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Abstract

Asynchronous high-level synthesis is aimed at transforming high level descriptions of algo-
rithms into efficient asynchronous circuit implementations. This approach is attractive from
the point of view of the flexibility it affords in performing high level program transforma-
tions on users’ initial descriptions, the faithfulness with which it supports the communicating
process model of computation, and the ease with which it accommodates computations that
have data dependent control-flow decisions as well as data dependent execution times. In this
paper, we take the reader through the entire process of synthesizing two asynchronous cir-
cuits using our high level synthesis tool, SHILPA, starting from input descriptions in hopCP,
emphasizing the program transformation techniques employed in the process. Specifically,
we show how tail-recursive loops with accumulating parameters can be software pipelined,
by evaluating the accumulating parameters in separate processes. We then show how the
resulting hopCP flow graphs (HFGs) are transformed through action refinement resulting in
normal form HFGs (NHFGs). NHFGs are then technology mapped onto an Actel FPGA
implementation. Our results are illustrated on a pipelined factorial circuit and a pipelined
integer square-root circuit.
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1 Introduction

High level synthesis tools hold considerable promise towards facilitating the rapid creation
of error-free Very Large Scale Integrated (VLSI) designs [1]. Most of today’s high level
synthesis tools are designed to generate synchronous circuits from high level descriptions.
For many practical reasons (explained in Section 2), it is becoming increasingly difficult to
manually build or automatically synthesize large synchronous circuits. In this paper, we
show how these problems can be largely avoided through asynchronous high level synthesis:
the creation of efficient asynchronous circuits starting from high level descriptions.

Having built such an asynchronous high level synthesis tool, SHILPA (detailed in Sec-
tion 3), one of the major challenges we are now faced with is in obtaining hardware de-
seriptions that can be compiled into efficient asynchronous circuits. Users’ initial hardware
descriptions are written with emphasis on clarity, and as such do not result in efficient asyn-
chronous circuits when compiled. Although the compiled circuits can be subject to circuit
level optimizations [2], it is virtually impossible to employ circuit level optimizations to com-
pensate for the lack of high level optimizations ®. Therefore, it appears that it is essential

to investigate high level optimizations for deriving efficient asynchronous circuits.

We propose the use of program transformations to transform initial hardware descriptions
(written with emphasis on clarity) into ones that result in efficient asynchronous circuits. We
present the following specific results. We show how tail-recursive functional programs with
accumulating parameters [3] can be transformed into software pipelined*concurrent commu-
nicating process descriptions (Section 4).  To concretely illustrate this idea, we provide
an overview of how SHILPA compiles concurrent process descriptions in the input language
hopCP into asynchronous circuits, and proceed to show the derivation of the circuit realiz-
ing the pipelined factorial function (Section 5.1). We then show how the hopCP process
descriptions (internally stored as hopCP flow graphs (HFGs), an annotated form of Petri
nets) can be further refined through a procedure action refinement into asynchronous circuit
descriptions (Section 5) and technology mapped into a circuit description. In the Appendix,
we also show how program transformations can be valuable in transforming imperative algo-
rithms. This method is illustrated on the specification of the integer square-root computation.
These results, as well as similar results obtained by others (e.g., [5, 6, 7]) underscore the
importance of high level program transformations in the derivation of efficient asynchronous
circuits. Section 6, draws conclusions based on our results so far.

3Doing so would be analogous to trying to perform machine code optimizations that give the same effect

as (e.g.) loop invariant optimizations, in a software compiler!

4Software pipelining [4] is a term which describes the fact that the next iteration of a loop can be begun

before the current iteration finishes.



2 Motivations, and Related Work

From the point of view of circuit design in the large, asynchronous circuits are attractive in
several ways (see Brzozowski and Seger [8], and Gopalakrishnan and Jain [9] which are two
surveys, Sutherland [10] and Seitz [11] which are two widely cited articles, and the papers in
[12] which are a collection of recent papers). Asynchronous circuits avoid clock-distribution
problems that cost valuable design time in large synchronous systems [13]. Asynchronous
circuits are easier to incrementally expand, as their operation is not based on global clock
schedules. High level synthesis of computations with data depend timings using the syn-
chronous paradigm is difficult [14]. Asynchronous circuits avoid this problem due to their
handshake based “self scheduling” nature, and can even exploit the data dependent nature
of operator timings [15] to gain average-case speed-up.

From the point of view of high level design derivation, asynchronous circuits pose several
interesting challenges. Given the high level description of a problem, obtaining a circuit
that is optimized for area and time in a pre-specified way is one such challenge. As in
traditional compilers, the optimizations can be carried out at several levels, some of which
are: source-to-source level; flow-graph level; and final code level. Circuit level optimizations
of asynchronous circuits have been studied in [2, 16]. Flow-graph level optimizations have
been studied in [17]. Source to source optimizations have been studied by Nielsen and
Martin in [5], by van Berkel in [6], and Ebergen in [7]. The works by Nielsen, Martin, and
Ebergen considers the derivation of regular structures. Our work is more along the lines of
that by van Berkel [6] in that we deal primarily with less regular computations (and final
circuits). Our work is also somewhat related to that of Johnson [18], except that our target
is asynchronous circuits (while Johnson’s target is synchronous circuits). Also, neither van
Berkel nor Johnson explore the derivation of software pipelined designs through program
transformations. We consider our approach to be attractive from the point of view of formal
verifiability, and because it ties in quite well into the SHILPA system that has already been
built and tested on a number of designs. The fact that SHILPA can currently synthesize
Actel FPGA based asynchronous circuits from high level descriptions also affords us a flexible
environment for experimentation with these ideas.

3 Overview of SHILPA

Recently there has been a growing interest in the automated high level synthesis of asyn-
chronous circuits from concurrent process descriptions. Our work [19, 20] falls into this
category. Improvements in SHILPA over other efforts in this area (e.g., [16, 5, 21, 2]) are
primarily the following: (i) hopCP, the source language for SHILPA, is a mixed process
and functional language tailored for hardware description with distributed shared variables,
barrier synchronization, and broadcast communication. It is more expressive than Martin’s
input language ‘CHP’, Brunvand’s version of ‘Occam’, or van Berkel’s language ‘Tangram’.
In this paper, we show how certain hopCP descriptions written in the functional notation
can be transformed into the process notation; (ii) our graph-based compilation scheme is



amenable to flow-analysis based optimizations; (iii) SHILPA is an integrated collection of
tools in which the user can direct the outcome of the synthesis process through interactive
commands.

In this paper, we focus on certain high level optimizations to transform hopCP descriptions
into a form that engenders efficient asynchronous circuits. We first take a familiar example:
a circuit to compute the factorial of an integer. We will initially transform the tail-recursive
definition of factorial with an accumulating parameter into two concurrent processes, where
the first process is the driver and the second process evaluates the accumulating parameter.
In the Appendix (Section A), we will present similar transformations done on the imperative
specification of the integer square-root function. In our presentations, we will employ a
pseudo-hopCP notation, which will be explained along with the examples.

4 Transforming Functional Programs for Software-pipelining

Hardware description and synthesis using a purely functional notation has attracted much
interest lately [18, 22]. Functional languages are attractive for system-level description due
to their referential transparency, their ability to state the desired behavior without any oper-
ational committments, their use of higher order functions, and the sophisticated type system
they come with [23]. In this presentation, we stick to a first-order tail-recursive notation
similar to what [18] employs. The use of accumulating parameters is a popular way of con-
verting non tail-recursive descriptions to the tail-recursive form. Other researchers who use
the functional notation for hardware description have not (to the best of our knowledge)
studied the problem of deriving software-pipelined designs from functional descriptions. Al-
though Sheeran [22] has used the functional notation for hardware description, it was used
for deriving regular designs. Ebergen’s work [7] is in deriving regular asynchronous designs
from functional descriptions. Busvine [24] has studied the problem of translating SML pro-
grams to sequential Occam? code (he does not address deriving parallel/pipelined Occam?2
programs).

We now illustrate our ideas on the familiar tail-recursive factorial description:

fact[n,a] <= (n=0) -> result'a -> again?n -> fact[n,1]

| (not (n=0)) -> fact[n-1, n*a]

Here, -> denotes sequencing and | denotes guarded choice. Process fact has a list of formal
parameters [n,a] which are initialized to suitable values to begin with. The construct
result'a is an output communication command (as in CSP), and synchronizes with an
input communication command of the form result?variable within another process. The
construct again?n is an input communication command (as in CSP) which rendezvous with
an output communication command of the form again!expression from another process.

From the above definition, one can note that the value of n*a is bound to ‘a’ upon each
tail-call. This fact can be made clear by slightly modifying the definition of fact; we also



introduce a concurrent process pa in the process:

fact[n,a] <= (n=0) -> result'a -> again?n -> fact[n,1]

| (not (n=0)) -> mult!(n,a) -> rslt?w -> fact[n-1, w]
Il
pall <= mult?(x,y) -> rslt!(x*y) -> pall

Process pa is sent a pair (n,a) whenever n and a are to be multiplied. After multiplication,
process pa sends back the result through port rslt.

Notice that the value of ‘a’ is not used immediately in the body of fact. Thus, the next
iteration of fact can be allowed to begin even before the evaluation of n*a finishes. This
change is reflected by letting process pa “own” the formal parameter ‘a’, and allowing process
pa to multiply the two numbers in the background. We also eliminate ‘a’ from the “next
iteration” of fact (captured by process fact’). Notice that fact’ does not wait for the
result of the multiplication to come back from pa before it tail-recurses once again.

fact[n,a] <= (n=0) -> result'a -> again?n -> fact[n,1]
| (not (n=0)) -> mult!(n,a) fact’[n-1]
Il
fact’[n] <= (n=0) -> senda! -> again?n -> fact’[n]
| (not (n=0)) -> rslt?w -> mult!(n,w) -> fact’[n-1]
Il
palal <= mult?(x,y) -> rslt!(x*y) -> pal[il]

Since fact’ is devoid of its second argument, it appeals to process pa through command
senda! whenever it needs to send the final answer. Thus, pa will end up having two
commands, indicated by a guarded choice in its definition. When n is not equal to zero,
fact’ waits through the result of the previous multiplication (through rslt?w), starts the
next multiplication, and proceeds.

Notice that fact and fact’® are very similar, and it is redundant to keep both. We
therefore devoid fact also of parameter a. Also, consider the steps rslt?w -> mult!(n,w):
fact’ needn’t obtain the results of the multiplication, (w) from m, only to send it back to
process pa (as part of the tuple (n,w)). Thus, process fact’ simply ends up sending ‘n’ to
process pa, and asks it to multiply with the value of a that process pa is already holding.
Doing this (and renaming the combined factorial process factpipe) results in the following
description:

factpipe[n] <= (n=0) -> senda! -> again?n -> factpipe[n]
| (not (n=0)) -> mult'n -> factpipel[n-1]

Il

palal <= mult?n -> paln*al

| senda? -> result'a -> pa[il]




Eliminate

Data Path
s Variables .
p?y
s[f(x.y)]

S

O &

Refine Input Action &

ctl (done by p!E)

inl ] | ~ outl
< in2 _| BCel |, out2 i
BCel.in_i!! ini o _,,OUL'
BCel.out_i?? inN __| u | . outN
Reg.ld!! preesranneneneenneneneences v
jint jini jpinn ldack
Reg.ldack?? e_\
3 - Ml ti -
Ctree.in_i!! cast
' g Ctree
) Acts as an
| Ctree.out?? =) ack for plE
Broadcast
S,%
y out «—/

Figure 1: An Example of Action Refinement

Processes factpipe and pa when started in parallel with n holding the desired number, and
with a initialized to 1 calculates factorial of n. Thereafter, factpipe seeks the next number
to work on, through the input communication command again?n.

One of the advantages of using a mixed process/functional notation for the above deriva-
tion is quite apparent: operational details of program evaluation can be elegantly captured
using the process description sub-language. The derivation evolves, gradually substituting
the process component for the functional component. hopCP does have a formal semantic
description [19]; however, we do not yet have an algebra that can support the above kind
of derivations. (We would like to investigate such an algebra.) The work of Page and Luk
[25] who have studied process-level transformations in Occam is quite relevant to cite in this
connection.

5 From hopCP Descriptions to Asynchronous Circuits

In SHILPA, we synthesize transition style circuits with data bundling [10]. Each hopCP
description is internally represented through a flow graph (called the hopCP flow graph, or
HFG). An HFG is similar to a Petri-net in that it has both places and transitions; however,
these are annotated with data path states and/or communication actions. In Figure 1, a
transition (S[x], p?y, S[f(x,y)]) from an HFG is shown. This transition starts at state S[x]
which evolves through input rendezvous action p?y to state S[f(x,y)]. According to our
conventions, process S is making a tail call back to itself, and updating its internal variable
x with f(x,y) in the process. The first step in refining this action is to allocate register x
to hold the data state and register y to hold the input value received, as shown. The data
state update is made explicit by introducing a register transfer action @ < f(x,y).

Next, we take the transition (.5, ply, S/) and refine it by invoking a pre-defined expansion
for the input communication action. Since input rendezvous actions follow the multiway
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rendezvous semantics, in SHILPA we generate an interconnection of C-ELEMENTSs called the
“broadcast C-ELEMENT”, or BCel, which has N+1 inputs and N outputs, where N is the
number of receivers reading from the channel >. BCel has the property that as soon as a
transition has been produced on input in_ and the sender has produced a transition on input
ctl, a transition is produced on output out_i. This loads the data into a register (Reg) that
is also allocated. The acknowledge from the register goes to a completion tree. The output
of the completion tree is an acknowledgement for the sender that the value has been latched
by all the receivers. The acknowledgement for each receiver is taken to be the register load
acknowledge signal, resulting in the multicast semantics. This is indicated in Figure 1 by
the dotted box labeled “Multicast”, meaning that the last Petri-net transition enclosed by
this dotted box, Ctree.in_i!!, can be taken as the acknowledgement signal by the ith receiver.
If broadcast semantics is desired, the completion signal for the receivers should also be the
output of the completion tree, as shown by the correspondingly named dotted box in the
same figure.

Continuing with this example, we next take the register-transfer action x < f(x,y) for
refinement, by invoking procedure actionRefine. This recursively calls procedure expression-
Refine to refine expression f(x,y). In compiling the application of a function f, its arguments
are recursively refined, to begin with. In this case, the arguments are both variables, whose
refinement results in calls to getReg, that retrieves the registers already allocated correspond-
ing to these variables. Thereafter, a function action block (FAB) is allocated corresponding
to f. The NHFG shown in Figure 2 is then generated. As can be seen, this NHFG captures
control sequencing that first loads the argument registers of FAB_f, initiates the function
evaluation, loads the result register, and then loads RegX to complete the required evalua-
tion.

[4

> A Petri net transition annotated with “M.p!"” reads “ apply a signal transition on module M’s port p;

likewise, “M.q77?” denotes awaiting a transition.



5.1 Obtaining a Pipelined Factorial Circuit

We synthesize those versions of processes factpipe and pa given last in Section 4. We
show here only factpipe. First, the description is subject to action refinement through

command:

{25} bliss.cs> SHILPA

val it = true : bool

- val (g,t,r,n,f,c,typ,fvd) = ar "example/factpipe.h";
Detecting Sharing .........

....... Found 1 shared actions

Inserting CALL and BCALL Modules appropriately .........
Modifying NHFG to reflect Sharing .........

Generating MERGE elements ....

The above command results in the initial resource list (the purpose of each resource is also
explained):

- printResource r;

REG_9:argument for AB_8_arg_n C_10:data query for again?n
REG_6:argument for AB_5_arg n  REG_3:query var for n
PAB_8:1 for zero REG_7:result for 5
AMUX_12:2 for n FAB_5:1 for (decr n)
XOR_13:3 for control!!

Next, we eliminate argument- and result registers that are not needed. The idea is: “elim-
inate short of creating combinational loops”. (We could have retained the argument and
result registers, had we been interested in micropipelining the design.) SHILPA automati-

cally reconfigures the circuit to compensate for the lack of these registers:

val it = () : unit
- val (t1,r1,n1) = eliminate_argument_register (t,r,n)[8,5];
Generating MERGE elements ....

Finally, we invoke our technology mapper, to create an Actel FPGA wire-list file:

- hopCP2actel rl1 nl1 £ typ fvd;
Module Name = factpipe

The resulting circuit for factpipe is in Figure 3 The circuit works as follows. Initially,
transition start is applied to the X0R. This triggers module ZERQ to test whether n=0. The
“true” transition, T, triggers SENDA_OUT, which implements the senda! communication.
When the acknowledgement SENDA_IN comes, it triggers the C element which fires when
AGAIN_IN also arrives (the communication again?n), and when it does, loads the new n
through the asynchronous multiplexor AMUX into register n. The “false” transition, F, triggers
MULT_OUT, which implements mult!n. When MULT_IN arrives (the acknowledge for mult'n),
the decrementer module decr is triggered. Its ack loads the result register of n, and is routed
to register n through the asynchronous multiplexor AMUX upon tail-call.
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6 Summary and Conclusions

We have found that a transformational approach to asynchronous circuit synthesis is
promising in a number of ways. In this paper, we show how to derive software pipelined
asynchronous circuit implementations of tail-recursive programs through program transfor-
mations. We then present the approach of transforming process descriptions from HFGs to
NHFGs through action refinement, and point out its advantages: (i) it allows graph based
algorithms to be used for optimizations; (ii) it is modular, refining each HFG fragment with
its associated NHFG elaboration and the associated resources; (iii) users can modify the
NHFG through interactive commands, and hence can have direct control over the final cir-
cuit that emerges; (iv) it also allows the application of graph-based performation evaluation
techniques (see below).

A related question we are answering at this stage is the following: “when is it worthwhile
to perform a high-level optimization”? This question has not been answered satisfactorily
by the high-level synthesis community, for a collection of communicating processes. Ku [14]
has done pioneering research in estimating the performance of concurrent computations. We
are gravitating more towards the work pioneered by Zuberek [26], as well as Burns [27], as
our HFG based internal representation fits well with the Petri net based representation used

by Zuberek and Burns.

Through simulation studies, we have observed that software pipelining can be good (as we
observed for a pipelined minmaz circuit) or that the overheads can sometimes overshadow
the benefits (as we observed when we pipelined a serial-parallel multiplication algorithm)
[28]. As part of our future work, we plan to explore performance evaluation techniques in
greater detail.
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A Transforming Imperative Programs

A large majority of algorithms are expressed in an imperative style. Therefore it is de-
sirable to apply the techniques we have proposed thus far for for transforming imperative
programs to perform optimizations such as software pipelining. We follow the lead of Der-
showitz [29], who shows how imperative programs may be transformed to achieve operator
strength reduction (replacing costly operations by cheaper equivalent operations), avoiding
recomputing loop invariants, etc. We pick his integer square-root program [29, Page 176].
After program transformations, the resulting square root program has been devoid of costly
operations such as multiply; it is given below in C:

main()
{ long a, u, v, w=2, t, z;
printf("\n Give a\n"); scanf("%d",&a);
while (2*a >= w) w=4*y; u=-a; v=w/2;
while (w>2) { w=w/4; v=(v-w)/2;
t=u+v; if(£<=0){ u=t; v=v+w; }}

z=(v-1)/2; printf("z = %d\n", z);

Expressed in hopCP, this program reads:

(isqrt[] <= get_number?a -> getw[2, (mult2 a),al)
(getw[w,twicea,a] <= ((twicea < w) -> after_getw[w,(div2 w),0,(neg a)l)
| ((not (twicea < w)) -> getw[(times4 w), twicea,a 1))
(after_getw[w,v,t,u] <=
((le2 w) -> final_answer!(div2 (minusl v)) -> isqrt[])

| ((not (le2 w)) ->w (diva w)

->v := (div2 (minus v w))
->t := (plus u v)
-> ((gt0 t) -> after_getw[w,v,t,ul)

| ((not (gtO t)) -> after_getw[w,(plus v w),t,t])))

After applying software pipelining transformations presented in this paper on process after_getw
(which has an accumulating parameter), we have the following two equivalent (but pipelined)
processes:
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Figure 4: A Portion of the Pipelined Integer Square-root Circuit



(after_getw[w,t,ul] <=
((le2 w) -> send_final_answer! -> psqrt[])
| ((not (le2 w)) ->w := (div4 w) -> div2minusvw'w -> vport!
-> vportack?vl -> t := (plus u vl)
-> ((gt0 t) -> after_getw[w,t,ul)
| ((not (gto t))
-> addw'w -> after_getw[w,t,t]) ))
Il
(pvlv] <= (div2minusvw?wl -> pv[(div2 (minus v w1))])
| (vport? -> vportack'v -> pv[v])
| (addw?w1l -> pv[(plus v w1)])
| (send_final_answer? -> final_answer!(div2 (minusl v)) -> pv[v])

| (initv?v -> pv[v]))

The resulting circuit for psqrt (the pipelined counterpart of isqrt), getw, and the pipelined
version of after_getw is shown in Figure 4.



