
Modular Language Processors
As Framework Completions

Guruduth Banavar
Gary Lindstrom

UUCS�������

Department of Computer Science
University of Utah

Salt Lake City� UT ����� USA

October ��� ����

Abstract
The conceptual and speci�cational power of denotational semantics for programming language

design has been amply demonstrated� We report here on a language implementationmethod that is
similarly semantically motivated� but is based upon object	oriented design principles� and results in

exible and evolvable language processors� We apply this technique to the area of object	oriented
�O	O� languages� in the form of a general metalevel architecture for objects and inheritance that
facilitates the development of compilers and interpreters for O	O languages� This development
strategy maintains architectural modularity by mapping conceptual language design decisions to
isolatable parts of resulting language processors� Our architecture� which is presented as an O	
O framework� is characterized by �i� support for a broad set of modularity features including
encapsulation and strong typing� and �ii� an 
unbundled� view of inheritance� semantic features
of which are decomposed by means of a set of module combination operations �combinators��
We describe an implementation of our framework in C��� and assess its utility by constructing
a compiler for a simple O	O extension to the programming language C� We further argue the

exibility of the resulting processor by outlining the incorporation of several signi�cant extensions
to the basic module language� We claim that the use of such a framework for compiler construction
has many advantages� including a systematic language development method� processor software
reuse� language extensibility� and potential for interoperability among languages��

�This research was sponsored by the Defense Advanced Research Projects Agency �DOD�� monitored
by the Department of the Navy� O�ce of the Chief of Naval Research� under Grant number N���������J�
���	
 The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing o�cial policies� either expressed or implied� of the Defense Advanced Research
Projects Agency or the US Government




� Introduction

The denotational approach to programming language design employs abstraction to specify prop	

erties that a language�s implementation must satisfy� The conceptual and speci�cational power of

this approach is widely acknowledged �AW���� However� the direct realization of language proces	

sors embodying a denotational semantic speci�cation in modular and evolvable form remains an

elusive research goal �JS����

One may ask whether alternative semantic formulations might more e�ectively bridge this

gap between language design and implementation� Recently� concepts fundamental to object	

oriented programming have been successfully speci�ed in a formal semantic manner �Coo��� Bra����

Moreover� object	oriented programming and design techniques have matured through extensive

application in a variety of areas� We capitalize upon both of these advances� and propose a metalevel

O	O architecture for an object system �i�e� an object model and associated inheritance semantics�

that is suitable for modeling and building processors for a wide range of O	O languages�

Our architecture does not encompass all aspects of a comprehensive language design � for

example� it does not prescribe control structures� or the base computational value domain� Rather�

we provide key abstractions and semantic structures characteristic of an object system constituting

a starting point for the language developer� We also seek to make our object model 
open	ended�� so

that it can used in a variety of situations� This is achieved �i� conceptually by 
unbundling� the class

concept and inheritance semantics traditionally found in O	O languages� and �ii� implementationally

by formulating our model as an O�O framework �JR��� that uses abstract classes� i�e� incompletely

de�ned classes that are completed by the framework user� The framework user can either adopt

the default semantics of the object system� or re�ne it to suit particular language requirements�

The advantages of using such a framework for developing compilers are many� and accrue both as

a result of object	orientation and our speci�c metalevel architectural design� As a result of object	

orientation� we seek the well	known advantages of �i� software reuse and consequently reduced

development e�ort� and �ii� design extensibility� i�e� incremental re�nability of abstractions� Other

advantages include�

� Language extensibility� the ability to layer object systems on legacy non	object languages�

� Evolvability� the ability to easily model existing forms of inheritance� hence to re	engineer

compilers for existing languages� thus facilitating further evolution� e�g� adaptation of new

advances in type checking �BG���� or combination of inheritance hierarchies �OH���� and

� Experimentation� the ability to re�ne and combine the framework abstractions in 
exible

ways to create new and interesting object models and to investigate the resulting feature

interactions�

We illustrate these advantages in Section �� where we describe the construction of a processor

for an O	O extension to the programming language C as a completion of our framework� A further

advantage of our approach that we are currently investigating is the potential for multi	lingual O	O

�



programming� We expect this to be the result of logical compatibility of objects across independent

extensions of the framework� in the same sense that common calling sequences facilitate function	

level inter	language linking �Har����

Traditionally� abstraction and reuse in compiler construction have been fruitfully applied to

implementation data structures� e�g� symbol tables� parse trees� etc� It seems natural to extend

these advantages by abstracting concepts in the computational domain of the language being im	

plemented� It is crucial� however� that the identi�ed abstractions be carefully conceived� in order to

maximize their range of applicability� We believe that we have identi�ed such a set of abstractions�

broadly applicable to object	oriented languages and systems�

In formulating our object architecture� we have realized that the notions central to O	O pro	

gramming� such as the class construct and composition by inheritance� are applicable not only to

O	O languages� but to a range of module manipulation systems as well� For example� object �les

produced by a compiler are composed by linking operations� Indeed� we have reused the same

framework abstractions as a basis for a programmable linker�loader �OM���� Private or shared

system libraries constitute yet another example �See���� Hence� we have found it advantageous to

address this problem in its most general terms� by abstracting it to a language neutral plane�

It has been recognized in the past that object	oriented languages and systems are themselves

perfectly suitable domains for object	oriented design� The idea is to model notions fundamental to

O	O programming� such as class� themselves as objects� This has been exploited in the design and

construction of O	O languages and environments� such as Smalltalk �GR��� and the CLOS Meta

Object Protocol �KdRB���� However� such metalevel architectures are tightly coupled with their

base languages within highly dynamic and re
ective environments� While this coupling enhances

application development 
exibility� it causes the metalevel architecture to be too restrictive for

full	
edged language and system development� Moreover� it is di�cult to untangle these metalevel

architectures from their linguistic environments for separate reuse�

Our metalevel architecture� in contrast� focuses on a broader range of of concerns� including

the development and exploration of new O	O languages as well as providing a basis for object

management system services� In particular� we are strongly motivated by modular construction of

compilers for O	O languages� In presenting our architecture� we �rst describe our object model

followed by a framework formulation of it� We then describe the development of an experimental

object	oriented extension to the programming language C using our framework� and assess the

resulting 
exibility of our processor by sketching several further extensions to the language� Finally�

we relate our work to similar e�orts and summarize our conclusions�

� The Object Model� Modules And Operators

With the emergence of complex language mechanisms such as inheritance in O	O programming�

it no longer su�ces to design language processors based solely on a �xed set of implementation	

motivated considerations� Rather� one must secure the design to sound semantic ground� The

�



concepts outlined in this section provide the semantic basis for the design of our metalevel language

architecture�

The range of current O	O languages embody varying notions of the class concept� each of

which di�ers from others in subtle but important ways� Nevertheless� it is undeniable that the

di�erent notions share a common semantic goal� to facilitate the structuring and combination of

software units with well	de�ned interfaces� We use the term module to refer to such software

units� Classes traditionally ful�ll a variety of roles� including de�ning modules� de�ning subtyping

relationships� controlling visibility � e�g� via public�protected�private interfaces�� constructing in	

stances of a de�ned module� modifying and reusing existing program units via single inheritance�

combining program units using multiple inheritance� resolving name con
icts� etc� This realization

motivates the formulation of our central abstraction� module� in such a way that it permits aspects

of the class construct such as inheritance and visibility control to be 
unbundled� as operations

generically applicable to modules�

We draw on previous work �BL��� Bra���� which has succeeded in formulating the module notion

and operations on modules as a set of operators in a module manipulation language called Jigsaw�

Jigsaw is unusually powerful in accommodating di�ering senses of modules� Bracha and Lindstrom

�BL��� Bra��� have given a rigorous formal semantics for Jigsaw�s module abstraction� building

on the work of Cardelli� Cook� Harper� Palsberg� Pierce� and others �HP��� CM��� Coo��� CP���

BC���� For our purposes� an informal sketch of the semantics of Jigsaw will su�ce�

In Jigsaw� a module is simply a self	referential scope� associating labels �identi�ers� with mean	

ings� These meanings can be typed values� bound through de�nitions� or simply types speci�ed via

declarations �de�ning a label subsumes declaring it�� Declarations are used to create abstract mod�

ules� which can be manipulated but not instantiated� Modules do not contain any free references�

i�e� references to labels that are not associated with any declarations� although nested modules

may contain references to labels declared in statically surrounding modules� Every module has an

associated interface� which comprises the labels and types of all its visible attributes� Types in

Jigsaw are purely structural� i�e� sets of label	type pairs� without order or type name signi�cance�

Modules may be combined with other modules to achieve the e�ects of single and multiple

inheritance� visibility control� rebindability� and sharability� etc� Such e�ects are made possible via

a suite of module operators �combinators� designed to ful�ll speci�c isolatable semantic roles� For

concreteness� an example of Jigsaw modules and module combination is given in Figure �� in which

a generic surface syntax is used� The modeling power of Jigsaw�s module abstraction and module

combination operators is fully investigated in �BL����

� Jigsaw� A Modularity Framework

For expository purposes� Jigsaw has been described thus far as a concrete language� The crucial

point� however� is that one may view Jigsaw merely as an abstract module manipulation language�

That is to say� it is possible to formulate Jigsaw in such a way that it does not prescribe the com	

�



Name Sample Module

O� fint x� fun f �int y� � g�g�y��� fun g �int z� � z�xg

O� fint x � ��� fun q �real z� � z�zg

O� fint y � ��� fun g �int w� � w	yg

Operation Result

O� copy f as h fint x� fun f �int y� � g�g�y��� fun g �int z� � z�x� fun h �int y� � g�g�y��g

�A de�nition copy is added�

O� freeze g fint x� fun f �int y� � g�g�y��� fun g �int z� � z�x g

�O� is unchanged� but g becomes non�rebindable�

O� hide g fint x� fun f �int y� � g
�g
�y��� fun g
 �int z� � z�xg

�Component g
 is not externally visible�

O� merge O� fint x � ��� fun f �int y� � g�g�y��� fun g �int z� � z�x� fun q �real z� � z�zg

�Declarations and de�nitions collected � matched� con�icts disallowed�

O� override O� fint x� fun f �int y� � g�g�y��� int y � ��� fun g �int w� � w	yg

�Merge with con�icts resolved in favor of right operand�

O� rename g to h fint x� fun f �int y� � h�h�y��� fun h �int z� � z�xg

�Declaration and all uses consistently renamed�

O� restrict g fint x� fun f �int y� � g�g�y��� fun g � int � intg

�Declaration stripped of its de�nition�

O� show f fint x
� fun f �int y� � g
�g
�y��� fun g
 �int z� � z�x
g

�Complement of hide � x
 and g
 are hidden�

Figure �� Jigsaw modules and operators�

putational domain� or the control structures� or even the surface syntax of the concrete language in

which it is used� This formulation is facilitated by the use of O	O frameworks� where the concept

of abstract classes is central� In this section� we present a framework for module manipulation en	

compassing the module manipulation language semantics presented above� We call this framework

the Jigsaw framework�

In essence� an O	O framework �JR��� expresses the design of a software system in terms of ob	

jects and interactions between them� typically represented using a general purpose O	O program	

ming language� Frameworks are intended to capture the essential abstractions in an application

domain� thereby allowing a developer to build applications e�ciently by �i� specifying classes that

inherit from classes in the framework and �ii� by con�guring� instances of classes in the framework�

Thus� applications are built by completing a framework in speci�c dimensions delineated by the

framework designer� Frameworks mostly comprise abstract classes� which are concretized by an

application� As a result� a framework can be thought of as being parameterized on a completion

that provides call back code � a sort of bi	directional function abstraction� Frameworks thus pro	

mote design and code reuse through O	O concepts such as inheritance and polymorphism� Several

�Connecting objects constructed from prede�ned concrete classes �JR����

�



frameworks have been developed� �rst for user interfaces� and subsequently for many other domains

as well �Deu��� VL��� WGM��� CIJ�����

In a re
ective language environment such as the CLOS MOP� the framework implementing the

metalevel architecture is speci�ed in the language itself�� However� as mentioned earlier� Jigsaw is

best viewed not as a concrete language� but as an abstract module manipulation language that can

serve as a framework for the metalevel architectures of other O	O languages� Hence� we are in a

position to distinguish this abstract language from the following two concrete languages� the frame�

work implementation language Lf � which is the language used to implement the Jigsaw framework�

and the client language Lc� which is the language for which a processor is to be constructed by

extending �completing� the Jigsaw framework� In traditional compiler writing� these two languages

correspond to the implementation language of a compiler and the language that the compiler is to

implement�

��� The Abstractions in the Framework

In Figure �� we present an overview of the abstractions of the Jigsaw framework� For the framework

implementation language Lf � we adopt a generic O	O language surface syntax that should be fairly

easy to understand� Each box stands for an abstraction� with shaded boxes standing for abstract

classes �i�e� incompletely speci�ed� while non	shaded ones are concrete �i�e� instantiable�� The text

within each box is the interface �or protocol� of the corresponding class�

The concrete class Module captures the Jigsaw notion of module in its broadest conception�

Objects of this class represent modules in the client language Lc� each with a set of label	binding

pairs initialized via the method make module��Attribute��� Such module objects can be combined

with other module objects using module combination operators which are methods in the interface

of the class Module �cf� Figure ���

Module objects in Lc are instantiated by invoking the method instantiate���� This method

returns an object of class Instance which represents instances of modules in Lc� The key method

that instance objects respond to is select�Label�� which when supplied a label� returns its binding�

The select�Label� method thus corresponds to the notion of sending a message to an instance

in Lc� and encapsulates the functionality of determining the exact binding to return� The latter

can be implemented in several ways� but the important point is that the framework determines a

common logical layout for instances and a mechanism by which to use that layout� This facility

can be capitalized upon to provide interoperability among di�erent client languages� An ability for

introspection �examination of meta	information� is provided for Instance objects via the method

module of���

For the purposes of typechecking� the interfaces of module objects are captured as objects of

�It is worth noting that the MOP consists entirely of concrete classes� hence it is more like a completion of a

metalevel architectural framework�
�Jigsaw does not model the notion of object initializers �e�g� constructors in C��	 explicitly� instead initializers

are ordinary methods that are called after instantiation�

�



self_refer: Label->

LEGEND:

Inheritance

List of objects of type X

Class

class Binding

class Label

class Attribute

label_eq: Label->Bool

[X]

store: Value->void
contents_of: void->Value
type_of: void->Type

class Location

make_fixed: void->Binding

class Reference

type_of: void->Type

class Value

subtype: Type->Bool
type_eq: Type->Bool

class Type

instantiate: void->Instance
interface_of: void->Interface

show: [Label]->Module

make_module:[Attribute]->Module

merge: Module->Module
override: Module->Module
restrict: Label->Module
freeze: Label->Module

hide: Label->Module

copy_as: Label, Label->Module
rename: Label, Label->Module

self_refer: Label->Reference
non_local: Label->Binding

class Module

subinterface: Interface->Bool
interface_eq: Interface->Bool

class Interface

module_of: void->Module

select:Label->
{Value,Location,Module}

{Value,Location,Module}

class Instance

Figure �� Overview of the Jigsaw framework

class Interface� When module objects are combined using module operators� their type compati	

bility is checked by comparing the interface objects corresponding to the modules with the help of

methods in class Interface� The type checking rules incorporated into the Jigsaw framework are

explained in detail in Bracha �Bra����

As explained earlier� the framework provides a rather generic object model �via the module

abstraction� and nothing more� As a result� the above abstractions are de�ned relative to the

notions of value� type and even label in a client language� over which Jigsaw abstracts� The client

language must provide its own concept of values� types and labels� These concepts are there	

fore incompletely speci�ed abstractions within the Jigsaw model� and are speci�ed as abstract

classes Value� Type� and Label� Jigsaw requires label objects to supply a notion of label equality

via the method label eq�Label�� and value objects to return type objects when queried with

type of��� Type objects in turn must supply notions of type equality �type eq�Type�� and sub	

typing �subtype�Type��� A particular client language is implemented by supplying de�nitions for

these methods in these abstract classes� and possibly by extending the functionality �interface�

of abstractions� or by adding other abstractions� These de�nitions and extensions constitute an

implementation of the client language�

Mutable state �i�e� instance variables� is modeled in Jigsaw via the class Location� Location

�



objects hold storable values� the exact de�nition of which is client dependent� The default de�nition

of Location comprises value objects and instance objects as storable values� but a particular

client language could re�ne this to include locations �pointers�� types� interfaces� or even modules�

This exempli�es one virtue of the framework approach to language development � isolation and

illumination of the options available to the language designer�

The reader might have noted the correspondence between the above framework abstraction

design and denotational models of programming languages �Gor���� Denotational semantics applies

functional programming to abstract over language functionality� Here� we apply a denotational

description of modularity in O	O programming to abstract over language modularity� Furthermore�

the framework approach is intended to provide the language developer a modular means by which

to design and implement a language�s value domain� type system� etc� relatively independently of

each other and independent of abstraction mechanisms in the language� Once the basic elements

of the language are designed� the modularity mechanisms available in the Jigsaw framework are

directly available for incorporation into the language�

A framework is meant to implement reusable abstractions� Although the design of the Jig�

saw framework was motivated by purely semantic concerns� it is currently �nding applications in

a variety of situations� some of which were unanticipated� e�g� the programmable linker OMOS

�OM���� Indeed� this framework�s asserted 
exibility bene�ts are currently being demonstrated in

a second generation of OMOS� in which we are incorporating type	safe linkage of object modules�

This application attests to the utility of our framework abstractions � although the framework

will undoubtedly undergo unforeseen changes as its various completions mature� As has often been

observed� repeated reuse enhances and validates the reusability of framework abstractions�

��� Encapsulation And Typechecking

Fundamental in the design of the Jigsaw module model are the related concerns of encapsulation

and type systems� We believe that they are crucial for constructing reliable� readable� and e�cient

large	scale software� Our notion of encapsulation essentially distills to �i� separating interface from

implementation� and �ii� allowing external access to an object only via its interface� The hide

operator �and its dual show� enables encapsulation by removing its attribute parameter from the

interface of its module �see Figure ��� The method select�Label� of class Instance implements

access to externally visible attributes of an instance object �i�e� encapsulated access�� while self	

reference within individual objects is accomplished via the method self refer�Label�� Jigsaw

models object�level encapsulation�� as opposed to class	level encapsulation as found in languages

such as CLU �LG��� and C�� �ES���� where objects of a class have access to each other�s internals�

A module type system is built into the Jigsaw framework� This default type system is struc�

tural rather than name�based� the latter being found in most current O	O languages� The no	

tion of module types is represented by the framework class Interface� and module composi	

�The strongest form of encapsulation
 in which encapsulation walls exist around each individual object�

�



tion operators verify type compatibility by calling the methods interface eq�Interface� and

subinterface�Interface� of class Interface� which implement module type equivalence and

subtyping respectively� These methods in turn rely on the client supplied notions of type equiva	

lence and subtyping de�ned in the methods type eq�Type� and subtype�Type� of class Type� Such

an architecture makes it fairly straightforward to develop even typeless �i�e� singly	typed� languages

since the entire type system relies on the notions of type equivalence and subtyping supplied by

class Type�

As will be surveyed in Section ���� it is possible to design a range of type systems with varying

degrees of expressiveness depending upon client language requirements� such as separate compila	

tion and static typechecking�

��� Implementation

The generic nature of our module abstraction ensures that it can be represented easily in essentially

any existing O	O language� In our prototype implementation of the Jigsaw framework� we have

chosen C�� �ES��� as our framework implementation language Lf � In this section� we comment

on a few aspects of this implementation�

We have included the following supporting classes in our framework� �i� class Binding� which

is a generalization of all types of entities that can be bound to a label within a module �a value�

a location or a nested module to create a label de�nition� or a type or interface to create a label

declaration�� and �ii� class Attribute which implements a node in a linked list of label	binding

pairs� with operations to add� remove� �nd� etc� such pairs�

Nested modules are modules that are bound to labels within other modules� Attributes within

nested modules are permitted to access label de�nitions in lexically surrounding scopes� i�e� non�

local attributes� Not unexpectedly� such access is implemented in class Module as a private pointer

variable parent that points to an instance of the surrounding module� The functionality of accessing

a non	local attribute is encapsulated in the method non local�Label� in class Module�

Reference to self is an important notion in O	O� and enables dynamic binding� which is typically

implemented via a level of indirection using dispatch tables� e�g� virtual function tables in C��� A

simple form of dispatch is built into the Jigsaw framework in the implementation of the methods

select�Label� and self�refer�Label� of class Instance� Depending on client requirements� the

default can be re�ned to incorporate alternate dispatch mechanisms �HC��� Cha����

Interestingly� the Jigsaw module model requires a form of delayed binding occurring not at run	

time �i�e� dynamically� but rather at module combination time� This is because module attributes

are by default rebindable� but can be made non	rebindable at any point by applying the module

operator freeze� The freeze operator makes references to its label argument �xed� or static� In

our implementation� we capture references to rebindable attributes as objects of class Reference�

whose method make fixed�� makes an attribute non	rebindable� Class Reference objects that

remain rebindable at instantiation time take part in the creation of a dynamic dispatch table�

Another important implementation issue concerns the provision of methods for parsing the

�



surface syntax of client languages� Ideally� we would have an abstract method in class Module� such

as parse module� Stream��Module� that produces a module object given a Stream of characters�

as de�ned by the client� This method would be an abstract method since it would construct a parse

tree for the given stream by calling parse methods of other classes� e�g� parse value� parse type�

and parse label� which are expected to be provided by the client� However� generally available

parser technology �e�g� LALR� is based upon monolithic parser speci�cation and does not yet permit

modular speci�cations� Therefore� we have chosen to provide a default module surface syntax as a

yacc�lex processable grammar �le separate from the Jigsaw framework itself� The semantic actions

of rules in this grammar create and process modules using the framework classes� An alternate idea

under consideration is to incorporate modular recursive descent parsers into each of the framework

classes�

� JigC� A Module Extension to the Programming Language C

This concludes our general discussion of the Jigsaw framework� In this section� we outline the design

and implementation of an upwardly compatible module extension of the programming language C

�KR���� called JigC� which is being developed to showcase and further evaluate the Jigsaw module

model� In this experiment� we �rst retro�tted a module system onto an existing language� and

implemented a processor for it using our framework� We demonstrate the 
exibility built into

this language processor by surveying various design extensions to the basic module language� and

outlining their incorporation into the language processor� We hope to show that once the more

di�cult task of retro�tting the module system is accomplished� later extensions can be performed

with relative ease�

The objective of this section is to give the reader a 
avor of the versatility and �re�usability of

our framework� as well as the 
exibility and evolvability of the client language processor� We begin

by delineating generically the steps in realizing Lc modules starting from the metalevel architecture�

��� Realization of Modules

Our approach to characterizing modules involves four levels of abstraction and concretization�

�� �Module abstraction�� This is class Module� the framework class representing Jigsaw�s

notion of modules� Class Module is concrete� because it includes a generic de�nition of all

its attributes� However� it remains indirectly abstract� since it relies on abstract auxiliary

classes� as shown in Figure ��

�� �Module in Lc�� The Jigsaw notion of modules tailored to a particular Lc � is de�ned by

providing concrete de�nitions of these auxiliary classes� and�or by subclassing class Module in

order to re�ne or customize it� as appropriate for Lc modules� This realization is introduced by

the framework completion� i�e� the implementation of the Lc language processor� For example�

�



JigC�s re�ned notion of modules presented in Section ��� is represented by class Module jc�

a subclass of class Module�

�� �Individual Lc modules�� Once the Lc notion of modules is made complete� individual Lc
modules can be created� with speci�c interfaces� labels and bindings� Lc modules are created

as speci�ed in Lc source programs by the Lc processor by creating Module objects and invoking

the make module��Attribute�� method of class Module�

�� �Lc module instances�� Finally� if the concept is supported by Lc� instances �objects� or

the compile	time representations thereof� derived from particular Lc module de�nitions are

created as speci�ed in Lc source programs through invocations of the instantiate��method

of an individual Lc module�

This four	stage process is the way by which the Jigsaw module model is exploited in an Lc

language processor� It is important for the reader to understand each of the above levels� and to

maintain their conceptual separation�

��� The Basic JigC Module System

A language such as JigC that is based on the Jigsaw module model is advantageous over similar

languages �e�g� C��� for the same reasons that Jigsaw modules are advantageous� namely �i� it

provides a uniform module model with unbundled inheritance operators� �ii� it supports a static

structural �interface	based� module type system� and �iii� it supports nested modules� a powerful

feature �e�g� enabling combination of inheritance hierarchies �OH����� In addition� implementing

the JigC compiler as a completion of the Jigsaw framework brings with it the important bene�t of

evolvability� which is the subject of Section ����

The interactions of the module system with the client language �C� in our case� are numerous�

and sometimes subtle� For example� a requirement in the design of JigC is backward compatibility

with C� which implies that existing C programs can also be viewed as JigC program� From the JigC

point of view� a program �le may itself be regarded as a module in which C declarations� �constant�

variable and function declarations�� C function de�nitions� and JigC declarations�de�nitions are

module attributes� A complete JigC program is thus a fully concrete module that contains a

function	valued attribute called main� It might not be immediately obvious what it means to

instantiate an ordinary C program �le when viewed as a module � in JigC� each execution of

the program is viewed as an instantiation� Furthermore� since location attributes are by default

regarded as per�instance locations in the framework� each instantiation of a module containing

such an attribute will get a new copy of the location � consistent with ordinary models of program

execution�

�The term declaration used in the context of C has a di�erent meaning than that of Jigsaw� In C
 a variable

declaration allocates storage
 while in Jigsaw
 a declaration speci�es a type� In this paper
 the term declaration is

used in the Jigsaw sense unless noted otherwise�

��



Existing C Syntax JigC Attribute Semantics

int x� Location �of type int� de�nition

extern int x� Location �of type int� declaration

int x � �� Location �of type int� de�nition w�initialization

static int x� Location �of type int� de�nition subjected to hide

const int x � �� Value �of type int� de�nition

extern const int x� Value �of type int� declaration

int foo �float x� f ��� g �function� Value �of type float��int� de�nition

extern struct s f ��� g �aggregate� Value �of type s� declaration

Figure �� JigC attribute syntax and semantics examples

const int g � ��

module Point 	 PointType f
int x � ��

Boolean atOrigin �� f if �x �� �� return TRUE� else return FALSE� g
g�
main �� f Point p� p�x � g� ��� g

Figure �� A simple JigC program

If existing ordinary C programs are to be viewed as JigC modules� each top	level C declaration

or de�nition must correspond to a JigC module attribute� Figure � shows such correspondences�

In addition� JigC introduces new keywords related to the module system such as module� merge�

override� etc� Figure � shows a simple JigC program in which the outermost module �i�e� the

entire program �le� which we will refer to as FILE� contains three attributes� a value de�nition g of

type int� a module de�nition Point of type PointType �which in turn contains two attributes� a

per	instance location de�nition x of type int with initial value �� and a �function� value de�nition

atOrigin of type void��Boolean�� and a �function� value de�nition main of type void��void�

The modules FILE and Point are both concrete� i�e� all their attributes are de�ned and not just

declared� and hence they are instantiable�

In implementing a processor for JigC as a completion of the Jigsaw framework� we must �rst

understand the notion of identi�ers in our client language C� We implement this notion as a subclass

of the framework class Label�

Next� we independently describe the value �and corresponding type� domain of C � primitive

data types such as integers� 
oats� characters� etc�� aggregate types such as structs� and unions�

and function types� The framework class Value is subclassed into several classes to implement

each of the above� and the class Type is subclassed to implement corresponding notions of type�

Since C relies on name	based typing� type equivalence is name equivalence in most cases� the

exceptions are type equivalences de�ned in the language �e�g� int is equivalent to short int� and

types introduced via typedefs� The subtyping relationship surfaces in two situations� �i� type

��



conversion rules de�ned in the existing language �e�g� C�s integral promotion� char to int�� and

�ii� a JigC augmentation of C�s function typing� the contravariant subtyping rule for functions�

which is necessitated by the existence of a subtyping relation on Instance types� The function

subtype of class Type is implemented by taking the above rules into account and also the relations

of re
exivity and transitivity�

In the basic JigC language� class Location is subclassed in order to incorporate location objects

as storable values �for modeling C pointers�� The default semantics of the framework class Location

includes only value objects and instance objects as storable values�

The above specializations of the abstract framework classes together with the default semantics

provided by the Jigsaw framework accounts for a large portion of our language implementation�

The rest of the language� primarily control structures� can be dealt with using traditional tech	

niques� We have chosen to translate JigC programs to C programs �as a result� our translator is

essentially a pre	processor to the C compiler�� Although we did not have to specialize the semantic

notion of modules� we do �nd the need to re�ne the functionality of modules in two areas due to

compilation requirements� First� the notion of instantiation is re�ned in order to perform layout and

initialization for runtime instances� and correspondingly� the methods of class Instance are re�ned�

Second� methods named translate to C�� are added to each of the framework abstractions�

The �nal task is to reverse	engineer the existing C language grammar to incorporate the module

system� and add semantic actions that utilize the framework classes and their re�nements� The

architecture of our JigC implementation is shown in Figure ��

C++ compilation
yacc/lex processing +

uses
completes

a.outC compilerC programJigC source program JigC preprocessor

JigC parser (yacc/lex)JigC completion (C++)

Jigsaw Framework (C++)

Figure �� JigC implementation architecture

��� Extensions for Advanced Modularity Features

The central purpose in our developing a module extension to a legacy language was to experiment

with advanced modularity concepts� Therefore� it is extremely important to us that the design

and implementation of our experimentation vehicle be highly extensible� Our framework approach

to language implementation has enabled us to isolate the parts of our language processor that

need to change as the design of the language evolves� and specify these parts in an evolvable man	

ner� To illustrate� consider the incorporation of recent advances in static type checking� involving

programmer access to self and its type�

��



By default� Jigsaw models implicit access to self� i�e� module attributes refer to siblings by label�

A more expressive static type system would demand explicit programmer access to self and its type�

Incorporation of explicit access to self is quite straightforward� but type checking the type of self

is more problematic�

Using our framework� the type of self� which is an instance type�� can be designed as a dis	

tinguished object of class Interface� Furthermore� if function parameters of self type are to be

permitted in a client� as described extensively in recent literature �Bru��� Bru���� two major re�ne	

ments to the default type system would be required� Firstly� in the default formulation of Jigsaw�

the hide operator permits removing an attribute from a module�s public interface after the fact� i�e�

module interfaces can evolve non	monotonically� As a result� usages of incoming function parame	

ters that are declared to be of the type of self cannot be type checked at module de�nition time�

since the type of self could arbitrarily change under inheritance and as a result� no assumptions can

be made regarding the type of self� In order to alleviate this situation� class Attribute must be

subclassed to model public attributes� i�e� methods that cannot be hidden� Secondly� there would

be a need for type checking inherited types� � this can be done by subclassing class Interface

and class Type� Language design issues such as these are discussed in detail in the literature

�HC��� Bru��� Bra��� � the key point is that a wide range of type systems can be accommodated

as re�nements of the basic formulation of the Jigsaw framework�

In its current form� a function de�ned within a JigC module has access to the instance that it

is executing within via the keyword self� In addition� the type of self can be denoted using the

keyword selftype	� As described above� attributes that cannot be hidden are speci�ed by pre�xing

them with the keyword public� A static type error results if an attempt to hide a public attribute

is made� An example program with these typing features is shown in Figure ��

In the rest of this section� we enumerate several other design extensions to the basic JigC module

system� and outline their 
exible incorporation into the language processor� Some of the following

extensions have been incorporated into JigC� while others are still under development�

� Per�module shared locations� Consider the incorporation of per	module locations� i�e� locations

that are shared by all instances of the containing module �as in static members in C����

This requires �i� syntactically� incorporation of a new keyword �such as shared� into the

grammar� �ii� class Location to be subclassed to class sharedLocation� and �iii� re�nement

of the instantiate method of class Module to share objects of class sharedLocation�

� Name�based typing� If it is necessary to design a name	based type system for a particular client

language� this can be achieved by incorporating the concept of brands �Nel��� BG��� into a

subclass brandedInterface of class Interface� and re�ning the corresponding constructor

and equivalence methods�

�Although instance types are generally regarded as distinct from module types �i�e� interfaces	
 they can be

modeled as Interface objects�
�Types that are not subtypes but share a similar recursive nature�CCHO����
�This corresponds to the bound variable MyType in �Bru�
�

��



� Bundled inheritance semantics� If a client requires retention of particular compound inher	

itance semantics� such features can be modeled using Jigsaw operators� For example� one

might desire to reconstruct an existing language such as C�� using the Jigsaw approach so

that future evolution� such as an enhanced type system or inheritance semantics� is possible�

� A language for linking� As mentioned in Section ���� Jigsaw has another embodiment in

OMOS� which o�ers programmable combination of compiler	emitted object �les� In addition

to supporting the module combinators illustrated in Figure �� OMOS extends the Jigsaw

framework in several respects� including �i� address space mapping constraints� and �ii� con	

structed module caching� reuse and sharing� The result is a greatly enlarged conception

of object �le �module� manipulation and management� cast as a pervasive system service�

under which many value added features are deliverable� including portable shared libraries

�OBLM���� function interposition �BCLO���� and dynamic program monitoring and reorga	

nization �OMHL����

� Concurrent O�O programming� It is increasingly evident that the relationships between se	

quential and concurrent conceptions of O	O programming are inadequately understood� In

particular� several researchers have reported that inheritance� as commonly understood for

sequential O	O languages� gives rise to semantic anomalies and violations of encapsulation

when applied to concurrent O	O languages� Various remedies have been proposed �e�g�

�L���� Mes����� but none directly addresses the issue of migrating existing sequential O	O

code to concurrent settings� We conjecture that the Jigsaw framework� enhanced to support

asynchronous message dispatch via synchronization condition predicates managed as rebind	

able module attributes� will provide a more general and satisfying solution� We plan to test

this conjecture by porting JigC to the pseudo concurrent environment provided by Cthreads

�CD����

� Nested Modules� Thorough incorporation of nested modules in a language opens up new

semantic avenues� e�g� sharing� and several software engineering possibilities� e�g� combination

of inheritance hierarchies� While the Jigsawmodule model provides the capability for de�ning

and using nested modules� this has not yet been taken advantage of in the current JigC

language� and is being investigated in a continuing e�ort�

� Persistence� Jigsaw arose within the context of the Mach Shared Objects project� which

is building an persistent store for C�� and CLOS objects� Persistence raises many new

requirements� including �i� metalevel object information �e�g� class objects� or 
dossiers��� and

�ii� resolution of semantic issues such as whether persistence should be accorded to shared

module attributes� The Jigsaw framework directly provides a basis for dealing with issue �i��

in that modules �classes� already exist as tangible objects in our metalevel architecture� One

option in dealing with issue �ii� is to regard such an attribute as a persistent attribute� since

each execution of the program �le is regarded as an instantiation of the FILE module� This

��



module Point 	 PointType f
public	

extern int x�

selftype moveOne �� f self�x � self�x 
 �� return self� g�
g�
module NewPoint 	 NewPointType �

Point override f
public	

int x � ��

Boolean eq �selftype p� f return �self�x �� p�x�� g�
g�

main �� f
NewPoint p�� p
�

p��x � ���

printf ���d�� p��moveOne���x��

while ��p��eq�p
�� ���

���

g

Figure �� An extended JigC program using selftype

involves the creation of a subclass of class sharedLocation� say class persistentLocation�

and add corresponding persistence semantics to it and the instantiate�� method�

We are encouraged by our initial �ndings about the utility of our metalevel language architec	

ture� and we envisage future work in the directions indicated above� We also intend to evolve JigC

into genuinely useful language �hence a competitor to related languages like C���� believing that

the principles upon which it is based �e�g� structural typing with brands� are more advantageous�

We also foresee the exploration of fundamental issues concerning encapsulation� polymorphism and

type checking in O	O programming using this framework�

� Jigsaw and Re�ective Systems

The Jigsaw framework approach to building language processors has a relation to re�ective systems�

and is somewhat similar to languages with meta	object facilities such as the CLOS MetaObject Pro	

tocol �MOP�� and Smalltalk	�� metaclasses� The CLOS MOP supports user	rede�nable protocols

for meta	objects such as class� instance� generic function� method� etc� CLOS MOP provides the

basis for the development of a 
space of languages with the default language being a distinguished

point in the space�� Smalltalk	�� provides a highly intertwined collection of meta	classes�

Nevertheless� there are important di�erences between our approach and previous ones� Our

notion of modules is motivated by a desire to uniformly treat the semantics of inheritance� In

addition� encapsulation is an important semantic requirement in Jigsaw� since we believe that it is

crucial for software development in the large� Static typing is another important consideration in

��



Jigsaw� Furthermore� the Jigsaw class interfaces are derived from a rigorous semantic foundation�

rather than from the requirements of diverse language designs already in existence� As already

mentioned� the Jigsaw framework was speci�cally designed to facilitate the construction of modular

language processors and systems� and �nds applications in the interoperability among languages�

linkers and libraries� However� the Jigsaw framework can be used for many purposes that the CLOS

MOP has been put to use� notably persistent objects �Pae��� Lee����

� Conclusions

A framework	based approach to language processor design and implementation has been described�

This approach� called Jigsaw� relies on an abstract conception of software modules� re�neable in

several dimensions to characterize a large space of speci�c module formulations� A central prop	

erty of this framework is its exploitation of this module conception on two levels� within its own

organization� and within the language systems de�nable through it� Like traditional denotational

semantics� which uses functional programming to describe language functionality� Jigsaw uses mod	

ular programming to describe language modularity� Because frameworks are conveniently realizable

in today�s O	O languages� the Jigsaw approach directly lends itself to experimentation� We have

constructed a prototype of the Jigsaw framework in C��� which we have extended to JigC� an ex	

tensible compiler for C	based O	O programming languages� Our initial experience has encouraged

us to apply the Jigsaw approach to more diverse aspects of module combination and management�

including programmable linkers� persistent object stores� and concurrent object systems�

Acknowledgements

We are indebted to Gilad Bracha for his fundamental work in conceiving Jigsaw� his generosity

in permitting us to build on one of his unpublished working drafts� and his detailed comments on a

later draft of the paper� The insights and support of Charles Clark� Douglas B� Orr� and all other

Mach Shared Objects project participants are also gratefully acknowledged�

References


AW��� E
 A
 Ashcroft and W
 W
 Wadge
 Prescription for semantics
 ACM Transactions on Program�

ming Languages and Systems� ����� April� ����



BC��� Gilad Bracha and William Cook
 Mixin�based inheritance
 In Proc� OOPSLA Conference�
Ottawa� October ����
 ACM



BCLO��� Gilad Bracha� Charles F
 Clark� Gary Lindstrom� and Douglas B
 Orr
 Module management as
a system service
 Unpublished paper� July ����



BG��� Gilad Bracha and David Griswold
 Strongtalk� Typechecking Smalltalk in a production envi�
ronment
 In Proc� OOPSLA Conference� Washington D
C
� September ����
 ACM



BL��� Gilad Bracha and Gary Lindstrom
 Modularity meets inheritance
 In Proc� International Con�

ference on Computer Languages� pages �������� San Francisco� CA� April ����� ����
 IEEE
Computer Society
 Also available as Technical Report UUCS�������


��




Bra��� Gilad Bracha
 The Programming Language Jigsaw � Mixins� Modularity and Multiple Inheritance

PhD thesis� University of Utah� March ����
 Technical report UUCS�������� ��� pp



Bra��� Gilad Bracha
 Private communication
 Electronic mail� January ��� ����



Bru��� Kim B
 Bruce
 A paradigmatic object�oriented programming language� Design static typing and
semantics
 Technical Report CS������� Williams College� January ��� ����



Bru��� Kim B
 Bruce
 Safe type checking in a statically typed object�oriented programming language

In Susan Graham� editor� Proc� Symposium on Principles of Programming Languages� ����



CCHO��� P
 Canning� W
 Cook� W
 Hill� and W
 Oltho�
 Interfaces for strongly�typed object�oriented
programming
 In Norman Meyrowitz� editor� Proceedings of the ACM Conference on Object�

Oriented Programming� Systems� Languages� and Applications� pages �����	�� ����



CD��� Eric C
 Cooper and Richard P
 Draves
 C threads
 Draft report� Mach Project� Carnegie�Mellon
Univ
� 	 March ����



Cha��� Craig Chambers
 Customization� Optimizing compiler technology for self� a dynamically typed
object�oriented programming language
 In SIGPLAN ��� Conference on Programming Language

Design and Implementation� Jun �� � ��� ����



CIJ���� Roy H
 Campbell� Nayeem Islam� Ralph Johnson� Panos Kougiouris� and Peter Madany
 Choices�
frameworks and re�nement
 In Object Orientation in Operating Systems� pages ����� Palo Alto�
CA� October ����
 IEEE Computer Society



CM��� Luca Cardelli and John C
 Mitchell
 Operations on records
 Technical Report ��� Digital Equip�
ment Corporation Systems Research Center� August ����



Coo��� William Cook
 A Denotational Semantics of Inheritance
 PhD thesis� Brown University� ����



CP��� William Cook and Jen Palsberg
 A denotational semantics of inheritance and its correctness

In Proc� ACM Conf� on Object�Oriented Programming� Systems� Languages and Applications�
pages �������� ����



Deu��� L
 Peter Deutsch
 Design reuse and frameworks in the Smalltalk��� programming system
 In
Ted J
 Biggersta� and Alan J
 Perlis� editors� Software Reusability� volume �� pages �����
 ACM
Press� ����



ES��� Margaret A
 Ellis and Bjarne Stroustrup
 The Annotated C�� Reference Manual
 Addison�
Wesley� Reading� MA� ����



Gor��� Michael J
 C
 Gordon
 The Denotational Description of Programming Languages
 Springer�
Verlag� ����



GR��� Adele Goldberg and David Robson
 Smalltalk���� The Language and its Implementation

Addison�Wesley� ����



Har��� W
 Harrison
 RPDE�� A framework for integrating tool fragments
 IEEE Software� ���	��	�
November ����



HC��� Jin Ho Hur and Kilnam Chon
 Self and selftype
 Information Processing Letters� �	���������
����



HC��� Shih�Kun Huang and Deng�Jyi Chen
 E�cient algorithms for method dispatch in object�oriented
programming systems
 Journal of Object�Oriented Programming� September ����



HP��� Robert Harper and Benjamin Pierce
 A record calculus based on symmetric concatenation
 In
Proc� of the ACM Symp� on Principles of Programming Languages� pages �������� January ����


��




JR��� Ralph E
 Johnson and Vincent F
 Russo
 Reusing object�oriented designs
 Technical Report
UIUCDCS ����	�	� University of Illinois at Urbana�Champagne� May ����



JS��� N
 D
 Jones and D
 A
 Schmidt
 Compiler generation from denotational semantics
 In N
 D

Jones� editor� Semantics�Directed Compiler Generation� pages �����
 Springer�Verlag� Berlin�
����
 Lecture Notes In Computer Science Number ��



KdRB��� Gregor Kiczales� Jim des Rivi�eres� and Daniel G
 Bobrow
 The Art of the Metaobject Protocol

The MIT Press� Cambridge� MA� ����



KR��� Brian W
 Kernighan and Dennis M
 Ritchie
 The C Programming Language
 Prentice�Hall�
Englewood Cli�s� NJ� ����



L���� Klaus�Peter L�ohr
 Concurrency annotations for reusable software
 Communications of the ACM�
�	���������� September ����



Lee��� Arthur H
 Lee
 The Persistent Object System MetaStore� Persistence Via Metaprogramming

PhD thesis� University of Utah� June ����
 Technical report UUCS�������� ��� pp



LG�	� Barbara Liskov and John Guttag
 Abstraction and Speci	cation in Program Development
 The
MIT Press� Cambridge� MA� ���	



Mes��� Jos�e Meseguer
 Solving the inheritance anomaly in concurrent object�oriented programming
 In
Proceedings ECOOP ��
� LNCS� Kauserlautern� Germany� July ����
 Springer�Verlag



Nel��� Ed
 Greg Nelson
 Systems Programming with Modula�

 Prentice Hall� Englewood Cli�s� NJ�
����



OBLM��� Douglas Orr� John Bonn� Jay Lepreau� and Robert Mecklenburg
 Fast and �exible shared
libraries
 In Proc� USENIX Summer Conference� pages �������� Cincinnati� June ����



OH��� Harold Ossher and William Harrison
 Combination of inheritance hierarchies
 In OOPSLA

Proceedings� pages ������ October ����



OM��� Douglas B
 Orr and Robert W
 Mecklenburg
 OMOS � an object server for program execution

In Proc� International Workshop on Object Oriented Operating Systems� pages �������� Paris�
September ����
 IEEE Computer Society
 Also available as technical report UUCS�������



OMHL��� Douglas B
 Orr� Robert W
 Mecklenburg� Peter J
 Hoogenboom� and Jay Lepreau
 Dynamic
program monitoring and transformation using the OMOS object server
 In Proceedings of the

��th Hawaii International Conference on System Sciences� pages �������� January ����
 Also
available as technical report UUCS�������



Pae��� Andreas Paepcke
 PCLOS� A �exible implementation of CLOS persistence
 In S
 Gjessing and
K
 Nygaard� editors� Proceedings of the European Conference on Object�Oriented Programming�
Lecture Notes in Computer Science� Berlin� ����
 Springer�Verlag



See��� Donn Seeley
 Shared libraries as objects
 In Proc� USENIX Summer Conference� Anaheim� CA�
June ����



VL��� John M
 Vlissides and Mark A
 Linton
 Unidraw� a framework for building domain�speci�c
graphical editors
 In Proceedings of the ACM User Interface Software and Technologies ���

Conference� pages ������ November ����



WGM��� A
 Weinand� E
 Gamma� and R
 Marty
 ET��� an object�oriented application framework in
C��
 In Proceedings of OOPSLA ���� pages �	���
 ACM� November ����


Last revised October ��� ����

��


