw� pro�

vide the semantic basis for the design of our meta�level language architecture�

As mentioned� current O�O languages embody varying notions of the class concept� each of

which di�ers from others in subtle but important ways� These di�erent notions share a common

semantic goal� to facilitate the structuring and combination of software units with well�de�ned

interfaces� We use the term module to refer to such software units� In Jigsaw� a module is a

self�referential scope� consisting of a set of de�nitions and declarations� De�nitions bind labels

�identi�ers� to typed values� and declarations simply associate labels with types �de�ning a label

subsumes declaring it�� Declarations are used to create abstract modules� which can be manipulated

but not instantiated� Modules do not contain any free references� i�e� references to labels that are

not associated with any declarations either locally or in some surrounding scope� Every module has

an associated interface� which comprises the labels and types of all its visible attributes� Interfaces

are purely structural� i�e� sets of label�type pairs� without order or type name signi�cance�

Traditionally� classes ful�ll a variety of roles� including de�ning modules� de�ning subtyping

relationships� controlling visibility �e�g� via public�protected�private interfaces�� constructing in�

stances of a de�ned module� modifying and reusing existing program units via single inheritance�

combining program units using multiple inheritance� resolving name conicts� etc� In Jigsaw� such

e�ects are made possible via a suite of module operators �combinators�� each designed to ful�ll a

single isolatable semantic role� The primary operators are merge� override� restrict� rename� freeze�

hide� and copy�as�

To illustrate the use of some of these operators� consider the example in Figure �� Suppose in

module M� we wish all invocations of the function f to be redirected to a new de�nition of f using

both its own de�nition� which it refers to as f� and the existing de�nition of f� which it refers to as

f old� For this� we �rst copy attribute f as f old in module M and override f with the new de�nition

in module IM� The operator override enables module combination with conicts resolved in favor

of the right operand� We then encapsulate the old de�nition f old� using the operator hide� In this

	

��� Original module

M � module
g � fun�� ���f������ end�
f � fun�y�int� returns int

if y � � then ��f�y	�� else
� end�
end�

��� Interposing function module

IM � module
f old � int 	� int�
f � fun�y�int� returns int
if y � �� then f���� else f old�y�� end�

end�

��� Copy M�s f as f old �M� has � attr�s� g� f� f old� M� � M copy as f f old�

��� Override M��s f with IM�s f M� � M� override IM�

�	� Hide M��s f old �M result has M�s interface� M result � M� hide f old�

Figure �� Function interposition via Jigsaw operations�

manner� composite modules can be constructed from simple ones by performing a series of module

transformations� The module operators and their semantics will become clearer as we progress

through the paper�

Bracha and Lindstrom �BL�	� Bra�	
 have given a rigorous formal semantics for Jigsaw�s module

manipulation� building on the work of Cardelli� Cook� and others �HP��� CM��� CP��� BC��
� They

have formulated Jigsaw in such a way that it does not prescribe the computational domain� or the

control structures� or even the surface syntax of the concrete language in which it is used� This

abstract formulation has facilitated its realization as an O�O framework�

� The Design of Etyma

In order to broadly and usefully apply a generalized view of O�O programming such as the above� one

needs a practical� coherent� and reasonably complete realization of it� For this� we exploit the idea

that generic linguistic notions such as �module�� �record�� �instance�� etc� can be organized into a

taxonomy of concepts with relationships such as IS�A� HAS�A� AGGREGATES etc� Furthermore�

such a space of concepts can itself be speci�ed using an O�O language� thus constituting an O�O

framework� Such a framework then de�nes a meta�level language architecture applicable to modular

systems�

In essence� an O�O framework is an O�O model that captures the essential abstractions in a

particular application domain �JR��
� It expresses the architecture of applications in the domain in

terms of objects and interactions between them� Frameworks allow developers to build applications

e�ectively by concretizing abstract classes in the framework via inheritance and by con�guring� i�e�

�

connecting instances of� prede�ned concrete classes in the framework� As a result� a framework

can be thought of as being parameterized on a completion that provides call back code � a sort

of bi�directional function abstraction� Thus� applications are built by completing a framework for

speci�c purposes� while preserving the overall architecture of the framework� Frameworks thus

promote design and code reuse through O�O concepts such as inheritance and polymorphism�

In this section� we present our framework for modular systems� We call this framework Etyma

�the plural of �etymon�� obtained from the etymology of �etymology�� since it is a collection of

�root� concepts from which other concepts are formed by composition or derivation� Section ���

presents the abstract classes in Etyma� Section ��	 presents some concrete classes� and Section ���

presents type�system related classes� These sections together describe Etyma� Throughout the

paper� we use the diagramming conventions� as well as the concept of design patterns introduced

in �GHJV��
 to describe Etyma�

��� Abstract Classes

Figure 	 shows an overview of the abstract classes in the Etyma framework� Classes Type and

TypedValue are abstract superclasses that model the linguistic domains of types and values re�

spectively� Etyma models strong typing� hence concrete subclasses of TypedValue are expected to

return their concrete type object �see Section ���� when queried via type�of���

The abstract class Module� a TypedValue� captures our notion of module in its broadest con�

ception� All operations that can be performed on modules are speci�ed as abstract methods of the

class� At this level� the representation of the attributes of modules� as well as the implementation of

operations on them� are left unspeci�ed� These are expected to be provided by concrete subclasses�

The semantics of the methods of class Module� which are at the heart of this model� are given

informally in Table �� Module operators are applicative� i�e� they always produce new modules

without mutation of operand modules�

As mentioned earlier� the methods are understood to be primitive operators which can be

composed in various ways to achieve e�ects such as inheritance� encapsulation� sharing� and nesting�

For example� the single inheritance model of instance variables and methods in Smalltalk is similar

to hide�ing the instance variables followed by override�ing the methods in the superclass with those

of the subclass� Access to super methods is achieved with the application of the copy�as operator to

superclass methods� as illustrated in Figure �� Furthermore� static binding of self�references� akin

to non�virtual member functions of C�� �ES��
� is achieved via the operator freeze� Name conict

�Labeled boxes stand for classes� lines with triangles stand for inheritance �IS�A�� arrowhead lines indicates object

references �HAS�A�� lines with diamonds indicate aggregation� slanted font indicates abstract classes and methods�

regular font stands for concrete classes� and boxes at the end of dotted lines indicate code fragments

�

Type

Boolean eq (Type)
Boolean le (Type in)

Type glb (Type in)
Type lub (Type in)

Etymon

TypedValue

Type type-of ()

Location

StorableValue fetch()

Void store (StorableValue)

if (eq (in)) then in
else undefined

eq (in)

Module module-of()

Instance

TypedValue msg-send(Label l, Args a)

v = select(l)
if v is a Function then

v->eval(a)

StorableValue

Labels self-refs ()

Function
Module merge (Module)

Module

Module override (Module)
Module restrict (Label)

Module hide (Label)

Module copy-as (Label, Label)

Module cl-project (Labels)

Module freeze (Label)

Module rename (Label, Label)

Instance instantiate ()

Module merge (Instance)

Module override (Instance)

TypedValue eval(Args)

TypedValue select (Label)

Record

Record merge (Record)

Record override (Record)

Record restrict (Label)

Record copy-as (Label, Label)

Record rename (Label, Label)

module parent

Figure 	� Overview of abstract classes

resolution in the case of multiple inheritance is achieved with the aid of the rename operator� Other

applications of these operators are given throughout the paper�

The instantiate�� method of class Module is a factory method �pattern� that is used to generate

instance objects of module objects� This method returns an object of a concrete subclass of class

Instance� Class Instance is modeled as a subclass of Record following the formal semantics of

Jigsaw� Formally� modules are modeled as record generators of the form �s�fa� � v�� ���� an � v
n
g�

with the variable s standing for self�reference� The �xpoint of such a generator is a record with its

self�references bound� This models instances� Consequently� an instance �IS�A� record�

Class Record models the classical notion of records� functions from labels to values� with no

self�reference� Record supports operations such as merge and restrict� similar to the ones found in

�CM��� HP��
� In particular� the method select�Label� models attribute selection� Class Instance

supports operations similar to Record� In addition� class Instance models the traditional O�O notion

of sending a message �dynamic dispatch� to an object as select�ing a function�valued attribute

followed by invoking eval on the returned function object� This functionality is encapsulated by

the template method �pattern� msg�send�Label�Args��

�

Method Semantics

merge�Module� combine modules in the absence of label con�icts

override�Module� combine modules resolving label con�icts in favor of the incoming module

restrict�Label� strip an attribute of its de�nition� retaining only its declaration

freeze�Label� statically bind all references within module to the given attribute

hide�Label� bind references to attribute and remove it from interface

rename�Label�Label� rename an attribute and all its uses in the module

copy
as�Label�Label� copy an attribute de�nition giving it another Label

cl
project�Labels� project out given attributes and the closure of their self�references

merge�Instance� combine module with instance in the absence of label con�icts

override�Instance� combine module with instance resolving con�icts in favor of incoming instance

Table �� Semantics of methods of class Module

Further� class Instance has access to its generating module with the module�of�� method� An

instance of a nested module has access to its surrounding instance object via its parent member�

Mutable state �e�g� instance variables� is modeled with class Location� Location objects hold

StorableValue�s� the exact de�nition of which depends on a particular completion� For example�

storable values are typically at least the primitive values in a language� but often include pointers�

which can be modeled as locations containing other locations� Function�values are modeled by class

Function� The role and use of these abstractions will become clearer with the description of their

concrete subclasses in the following section�

��� Concrete Classes

As described thus far� the framework provides a rather generic object model� abstracting over

notions such as primitive values and control structures in potential language completions� This

basic architecture itself can be used for constructing various kinds of modular systems� one of

which is described in Section �� However� in order to be directly useful� e�g� for constructing a

Jigsaw�based language compiler� concrete subclasses of generic notions must be provided as part of

the framework� Figure � gives an overview of the important concrete classes� and helps clarify the

meta�architecture�

Class StdModule is a concrete subclass of Module that represents its attributes as a map �class

AttrMap�� An attribute map is a collection of individual attributes� each of which maps an object

of class Label to one of AttrValue� Attribute maps are used to implement StdModule as well as

StdInterface� which represents the type of StdModule objects �see Section ����� Hence� AttrValue

holds an object of a concrete subclass of either TypedValue �de�nitions� or Type �declarations��

�

AttrMap

Module

StdModule

Module mk-mod (AttrMap)
StdModule merge (Module)

Type FunctionInstance

AttrValueLabel

Attribute

StdInterface

Statements

Labels self-refs()
void bind-refs(Attribute)

StdFunction

TypedValue lookup(Label)

Boolean typecheck()

TypedValue eval(Args)

Labels

type attrs attrs

self

StdInstance
TypedValue select(Label)

attrs

Figure �� Overview of some concrete classes

Given this implementation of attributes� module combination methods are implemented as trans�

formations on attribute maps� For example� the merge operation concatenates the attribute maps

of operand modules if there are no conicting de�nitions�

The instantiate method of StdModule objects yield StdInstance objects� which are also imple�

mented using attribute maps� Instances of a module share all the module attributes except location�

bound attributes �corresponding to instance variables�� which are cloned per�instance at instanti�

ation time� Variable sharing among instances �as with static members of C��� is supported via

the use of nested modules� A location in a surrounding scope is shared by all instances of nested

modules�

Class StdInstance implements the method select�Label� to perform a simple lookup of a label�s

binding� possibly in a surrounding instance� and return its value� Attributes in lexically surrounding

scopes are accessed via parent� The inherited msg�send method implements the message sending

operation as described earlier� Of course� the method can be re�ned to incorporate alternate� more

e�cient dispatch mechanisms �Cha��
 in other concrete subclasses�

Reference to self is an important aspect of O�O programming� Self�reference indirection enables

dynamic binding� which in turn enables polymorphism� Self�reference occurs within methods�

Methods� i�e� function�valued module attributes� are modeled in Etyma using StdFunction� a

concrete subclass of class Function� An object of StdFunction has access to the instance within

which it is executing via its member self� The self object is passed in as a parameter to eval�

When the function object needs the value of a self�referenced attribute� its lookup method sends

the message select�Label� to its self parameter� This corresponds to dynamic binding�

�

Interestingly� modules in our model require another form of delayed binding occurring not at

run�time but rather at module combination time� This is because of the ability to statically bind

self�reference via freeze� That is� self�references to module attributes are by default dynamically

bound� but can be �xed at module combination time by applying the module operator freeze� Thus�

reference to frozen attributes need not be indirected via self dynamically� This type of binding is

implemented by the method bind�refs�Attribute� of StdFunction� which copies and stores the attribute

in its local environment for subsequent access� The lookup�Label� method of StdFunction fetches

locally stored bindings for labels before accessing self�

The hide�Label� method of StdModule implements encapsulation by statically binding accesses

to its label parameter using the bind�refs�Attribute� method of StdFunction� and then removing the

attribute from its attribute map�

Control structures �statements� that make up function objects are given by concrete subclasses

of class Statement� Subclasses of Statement correspond to the traditional implementation of ab�

stract syntax trees� These are not described further�

The module method cl�project�Labels� implements the functionality of extracting �or �project�

ing�� by analogy to relational calculus� a subset of the attributes of a module� This subset is given

by the closure of self�references within the bindings of the given labels� The self�references that

occur within function valued bindings are obtained with the method self�refs�� of StdFunction�

��� The Type Classes

A type system is built into the framework� The Etyma framework class Type has an extensive set

of concrete subclasses that model types commonly found in modular programming languages�

As mentioned earlier� the type of a StdModule object is a StdInterface object� Class StdInter�

face� a concrete subclass of Type� implements methods that typecheck individual module operations�

Methods of StdModule call methods of class StdInterface such as mergeable�StdInterface�� override�

able�StdInterface�� etc�� which implement the type rules for merge� override� etc� These methods are

based on the type rules of the Jigsaw language� given informally in Table 	� As can be seen� these

type rules depend on notions of type equality and subtyping� In addition� type rules for merge and

override need to compute the greatest common subtype of a pair of types�

As a result� class Type has an abstract method eq that checks if two types are equal� In addition�

it has template methods �pattern� le that checks for subtype �defaults to eq� and glb that computes

the greatest common subtype� In order to compute the greatest common subtype of two function

types� it is required to compute the lowest common supertype of their input argument types� due

to contravariance� As a result� class Type de�nes a method lub that computes the least common

�

Operator Typing

merge�Module� Matching de�nitions disallowed� a de�nition must be a subtype of matching declaration

If there are matching declarations� then replace with greatest common subtype

override�Module� Same as merge� except de�nition con�icts allowed� incoming de�nition must be a sub�

type of matching de�nition

restrict�Label� Label must be de�ned

freeze�Label� Label must be de�ned

hide�Label� Named attribute must be de�ned

rename�Label�Label� First attribute must exist� second must not

copy	as�Label�Label� First attribute must be de�ned� second must not

cl	project�Labels� Labels must exist

merge�Instance� Same as rule for merge�Module�

override�Instance� Same as rule for override�Module�

Table 	� Informal type rules for module combination

Boolean overrideable(StdInterface)
Boolean mergeable(StdInterface)

StdInterface

Boolean eq (Type)
Boolean le (Type)

FunctionType glb(Type)

FunctionType lub(Type)

FunctionType

LocationType

RecordType

Type

Boolean coercibel(CPrimType)
CPrimType

NamedType

Figure �� Some concrete type classes

supertype of a pair of types� Concrete subclasses of Type are expected to appropriately rede�ne

this semantics�

Figure � shows the concrete type classes� Class NamedType models types that have identity�

For named types� equality is determined by equality of identities� Subtyping is often given by

type equality� An example subclass of NamedType is a class representing the primitive types of

C� CPrimType� In addition to its superclass� notion of equality� this class implements C language

rules such as short is the same as short int� etc� It could also de�ne coercibility relationships among

primitive types� e�g� an int can be coerced into a �oat� etc�

Class FunctionType models function types with the standard notions of equality and subtyping�

taking into account contravariance� Methods to compare function types are used in the combination

�

of modules that contain function�valued attributes� This should be distinguished from typechecking

the implementation of a function� which is done by calling the typecheck�� method of the function

object� which typechecks the statements comprising the function�

Location�bound attributes �variables� can be used as evaluators �i�e� expressions that return

values� and as acceptors �i�e� expressions that receive values� in di�erent contexts� Expressions

which are evaluators can only be replaced with expressions whose types are subtypes of the orig�

inal� while expressions which are acceptors can only be replaced by expressions whose types are

supertypes of the original �Bru�	
� As a result� subtyping of variables is always restricted to type

equivalence�

Classes StdInterface and RecordType support structural typing� in which the names and types

of attributes� but not their order� is signi�cant for type checking � Furthermore� the module type

system separates inheritance from subtyping� i�e� a module operation does not necessarily result

in a module that is a subtype of the original module�s�� For example� consider the hide operation�

which shrinks the interface of a module� and often results in a supertype�

This concludes the description of the Etyma framework� Etyma is implemented in C��

�currently about ��K lines�� A direct� although cumbersome� way to use this framework is by

writing C�� programs that instantiate these classes and use the modularity features� Another

way is to write a parser that instantiates classes corresponding to input source with some surface

syntax and then generates� say� corresponding C code� We have experimented with both these ways

for �little� modular languages� However� we describe more signi�cant completions of Etyma in

Sections � and �� Etyma has undergone several iterations over the last two years� especially those

involving the completions� and has evolved to its current form�

A distinguishing feature of Etyma is that its design has been guided mainly by a formal de�

scription �i�e� denotational semantics and type rules� of the corresponding linguistic concepts� The

reader might have noted the correspondence between the above framework abstraction design and

denotational models of programming languages �Gor��
� Denotational semantics applies functional

programming to abstract over language functionality� Here� we apply a denotational description of

modularity to abstract over language modularity� Furthermore� the framework approach is intended

to provide the language developer a modular means by which to design and implement a language�s

value domain� type system� etc� relatively independently of each other� Once the basic elements

of the language are designed� the classes in the framework are directly available for incorporation

into the language processor�

��

� A Linker Completion

Object�oriented classes represent logical modularity in programs� In non O�O languages� we can

still exploit physical modularity and apply the module model described above� For example� source

program �les in ANSI C can be viewed and manipulated like modules� So can object modules ���o�

�les� which we will refer to as dot�o�s� which are compiled forms of source modules� In fact� dot�o�s

have a rather simple structure and �t nicely into our notion of modules�

A dot�o generated by compiling an ANSI C source �le consists of a set of attributes with no

order signi�cance� Here� an attribute is either a �le�level de�nition �a name with a data� storage

or function binding�� or a �le�level declaration �a name with an associated type� e�g� extern int i����

Such a �le can be treated just like a class if we consider its �le�level functions as the methods of

the class� its �le�level data and storage de�nitions as member data of the class� its declarations

as unde�ned �abstract� attributes� and its static ��le internal� data and functions as encapsulated

attributes� Furthermore� a dot�o contains unresolved self�references to attributes� represented in

the form of relocation entries�

Analogously� a dot�o can be instantiated into an executable that is bound ���xed�� to particular

addresses and is ready to be mapped into the address space of a process� Dot�o�s can be instantiated

multiple times� bound to di�erent addresses� Hence� �xed executables can be modeled as instances

of dot�o�s�

Obviously� it is highly bene�cial to build tools that manipulate dot�o�s and �xed executables as

Etymamodules and instances� Such tools enable the use of structuring and composition techniques

such as O�O inheritance on what are traditionally viewed as rigid system artifacts� We have

designed just such a tool� a second�generation programmable linker called OMOS �Object�Meta�

Object Server� �OM�	
� as a completion of Etyma� OMOS is designed as a continuously running

server that not only manipulates modules� but also constructs instances and maps them into process

address spaces� possibly after performing various optimizations�

This section describes the design of OMOS�s module manipulation functionality� The design of

object modules �class DotO�� �xed executables �class FixedExe�� and module combination scripts

�class ModuleSpec� are shown in Figure �� and described further in the following sections�

��� Composition of Object Modules

Object modules are represented by class DotO� Most object �le formats provide for a symbol

table and relocation information along with text �read�only code� and data� The symbol table

consists of entries for �le�level attributes that are both exported from �de�nitions� and imported

�Type de�nitions �eg struct de�nitions� and typedef�s in C� are not considered attributes

��

Function

Cache

Module Instance

ServerExe

Boolean map (AddrSpace)

mycache

ModuleSpec

TypedValue eval ()

BluePrint recipe

FixedExe instantiate(Constraint)

DotO

DotO restrict (Label)

DotO hide (Label)

Module override (Module)

DotO copy-as (Label, Label)

DotO cl-project (Labels)
Module merge (Instance)

Module override (Instance)

DotO freeze (Label)

DotO rename(Label,Label)

Module merge (Module)

FixedExe instantiate(Constraint)

DotO select-sndr(Label,

ObjFile back-obj

ServerExe, IPCStyle)

FixedExe

FixedExe restrict (Label)
FixedExe copy-as (Label, Label)
Boolean map (AddrSpace)

AddrMap getmap()

AddrMap mymap
OSAddr entry-point

Instance override(Instance)
Instance merge(Instance)

FixedExe rename(Label,Label)

ModuleSpec module-of()
ServerExe select-rcvr(Labels,IPCStyle)module

Figure �� Overview of the OMOS completion

into �declarations� the �le� Relocation entries correspond to self�references from methods to �le�

level attributes� The above two kinds of information are basically su�cient to implement the

module operations of Etyma� Class DotO delegates its operations to class ObjFile which operates

on the internal format of dot�o symbol tables and relocation using the BFD package �Cha�	
�

Most module operations are transformations on the symbol table of the object �le� The merge

operation on a DotO is equivalent to traditional linking� but without �xing relocations� Declarations

are matched up with de�nitions� and conicting �multiply de�ned� symbols are agged as an error�

The restrict operation converts a de�nition into a declaration �extern� or unde�ned�� The hide

operation removes a de�nition from the external interface of the object �le� i�e� makes the de�nition

static� It is in general not possible to perform the freeze operation on individual attributes of a

dot�o since freezing an attribute amounts to �xing the address of the attribute� whereas addresses

are not known until instantiation time�

Module expressions that use operations such as the above can perform several useful trans�

formations on programs at link�time �OMHL��
� For example� monitoring a program involves

transforming the program so that each de�ned procedure is transparently wrapped with an outer

routine that monitors entry to and exit from the procedure� The wrapper can be generated auto�

matically� Figure � shows the module operations used to wrap the procedure f of module M� with

the automatically generated routine found in M�� Note that this example is similar to the example

�	

�� Module M�� ��
void g �� f

short z � f ����
g
short f �short x� f

�� 			 ��
g

�� Module M
� ��
�� Automatically generated ��
extern short f �short��
extern void log enter �char ���
extern void log exit �char ���
short f �short x� f
short v�
log enter ��f���
v � f �x��
log exit ��f���
return v�

g

Module expression� ����M� copyas f f� restrict f� merge M
� hide f�

Figure �� Wrapping a routine to monitor its execution

in Figure ��

Module expressions for useful operations are shown in Table �� and described further in the

following sections�

Operation Script

Link M� and M� �merge M� M��

Wrap f in M� ����M� copyas f f� restrict f� merge M�� hide f�

Archive merge �merge M �cl	project ARLIB �X Y ������

IPC �select	sndr A �select	rcvr �A B� MACH� MACH�

Table �� Examples of operations on DotO and FixedExe objects

��� Instantiation and message sending

In Etyma� instantiating amodule amounts to �xing self�references within the module and allocating

storage for variables� In the case of instantiation of dot�o modules� �xing self�references amounts

to �xing relocations in the dot�o� and storage allocation amounts to binding addresses� These two

steps are usually performed simultaneously�

A FixedExe object is represented as an address map �class AddrMap�� An address map is a

collection of entries that specify the address in the virtual memory of a process that a block in

an object �le is mapped to� The map operation of a �xed executable is responsible for actually

mapping the �le into the address space of a process� and starting its execution at its entry�point�

The implementation technology of executables matters a lot in the realization of instance oper�

��

ators like merge� For example� it is easier to merge an executable with position independent code

�PIC� as compared with one that is not PIC� For non�PIC� merging two �xed executables requires

unbinding of addresses if they happen to overlap� There usually isn�t enough information in a

�xed executable to unbind addresses� In such cases� a new� appropriately bound FixedExe can be

generated from its DotO object� On the other hand� PIC code is bound in a relative manner� and

data accesses are usually indirect� hence unbinding is not necessary�

It is often necessary to merge a DotO with a FixedExe object� e�g� with a �xed shared library

�see Section ����� The methods merge�Instance� and override�Instance� methods of DotO support

these operations� These methods �x the dot�o at non�overlapping addresses with respect to the

executable�

An important issue concerns the meaning of the select�Label� operation of class Instance on class

FixedExe� As mentioned earlier� the notion of �select� on instances in the framework corresponds

closely to message�sending in traditional O�O programming� A �xed executable can be thought of

as a persistent version of a program that has been mapped to a process� address space� Hence�

for �xed executables� the message�sending operation becomes a form of communication between

mapped executables� or a form of inter�process communication �IPC��

This idea is realized in the OMOS completion with the methods select�rcvr of class FixedExe and

method select�sndr of class DotO� The method select�rcvr�Labels�IPCStyle� returns a �xed executable

�a ServerExe� which has IPC receiving stubs incorporated into it for particular labels� The method

select�sndr�Labels�ServerExe�IPCStyle� returns a dot�o that has IPC calling stubs incorporated for

particular declared attributes� The map operation of ServerExe is rede�ned to validate and establish

the ServerExe object as a server prepared to accept incoming IPC calls from clients generated by

select�sndr� Thus� this technique provides a way by which a regular intra�process static function call

can be converted into an inter�process function call via programming at link�time� The particular

variety of IPC to be used for generating sending and receiving stubs� e�g� DCE or CORBA� is

speci�ed as an extra argument �IPCStyle� to the select methods�

��� Modeling Libraries

Traditionally� libraries with various semantics are dealt with by linkers and loaders �Gin��� See��
�

Hence� it is necessary for OMOS to model and manipulate libraries�

Archives are a common kind of library� e�g� libc�a on UNIX systems� When a dot�o is linked

with an archive� only that part of the archive that is required by the dot�o is extracted from the

archive� and linked in� In order to model this semantics in our linker� we use the cl�project operator

to extract only those de�nitions that we need� then merge it with the module� as shown in Table ��

��

Shared libraries are special forms of modules and instances� Fixed address shared libraries are

constrained to occupy a certain pre�determined area in a process� address space� Programs that

need to use a �xed shared library must map themselves into parts of the address space that do not

conict with any library� OMOS supports a mechanism by which programs can specify address

constraints for instantiating a dot�o into a �xed�exe� As a consequence� �xed shared libraries are

modeled simply as �xed executables in OMOS�

Dynamic shared libraries are not �xed prior to mapping� In fact� such libraries contain decla�

rations that are resolved �linked� only at run�time� Hence� dynamic shared libraries are modeled

simply as dot�o�s� A variation of the select�sndr operation converts a regular dot�o to a dynamic

shared library by merging in the necessary stubs to perform dynamic loading and linking� Such

a dot�o is �xed at map�time� and executed� At run�time� when the loading stub is invoked� the

necessary libraries are dynamically loaded� and binding performed�

��� Module Scripts

OMOS supports a stable store in which object �les and persistent versions of executables are bound

to names� In addition� the persistent store contains named scripts that specify operations to be

performed on other named entities� The scripting language� an extension of Scheme� supports �rst�

class modules� a suite of module and instance operations� including operations for constructing an

object module given program source code� and persistence store management functionality�

A named module composition script is a function that returns a DotO or FixedExe object�

hence is modeled as a subclass ModuleSpec of Function� Note that a ModuleSpec object is not a

function�valued attribute of a module� but rather a stand�alone named function�

��� OMOS Services

The OMOS linker�loader is designed to provide a dynamic linking and loading facility for client

programs via the use of module combination and instantiation� This facility is used as the basis

for system program execution and shared libraries�OBLM��
�

Since OMOS is an active entity �a server�� it is capable of performing sophisticated module

manipulations on each instantiation of a module� Evaluation of a ModuleSpec object could poten�

tially produce di�erent results each time� Some OMOS operations such as those used to implement

program monitoring and reordering �OMHL��
 enact program transformations using operations on

module expressions themselves�

Since OMOS is capable of performing potentially complex manipulations on each invocation�

it caches the results of most operations to avoid re�doing work unnecessarily� The practice of

��

combining a caching linker with the system object loader gives OMOS the exibility to change

implementations as it deems necessary� e�g� to reect an updated implementation of a shared

module across all its clients�

OMOS currently comprises approximately 	�K lines of code� It supports Mach IPC� Sun RPC�

and UNIX System V IPC� and manages Mach and HP�UX shared libraries�

It has been mentioned that the Etyma framework models strong typechecking of module com�

bination� How is typechecking incorporated in the linker� For C dot�o�s� we have devised a way

in which to extract interface information from dot�o �les that have been compiled with debugging

information� and typechecking combination at link�time� We have built in the type system of C as

a completion of the type framework of Etyma� With the motivation of generating coercion stubs

for compatible encapsulated data� we have implemented a partial order of subtypes of C primitive

types based on their coercibility� even though there is no notion of subtyping in the C language�

Such type�safe linkage of object �les is described in detail in �BLO��
� Another completion of the

type framework of Etyma is described in the following section�

� An Interface De�nition Language

This section describes an interface de�nition language based on the CORBA IDL �as speci�ed in

�COR��
� that we are currently designing as another completion of Etyma��

In the context of distributed systems� an IDL is a descriptive language used to specify the

interfaces that client objects call� and service providing objects implement� An IDL compiler

generates client �stubs� and server �skeletons� corresponding to legal interface speci�cations� The

stubs provide client implementations the information they need to call service providers� Service

providers� in turn� esh out the implementation outlined in the generated skeletons� At run�time�

an underlying object request broker �ORB� manages message tra�c between clients and servers�

taking care of argument marshaling and unmarshalling�

With CORBA IDL� one can specify interfaces comprising data attributes �constant or variable�

and operations �functions�� as well as type de�nitions and exceptions� The IDL speci�es a set of

basic data types �e�g� short� �oat� char� boolean�� constructed types �e�g� struct� union� enum��

template types �e�g� sequence� string�� and arrays that can be used to specify members of an

interface� An interface can inherit from another with the inheritance operator ���� in which case

all members of the inherited interface become members of the inheriting interface� provided there

are no conicts�

�The IDL is only partially implemented as yet We expect that it will be complete by the time the �nal version

of this paper is required However� the design aspects of the IDL are reasonably complete

��

The purpose of the IDL is to specify� adapt� and combine interfaces� so as to generate stubs and

skeletons for implementations of those interfaces� Hence� exibility is a highly desirable property

of an IDL� We believe that it is bene�cial to extend the CORBA IDL based upon the Etyma

model of interfaces� In fact� the CORBA IDL has several shortcomings that can be ameliorated if

it is extended to provide inheritance operators supported by Etyma� Speci�cally� we address the

following shortcomings�

�� Currently� only type de�nitions� constants� and exceptions can be rede�ned in derived in�

terfaces� Function and variable attributes cannot be rede�ned� Introducing subtyping into

the IDL will permit more exible speci�cation of interfaces� Furthermore� it is important

to separate the notions of inheritance and subtyping of interfaces� Therefore� we introduce

structural typing into a language which currently supports only identity�based typing�

	� Currently� name conicts in the case of multiple inheritance is illegal� Support for attribute

renaming can solve this problem�

�� Just as it is desirable to build up larger interfaces from smaller ones� it is equally desirable

to break up larger interfaces into smaller ones� We introduce an operator project �again�

analogous to the notion in relational calculus� on interfaces to support this�

It does not seem necessary to distinguish between de�ned and declared attributes in a language

that deals with pure interfaces� The inheritance mechanism supported by CORBA IDL corresponds

to our merge operator on interfaces� As outlined above� we will extend the IDL to support two

new operators rename and project� The other operators in Etyma deal with the de�ned bindings of

attributes� so are not relevant in the context of pure interfaces� We will also introduce structural

subtyping�

With the extended IDL� we can specify interfaces as shown in Figure �� In the �gure� interfaces

B and C singly inherit from A� rede�ning the op� operation�s return value in each case� Interface

D multiply inherits from B and C� resolving a naming conict with the rename operator� Interface

E inherits from an interface derived from �subset of� D by the project operator�

This language design can be incorporated into a completion of Etyma in a pretty straightfor�

ward manner� Briey� the class design for the completion are as follows� De�ne class IDLInterface

as a subclass of class StdInterface� and de�ne methods merge�IDLInterface�� rename�Label�� and

project�Labels� to return new interface objects after performing the appropriate operations� Im�

plement IDLInterface so that its attributes are only IDL type objects �described below�� The type

equality and subtyping methods of StdInterface can be reused directly in the IDLInterface class�

Furthermore� de�ne methods for the generation of stubs and skeletons from IDL type objects�

��

interface A f
A op� ���
long op
�in long arg���

g�
interface B � A merge f
B op� ���
short op��in B arg���

g�

interface C � A merge f
C op� ���
long op��inout long arg���

g�
interface D �
�B rename op� b op�� merge C�

interface E � �D project op� op�� merge f
void op���

g�

Figure �� Example speci�cations in extended IDL

Create a subclass IDLFunctionType of FunctionType to model function�valued attributes �oper�

ations� of interfaces� Subtyping is by contravariance for operations� To keep the language design

simple� we can de�ne subtyping to be type equality for all the other types� Subclass NamedType to

IDLPrimType to model the primitive types of the IDL� as mentioned for C in Section ���� For struct

types� which have type identity in IDL� subclass IDLStructType from RecordType and NamedType�

and rede�ne eq for identity�based equality� and le to be eq� Similarly for unions� and the other

constructed types� With this set of IDL classes� we can write a parser that instantiates these classes

and manipulates objects as driven by source program�

In conclusion� we note that operations on IDL interfaces as de�ned above can hardly be described

as inheritance� since there is no notion of self�reference in the interfaces� We are currently working

on incorporating notions such as SelfType �Bru�	
 that introduce recursion into interfaces� The

ability to refer to the type of an interface in the speci�cation of its own attributes using SelfType

is similar to a class� ability to refer to self� We leave this as future work�

� Related Work

Several O�O frameworks have been developed� initially for user interfaces� and subsequently for

many other domains as well �Deu��� VL��� WGM��� CIJ���
� Etymahas a close relationship to

compiler frameworks� which comprise classes usually for generating an internal representation of

programs� Compiler frameworks fall into two categories� those that represent programs syntacti�

cally such as �WBG��
� and those that represent programs semantically� such as ours� Compiler

frameworks are designed with various objectives� such as for representing abstract syntax� con�

structing tools for programming environments �BCC���
� or for structuring the compiler itself� e�g�

with objects representing phases of the compiler �GR��
� or for enabling compile�time reection via

��

meta�object protocols �KLM��
� Etyma� while supporting many of the above� is unique in that it

is intended to be a reusable architecture for constructing a variety of modular systems�

The Smalltalk��� system �GR��
 is built upon a set of compiler classes that support representing

the abstract syntax of programs� as well as an impressive collection of highly intertwined meta�

classes that represent the semantics� However� its dynamic meta�circular architecture is tightly

coupled with the environment� making it di�cult to disentangle the architecture for separate reuse�

The Common Lisp Object System Meta�Object Protocol �CLOS MOP� �KdRB��
 supports

user�rede�nable protocols for meta�objects such as class� instance� generic function� method� etc�

CLOS MOP provides the basis for the development of a �space of languages with the default

language being a distinguished point in the space�� So� in a sense� its architecture is reusable�

However� there are important di�erences between our approach and previous ones� Our notion

of modules is motivated by a desire to uniformly treat the semantics of inheritance� In addition�

encapsulation is an important semantic requirement in Etyma� since we believe that it is crucial

for software development in the large� Static typing is another important consideration in Etyma�

Furthermore� the Etyma class interfaces are derived from a rigorous semantic foundation� rather

than� for example� from the requirements of diverse language designs already in existence� Etyma

is speci�cally designed to facilitate the construction of modular systems� but can be used for many

purposes that the CLOS MOP has been put to use� notably persistent objects �Lee�	
�

� Conclusions and Future Work

We have characterized object�oriented programming as the adaptation and combination of a simple

notion of classes� called modules� A meta�level architecture for modular systems� realized as a

reusable object�oriented framework called Etyma has been described� Etyma models classes

corresponding to much of the value and type domains of modular languages� Like traditional

denotational semantics� which uses functional programming to describe language functionality�

Etyma uses modular programming to describe language modularity�

Central to Etyma is an austere notion of software modules coupled with a powerful set of

inheritance operators to adapt and combine them� As a result� the meta�architecture is reusable in

a wide variety of contexts� We have demonstrated its reuse potential by illustrating two signi�cant

applications of it� �i� a programmable linker�loader that supports link�time inheritance operations

on languages that may not even be O�O� and �ii� an extension of the CORBA interface de�nition

language that supports more exible adaptation of interfaces� In our experience� not only has

the architecture of the framework enhanced the exibility of its completions� but the completions

themselves have contributed to the evolution of the framework�

��

We see many avenues for future research� We plan to �rst complete our extended IDL imple�

mentation� as well as implement extended IPC functionality with the select operations� There is

also potential for incorporating reusable abstractions from the domain of process address spaces�

mapping� and shared memory into Etyma� We also plan to augment the type system in the frame�

work to encompass issues related to the type of self� Futhermore� we are exploring interoperability

of the tools built as completions of the framework� For example� the IDL can be used to spec�

ify the interfaces and interconnection of object modules� and to automatically generate module

composition scripts to be used by OMOS�

Acknowledgements�

We are indebted to Gilad Bracha for his fundamental work in conceiving Etyma� and his detailed
comments on various drafts of this paper� The insights and support of Je� Law� Robert Mecklenburg�
Jay Lepreau� Bryan Ford� Charles Clark and all other Mach Shared Objects project participants are also
gratefully acknowledged�

References

�BC�	
 Gilad Bracha and William Cook� Mixin�based inheritance� In Proc� OOPSLA Conference�
Ottawa� October ���	� ACM�

�BCC���
 J� Barton� P� Charles� Y� Chee� M� Karasick� D� Lieber� and L� Nackman� Codestore� Infrastruc�
ture for C � knowledgeable tools� Presented at the O�O Compilation Workshop at OOPSLA�
October �����

�BL��
 Gilad Bracha and Gary Lindstrom� Modularity meets inheritance� In Proc� International Con�

ference on Computer Languages� pages ������	� San Francisco� CA� April �	���� ����� IEEE
Computer Society� Also available as Technical Report UUCS����	���

�BL��
 Guruduth Banavar and Gary Lindstrom� The design of object�oriented meta�architectures for
programming languages� In Proc� Third Golden West International Conference on Intelligent

Systems� Las Vegas� NV� June ����� Also available as Technical Report UUCS����	���

�BLO��
 Guruduth Banavar� Gary Lindstrom� and Douglas Orr� Type�safe composition of object modules�
In Computer Systems and Education� pages �����		� Tata McGraw Hill Publishing Company�
Limited� New Delhi� India� June ������ ����� ISBN 	�	�����	����� Also available as Technical
Report UUCS����		��

�Bra��
 Gilad Bracha� The Programming Language Jigsaw � Mixins� Modularity and Multiple Inheritance�
PhD thesis� University of Utah� March ����� Technical report UUCS����		�� ��� pp�� ONR ����
report�

�Bru��
 Kim B� Bruce� A paradigmatic object�oriented programming language� Design static typing and
semantics� Technical Report CS����	�� Williams College� January ��� �����

�Cha��
 Craig Chambers� Customization� Optimizing compiler technology for self� a dynamically typed
object�oriented programming language� In SIGPLAN ��� Conference on Programming Language

Design and Implementation� Jun �� � ��� �����

�Cha��
 Steve Chamberlain� libbfd� Free Software Foundation� Inc� Contributed by Cygnus Support�
March �����

	�

�CIJ���
 Roy H� Campbell� Nayeem Islam� Ralph Johnson� Panos Kougiouris� and Peter Madany� Choices�
frameworks and re�nement� In Object Orientation in Operating Systems� pages ����� Palo Alto�
CA� October ����� IEEE Computer Society�

�CM��
 Luca Cardelli and John C� Mitchell� Operations on records� Technical Report ��� Digital Equip�
ment Corporation Systems Research Center� August �����

�COR��
 Object Management Group� The Common Object Request Broker� Architecture and Speci�cation�
December ����� Revision ����

�CP��
 William Cook and Jen Palsberg� A denotational semantics of inheritance and its correctness�
In Proc� ACM Conf� on Object�Oriented Programming� Systems� Languages and Applications�
pages �������� �����

�Deu��
 L� Peter Deutsch� Design reuse and frameworks in the Smalltalk��	 programming system� In
Ted J� Biggersta� and Alan J� Perlis� editors� Software Reusability� volume �� pages ������ ACM
Press� �����

�ES�	
 Margaret A� Ellis and Bjarne Stroustrup� The Annotated C�� Reference Manual� Addison�
Wesley� Reading� MA� ���	�

�GHJV��
 Erich Gamma� Richard Helm� Ralph Johnson� and John Vlissides� Design Patterns� Elements of

Reusable Object�Oriented Software� Professional Computing Series� Addison�Wesley Publishing
Company� �����

�Gin��
 Robert A� Gingell� Shared libraries� Unix Review� ����������� August �����

�Gor��
 Michael J� C� Gordon� The Denotational Description of Programming Languages� Springer�
Verlag� �����

�GR��
 Adele Goldberg and David Robson� Smalltalk��	� The Language and its Implementation�
Addison�Wesley� �����

�HP��
 Robert Harper and Benjamin Pierce� A record calculus based on symmetric concatenation� In
Proc� of the ACM Symp� on Principles of Programming Languages� pages �������� January �����

�JR��
 Ralph E� Johnson and Vincent F� Russo� Reusing object�oriented designs� Technical Report
UIUCDCS �������� University of Illinois at Urbana�Champagne� May �����

�KdRB��
 Gregor Kiczales� Jim des Rivi�eres� and Daniel G� Bobrow� The Art of the Metaobject Protocol�
The MIT Press� Cambridge� MA� �����

�KLM��
 Gregor Kiczales� John Lamping� and Anurag Mendhekar� What a metaobject protocol based
compiler can do for lisp� Unpublished report� A modi�ed version to be presented at the OOPSLA
��� workshop on O�O Compilation�� �����

�Lee��
 Arthur H� Lee� The Persistent Object System MetaStore� Persistence Via Metaprogramming�
PhD thesis� University of Utah� June ����� Technical report UUCS����	��� ��� pp�

�OBLM��
 Douglas Orr� John Bonn� Jay Lepreau� and Robert Mecklenburg� Fast and �exible shared
libraries� In Proc� USENIX Summer Conference� pages �������� Cincinnati� June �����

�OM��
 Douglas B� Orr and Robert W� Mecklenburg� OMOS � An object server for program execution�
In Proc� International Workshop on Object Oriented Operating Systems� pages �		��	�� Paris�
September ����� IEEE Computer Society� Also available as technical report UUCS����	���

�OMHL��
 Douglas B� Orr� Robert W� Mecklenburg� Peter J� Hoogenboom� and Jay Lepreau� Dynamic pro�
gram monitoring and transformation using the OMOS object server� In Proc� of the
�th Hawaii

International Conference on System Sciences� pages �������� January ����� Also available as
technical report UUCS����	���

	�

�OMHL��
 Douglas B� Orr� Robert W� Mecklenburg� Peter J� Hoogenboom� and Jay Lepreau� Dynamic
program monitoring and transformation using the OMOS object server� In The Interaction

of Compilation Technology and Computer Architecture� Kluwer Academic Publishers� February
�����

�See�	
 Donn Seeley� Shared libraries as objects� In Proc� USENIX Summer Conference� Anaheim� CA�
June ���	�

�VL��
 John M� Vlissides and Mark A� Linton� Unidraw� a framework for building domain�speci�c
graphical editors� In Proceedings of the ACM User Interface Software and Technologies ���

Conference� pages ������ November �����

�WBG��
 Beata Winnicka� Francois Bodin� and Dennis Gannon� C objects for representing and ma�
nipulating program trees in the Sage system� Presented at the O�O Compilation Workshop
at OOPSLA� October �����

�WGM��
 A� Weinand� E� Gamma� and R� Marty� ET� an object�oriented application framework in
C� In Proceedings of OOPSLA ���� pages ������ ACM� November �����

Last revised December �� ����

		

