
A Framework For
Module�Based Language Processors

Guruduth Banavar
Gary Lindstrom

UUCS�������

Department of Computer Science
University of Utah

Salt Lake City� UT ����� USA

March �� ����

Abstract

A system composed of interconnected modules is a module�based system	 We present
an object�oriented 
O�O� framework for the development of processors for module�based
systems� such as compilers for O�O languages� linkers�loaders� and tools for user�system
libraries	 We claim that this framework� named Jigsaw� can reduce the development e
ort
for such processors and also serve as a basis for interoperability among them	 We address the
issues of 
i� how the abstractions in Jigsaw can be formulated as a framework� and 
ii� how
Jigsaw can be extended to construct processors for module�based languages� in the context
of our prototype implementation in C��	�

�This research was sponsored by the Defense Advanced Research Projects Agency �DOD�� mon�
itored by the Department of the Navy� O�ce of the Chief of Naval Research� under Grant number
N���������J����	
 The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing o�cial policies� either expressed or implied� of the
Defense Advanced Research Projects Agency or the US Government




� Introduction

The development of processors for module�based languages and systems is a pervasive con�

cern cutting broadly across programming language design and software engineering	 How�

ever� progress in this area has come primarily through disconnected� language speci�c ad�

vances	 We address this problem in its most general terms� by abstracting it to a language

neutral plane	 For the purposes of this paper� we informally de�ne a module to be any

software unit that provides a set of services as speci�ed by its interface �Bra���	 One re�

alization of the module notion is the class construct in O�O languages� where composition

by inheritance is a crucial concept	 Another is the object �le produced by a compiler� with

composition by linking operations	 Private or shared system libraries constitute yet another

example �See���	 Thus� compilers for O�O languages� system loaders�linkers� and library

construction tools are examples of processors for module�based systems	

Even though such systems have di
ering views of modules� they share a common se�

mantic goal that can be abstracted	 We draw on recent work� Jigsaw �BL��� Bra���� that

has succeeded in characterizing this commonality by formulating the basic operations on

modules as a set of module combinators	 Jigsaw is unusually powerful in accommodating

di
ering views of modules	 Bracha and Lindstrom �BL��� Bra��� have given a rigorous for�

mal semantics for its notion of module abstractions� based on the work of Cardelli� Cook�

Harper� Palsberg� Pierce� and others �HP��� CM��� Coo��� CP��� BC���	 For our purposes�

an informal sketch of the semantics of Jigsaw will su�ce 
see Section ��	

In this paper we further develop the Jigsaw model� and implement abstractions extracted

from Jigsaw as an O�O framework� in the sense of Johnson and Russo �JR���	 We overload

the term Jigsaw to embrace this framework also	 Processors for module based systems are

implemented as clients of the Jigsaw framework that extend it in speci�c directions	 As

�proof of concept�� we extend the framework to implement a simple applicative language

and a simple imperative language	 In subsequent sections we discuss in detail the issues

arising when language processors are constructed using this framework	

Such a framework can serve many purposes� the most important of which are reduced

system development time� and potential for interoperability	 One directly foreseeable bene�t

is the development of families of O�O language processors that share a common notion of

module as a software substrate	 In the same sense that common calling sequences facilitate

function�level inter�language linking� this approach can facilitate multi�lingual O�O program�

ming �Har���	 In addition� we have found that the framework allows easy experimentation

with language design� and has led to signi�cant insights� especially regarding imperative

language constructs� nested modules� and their interactions	 Regardless of the other bene�

�



�ts of Jigsaw� the construction of coordinated language processors for signi�cantly di
ering

language designs by extending a single framework for modules is itself a novel application of

O�O frameworks	

The interoperability potential of frameworks for module�based languages is being ex�

ploited in the Mach Shared Objects 
MSO� project at Utah �LK���	 MSO is predicated

on a broad view of modules� transcending particular O�O languages� and even the O�O

notion itself	 Instead� module manipulation is viewed as a software structuring issue that

should be addressed in universal� system�wide terms	 This viewpoint underlies OMOS� a

programmable� dynamic linker and loader �OM��� which provides a language independent

implementation of the abstractions in Jigsaw� as well as other enhanced system services

�OMHL���� and forms a building block of the MSO persistent object store�BCLO���	

The next section presents Jigsaw�s view of modules� emphasizing the suite of module

combinators it supports	 Section � casts this viewpoint in framework terms� and examines

the light it sheds on subtle issues such as the semantics of nested modules in an imperative

client language	 Our experience in prototyping Jigsaw as a C�� framework is also discussed	

Section � outlines the steps in reifying this framework for particular client languages� both

applicative and imperative	 A basic familiarity with C�� syntax and semantics �ES��� is

assumed in the presentations in these sections	 Finally� future work is sketched� and our

conclusions are summarized	

� The Jigsaw View of Modules

An important modern notion of modularity is the class concept in O�O languages	 Classes

traditionally ful�ll a variety of roles� including de�ning modules� de�ning subtyping rela�

tions� controlling visibility 
via public�protected�private interfaces�� constructing instances

of a de�ned module� modifying and reusing existing program units via single inheritance�

combining program units using multiple inheritance� resolving name con�icts� etc	 Indeed� it

was this observation that di
erent O�O languages rely on di
erent notions of class that led

to the formulation of the central abstraction� Module� in Jigsaw	 Such a formulation permits

aspects of the class construct such as inheritance and visibility control to be �unbundled� as

operations applied to modules	 To this end� a suite of module combinators 
i	e	 operators�

has been de�ned	 In this section we informally introduce the semantics of modules and

their combinators	 For a detailed and formal treatment� the reader is referred to �Bra���� a

summary may be found in �BL���	

In Jigsaw� a module is simply a self�referential scope� associating labels 
identi�ers� with

�



module f
x � �� y � ��

dist � function�aPoint�f x�Int� y�Int g� f
sqrt�sqr��x � aPoint�x�� 	 sqr��y � aPoint�y���

g
g � f x�Int� y�Int� dist�f x�Int� y�Int g � Real g

Figure �� A module and its interface

meanings	 These meanings can be typed values� bound through de�nitions� or simply types

speci�ed via declarations 
de�ning a label subsumes declaring it�	 Declarations are used to

create abstract modules� which can be manipulated but not instantiated	 Modules do not

contain any free references� i	e	 references to labels that are not associated with any decla�

rations� although 
nested� modules may contain references to labels declared in statically

surrounding modules	 The semantics of nested modules are the focus of Section �	�	 Every

module has an associated interface� which comprises the labels and types of all the visible

attributes of a module	 A surface syntax for a simple module and its interface is shown in

Figure �	 Typing in Jigsaw is purely structural 
sets of label�type pairs� without order or

type name signi�cance�	

Our approach to characterizing modules involves three levels�

�	 Module abstraction� This is Module� Jigsaw�s generic notion of modules	

�	 Individual modules� These are particular module de�nitions� with speci�c labels�

meanings and interfaces 
e	g	 C�� classes�	

�	 Module instances� Many languages support a notion of module instantiation�

whereby objects are created from module de�nitions� with components determined

by language�speci�c semantics 
e	g	 objects comprising non�static class members in

C���	

To clarify how an abstraction such as Module can be rei�ed in an O�O framework� consider

Figure �	 In this �gure we show a class� representing the Module abstraction with an in�

terface consisting of methods representing module operations 
or combinators� as mentioned

above�	 It is important for the reader to understand the semantic intent of each of these

�The syntax and semantics of this class construct are not important at this point� just think of this as

a generic O�O programming language�

�



rename: Label, Label->Module
copy_as: Label, Label->Module

hide: Label->Module

freeze: Label->Module
restrict: Label->Module
override: Module->Module
merge: Module->Module

make_module:[Attribute]->Module

class Module

attribute

label binding

label binding

attribute

show: [Label]->Module

interface_of: void->Interface
instantiate: void->Instance

Figure �� A �rst view of the Module abstraction

module combinators	 In the following paragraphs� we informally describe the ways in which

the Module abstraction models the many facets of conventional classes	 This will set the

stage for developing the framework characterization of Jigsaw in Section �	�

Creation� A module M is created by invoking the module constructor function make �

module�
Attribute��� on a list of label�meaning pairs	

Instantiation� A concrete module M 
i	e	 one in which all labels have de�nitions� is instan�

tiated by the expression M�instantiate��	 The result of this expression is an object

or instance	 The module in Figure � can be instantiated to yield a point object with

coordinates at the origin	 Customized constructors and destructors can be modeled as

methods explicitly de�ned within individual modules	

Combination� Two modules M� and M
 may be combined using the M��merge�M
� oper�

ation	 The result is a new module in which all names declared in either M� or M
 or

both are declared� and all names de�ned in either M� or M
 but not both are de�ned	

Con�icting types or repeated de�nitions � name con�icts � are not permitted for

�The remainder of this section is a condensed extract of �BL���� Section ��
�The syntax �X� stands for a list of data values of type X

�



a label	 Note that merge does not provide any mechanism for resolving con�icts �

other operators are used for this purpose	 The merge operator is commutative and

associative	

Modi�cation� A module M� may be modi�ed by another� M
� via an asymmetric operation

M��override�M
�� in which the attributes of M
 override those of M�	 If an attribute

is de�ned by both modules� then the type of the attribute in M
 must be a subtype

of its type in M�� in which case the value from M
 will appear in the result	 Hence

override provides a basis for dynamic function binding� as in C�� virtual functions	

The override operator is associative and idempotent� but not commutative	

Name con�ict resolution� A name con�ict arising from merging two modules can be re�

solved in several ways	 One can explicitly choose one of the con�icting de�nitions to

prevail� using restrict 
see below�	 This eliminates the con�ict� but requires that one

module�s de�nition of the name to be relinquished� which may not be desired	 Fur�

thermore� the types of the con�icting attributes may be incompatible� in which case

such rebinding is impossible	 An alternative is to eliminate the con�ict by renaming

one label	 This is always possible� and all attributes remain available	 The renaming

operator changes the label of a single attribute� i	e	 M�rename�a� b� is equivalent to

a textual replacement of all occurrences of the attribute name a in M by the name

b	 Attribute a must be at least declared by M� and b neither declared nor de�ned	

One drawback is that in a structural type system� attribute names are meaningful for

subtyping� and renaming may adversely a
ect polymorphism	

Attribute sharing� As mentioned above� M��merge�M
� results in an error if both M� and

M
 provide a de�nition for a label	 In contrast� if either M� or M
 
but not both�

de�ne a label� the two usages are coalesced� as long as 
i� a clashing de�nition has a

type that is a subtype of the clashing declaration� and 
ii� two clashing declarations

have a subtype in common	 Therefore declarations can specify sharing constraints

among modules being combined� at the granularity of attributes	 Such sharing is

facilitated by the restrict operator	 The e
ect of a restrict operation is to eliminate

the de�nition of an attribute� but retain its declaration	 It is not generally possible

to completely remove an attribute from a module� because the module may contain

internal references to the attribute	 The restrict operator creates an abstract module�

by making an attribute pure virtual� When several modules are combined via cascaded

merge�s� sharing of con�icting attributes may be speci�ed by restricting all but one	

Any attribute being restricted must be de�ned by the argument module	 The restrict

operation is associative	

�



Restricting modi�cation� The M�freeze�a� operation produces a module derived from

M in which all references to a are statically bound� i	e	 may not be stripped of the

current de�nition of a via override or restrict	 This provides a means for removing

an attribute�s subsequent rede�nability� e	g	 its virtual status in C��	 As we shall see�

freeze is often used in conjunction with visibility control	

Attribute visibility� Visibility control is implemented by the operations hide and show�

M�hide�a� eliminates a from the interface of M	 The attribute a must be de�ned by M	

Conversely� M�show�A� hides all labels except those in list A	 All attributes not listed

in A must be de�ned in M	

Access to overridden attributes� Access to overridden de�nitions is supported via the

use of the copy as operator	 M�copy as�a� b� creates a copy of the a attribute� under

the name b	 The a attribute can now be overridden� while the old de�nition remains

available under the name b	 M must not already have declared an attribute b� but must

have de�ned a	

The above summary is intended to serve as an introduction to the Jigsaw view of modules	

However� there are deeper issues that deserve discussion� which we will examine as they

arise	 Many of these issues came into focus as a result of our e
ort to characterize Jigsaw as

a framework	 But �rst� we present this characterization	

� Jigsaw As A Framework

An O�O framework �JR��� expresses the design of a software 
sub�system in terms of objects

and interactions between them� typically using a general purpose programming language	

Frameworks are intended to capture the essential abstractions in an application domain�

thereby allowing a developer to build applications e�ciently by 
i� specifying classes that

inherit from classes in the framework and 
ii� by con�guring� instances of classes in the

framework	 Frameworks mostly comprise abstract classes� which are concretized by inher�

itance in an application	 Frameworks thus promote design and code reuse through O�O

concepts such as inheritance and polymorphism	 Several frameworks have been developed

for user�interfaces �Deu��� VL��� WGM���� and for many other domains as well �JR���	 In

this section� we describe how the abstractions introduced in the previous section are rei�ed

as a framework for modules	

�Connection of objects from prede	ned concrete classes �JR�
��

�



One way to exploit the Jigsaw model of O�O programming is to design new languages

that embody this model	 This direction is explored elsewhere �Bra��� BL���� and will not be

treated further here	 Another direction is to use Jigsaw to model and implement processors

for existing languages	 If suitable abstractions can be extracted from the Jigsaw model� they

can be structured as a framework by associating a class with each of the key abstractions�

thus allowing for reuse of design and code	

��� Jigsaw Classes

As suggested in Section ��Module is the �rst obvious candidate for abstraction	 This abstrac�

tion can be realized as a concrete class Module� providing each of the module combinators

as a method	 Similarly� the concept of an interface can be abstracted and realized as a con�

crete class Interface used to represent the interface of modules	 At the Jigsaw framework

level� only the ability to test two interfaces for equality or subtyping is postulated	

The concept of an Instance can also be abstracted and realized as a concrete class

Instance	 While modules are typically statically de�ned� Instance objects are constructed

dynamically in most languages	 As mentioned earlier� an instance is created via the instan�

tiate�� operation on aModule	 However� an instance does not support the same operations

as a module	 In fact� the key method that Instance must provide is select� which when

supplied a label� returns its binding	 The select method corresponds to the notion of

sending a message to an instance� and encapsulates the functionality of determining the

exact binding to return	 The latter can be implemented in several ways� but the important

point is that the framework determines a common logical composition for instances and a

mechanism by which to use that composition	 Furthermore� a client language processor or

a client language program may need to determine the type of an instance	 This can be

achieved by accessing the instance�s module via module of��� and then by invoking the

interface of�� method of that module	 While the notions of a module�s interface and an

instance�s type are conceptually distinct� the above approach to determining an instance�s

type represents our preliminary view that the type of the instances of a module can be

implemented as the interface of the module	

The above abstractions are de�ned relative to the notions of value� type and even label in

a client language� Lc� over which Jigsaw abstracts	 Lc must provide its own concept of val�

ues� types and labels	 Thus� Value� Type� and Label are incompletely speci�ed abstractions

within the Jigsaw model� and are therefore speci�ed as abstract classes Value� Type� and

Label	 Jigsaw only requires the Label abstraction to supply a notion of label equality via the

method label eq�Label�	 The Value abstraction is required to return its Type when queried

�



with type of��	 Type in turn must supply notions of type equality 
type eq�Type�� and

subtyping 
subtype�Type��	 A particular modular programming language is implemented

by supplying de�nitions for these methods in their associated abstract classes� and possi�

bly by extending the functionality of abstractions� or by adding other abstractions	 These

de�nitions and extensions constitute an implementation of Lc	

module_of: void->Module

type_of: void->Type

type_of: void->Type
contents_of: void->Value
store: Value->void

instantiate: void->Instance
interface_of: void->Interface

show: [Label]->Module

attribute

bindinglabel

bindinglabel

attribute

class Module

make_module:[Attribute]->Module

merge: Module->Module
override: Module->Module
restrict: Label->Module
freeze: Label->Module

hide: Label->Module

copy_as: Label, Label->Module
rename: Label, Label->Module

type

subtype: Type->Bool

type_eq: Type->Bool

value

interface_eq:
Interface->Bool

subinterface:
Interface->Bool

interface

module

location

select:Label->
{Value,Location,Module}

instance

Figure �� An overview of the Jigsaw framework

If each of the abstractions mentioned above is realized as a class� we have a framework

that can be pictured as Figure �	 There are abstractions in the �gure other than the ones

mentioned above � these will be explained later in this section	 Each box stands for an ab�

straction� with shaded boxes standing for incompletely speci�ed abstractions 
corresponding

to abstract classes� in the framework� and names in lower case letters 
e	g	 module� standing

for instances of classes with the same names starting in upper case 
e	g	 class Module�	

External clients �Deu��� of class Module invoke the constructor make module with a list

of attributes� each of which is a label�binding pair	 We generalize the notion of binding in

Jigsaw to include not only values and nested modules� but also declarations� i	e	 types and

module interfaces	 Thus� class Module is expected to be used by clients by �con�guring�

each instance of it� and we expect it to be rarely subclassed	

A module�s interface can be obtained by invoking the interface of��method	 Invoking

the instantiate��method on a concrete module returns an instance of it� which is created

�



by sharing module�level bindings� and copying instance�level bindings 
see Section �	��	 Such

module instances are objects of class Instance� which implements the notion of instance

described earlier	

Value� Type� and Label are abstract classes� and implement the corresponding notions	

Classes Attribute and Binding are supporting abstractions� respectively implementing a list

of attributes each of which is a label�binding pair and a container for our notion of binding

described earlier	 The class Location was added later to the framework after the initial

implementation� as we gained more insight into the language modeling power of Jigsaw	

This abstraction� and other subtleties of the Jigsaw approach� are described in the following

sections	

��� Applicative vs� Imperative Semantics

Module operations are all applicative in nature� i	e	 they map modules to modules� without

side�e
ects	 However� the client language being modeled may be applicative or imperative	

Which it is has signi�cant implications on the semantic re�nement of abstractions in Jig�

saw� especially in the case of nested modules	 This section highlights these implications in

preparation for the next section which discusses in detail the semantics of nested modules	

In an applicative Lc� one may be tempted to equate a concrete module and all its instances	

However� there are compelling reasons to distinguish the two	 Apart from the fact that

modules and instances are fundamentally di
erent entities 
e	g	 support di
erent suites of

operations�� instances may be used polymorphically in L
c

e	g	 as parameters to functions�

whereas modules may or may not	 Moreover� in the case of an imperative L
c
� a concrete

module and its instances are generally distinct due to the presence of references to non�local

bindings shared in a surrounding scope 
see Section �	��	

When Jigsaw is used to model an applicative language� modules bind labels to either

values in Lc 
constants� or to other 
sub�modules	 In contrast� a label in an imperative Lc

can also be bound to a location� following the standard denotational model of imperative

languages with stores �Gor���	 Hence we must provide an abstraction of this notion in Jigsaw	

A location can hold a storable value� the exact de�nition of which is client dependent	 The set

of entities that comprise storable values form the set of �rst class values for a particular Lc	 It

seems reasonable to expect storable values to include at least values in Lc� but could possibly

also include instances� locations and even modules	 It is common for O�O programming

languages to allow �slots� that can contain instances and pointers to instances � these can

be modeled with a Location abstraction	

�



Location bindings to labels can be either module�level 
e	g	 static in C���� where the

same binding is shared by all instances of the containing module� or instance�level� where each

instantiation of the containing module results in a new location being bound to the label	 In

our current prototype implementation of the framework� only instance�level location bindings

are supported� but it can be extended easily to accommodate module�level bindings also	

Note that this distinction of module�level and instance�level is necessary only for location

bindings� and not for other types of bindings 
e	g	 value� module�� and hence does not arise

in the applicative case	

Jigsaw supports an implicit notion of self� i	e	 local attributes may reference each other

within a module	 An explicit notion of self brings with it typing issues relating to preser�

vation of encapsulation and feasibility of separate compilation	 These have been explored

in the literature �HC��� Bru��� Bra���� but not addressed by the framework in its current

formulation	

��� Nested modules

Nested modules are an important requirement for modularity because� while enhancing name

space separation� they also provide a basis for hierarchical module development	 In addition�

this provides an integrated notion of overall program structure � running a program is simply

instantiating the top�level module and invoking a user�written initialization method	

For example� a framework itself can be regarded simply as a module� with ordinary

classes as nested modules� and the process of extending the framework can be viewed as

extension of the module by merging� sharing� hiding� renaming� etc	 This capability is

vital to programming in the large� as C�� application developers are ruefully aware 
since

all C�� class and attribute names are �attened by name mangling into a single name

space�	 As noted above� modules allow for data sharing among its instances via module�

level attributes	 Another form of sharing can be achieved through nested modules� which can

produce instances of nested modules with non�local references sharing access to de�nitions in

common surrounding scopes	 The surrounding scope thus serves as a shared data repository

for these instances� and helps achieve sharing semantics such as that provided by static

member data in C��	 Nested modules could also serve as the basis for other interesting

possibilities such as combination of inheritance hierarchies �OH���	

It was noted in Section � that modules can contain references only to attributes that

are declared either locally 
in the same scope� or non�locally 
in some surrounding scope�	

In the original de�nition of Jigsaw in �Bra���� non�local references to surrounding dynamic

��



scopes are modeled using standard denotational techniques� by having an object denote a

dynamic environment which is passed as an argument to the module constructor function	

In our prototype implementation� this mechanism is implemented using another standard

technique� by having a nested module access its surrounding scope via a pointer to the

dynamically surrounding instance object	

In addition to the above two models of non�local reference� we propose a third model� one

we believe could facilitate application of the Jigsaw approach to� for example� dynamic load�

ing and object promotion	 This view� presented below� is characterized by the introduction

of instance�level operators corresponding to the module combinators	

In this model� non�local references are handled by endowing nested modules with implicit

declarations of non�local bindings	 When a nested module is select�ed� the de�nitions

bound to these non�local references are imported from the surrounding 
dynamic� scope	

The import operation is broken down as follows� show the non�locally referenced labels from

the surrounding scope� then merge the resulting module with the nested module containing

the references	 Note that this merge operation cannot cause a con�ict because de�nitions

for non�local references cannot exist within nested modules � otherwise they would be local

references	 Furthermore� the fact that non�local bindings are imported from a dynamic

surrounding scope has the salutary bene�t of guaranteeing that the imported label binding

always has a de�nition� and not simply a declaration 
since instances cannot be abstract�	

We note� however� that the original Jigsaw formulation cannot accommodate this de�nition

importation e
ect with the use of module operators� and we thus introduce corresponding

instance level versions of module operators	

A subtlety concerning the import of non�local bindings is the possibility of con�icts 
e	g	

when merge�ed� between nested modules importing the same label 
and its binding� from

a common surrounding scope	 This can be solved� however� by hide�ing all imported bind�

ings immediately after importing them	 The hide operation statically binds the imported

de�nitions� and then removes their labels from the nested module interfaces	 This preserves

the interface of the nested module as it was before the import� and ensures that subsequent

merge con�icts cannot arise as a consequence of the the import operation	 Moreover� we ob�

serve that the import of a location binding can be designed to either retain the module�level

or instance�level 
�static� or �dynamic�� nature of the original declaration� or to be subject

to explicit programmer control	 In the former case� if the location was originally declared

to be instance�level� all nested modules that reference it will share the same binding� but

instances of a nested module will each be allocated a new location binding and hence will

not share the location	 If the location was originally declared to be module�level� then all

��



class Module f
Attribute� attrib list�

Instance� parent� �� Link to surrounding scope

�� ��� �� �� Other private data

public�

Module �Attribute��� �� Constructor

Module� merge �Module���

Module� override �Module���

Module� restrict �Label���

Module� freeze �Label���

Module� hide �Label���

Module� show �Labels���

Module� rename �Label�� Label���

Module� copy as �Label�� Label���

Interface� interface of ���

Instance� instantiate ���

�� ��� �� �� Other utility functions

g�

Figure �� C�� implementation of Module

nested modules that refer to it and all instances of such nested modules will share the same

location	

��� A C�� Prototype

It is fairly straightforward to translate the Module abstraction into a C�� class 
see Fig�

ure ��	 Each method in the public interface implements the corresponding module combina�

tor introduced in Section �	 If an instance of class Module represents a nested module� the

private slot parent points to the instance that contains it� as described in Section �	�	 In the

current prototype� class Attribute has been implemented as a simple linked list of label�

binding pairs� with operations to add� remove� �nd� etc	 such pairs	 When the instantiate

method is invoked� an object of class Instance� with its own copy of instance�level at�

tributes� is returned	

The implementation of module combinators deserves some discussion	 Implementing

merge� override� and restrict is fairly straightforward	 In order to implement the freeze

method� we must �rst implement the notion of self�reference within a module	 The binding

for an attribute might be via a module�s self�reference to a sibling attribute� which might

��



not be de�ned yet � in which case we do not have a binding at module�de�nition time	

Consequently this notion of self�reference to attributes must involve some form of delayed

binding� which we capture with the help of another abstraction� implemented as class

Reference	 This class provides a dereference�� method that can be used to retrieve

bindings of labels	 Hence class Reference provides a level of indirection in accessing self�

referenced attributes that could potentially be rebound	 This is a module�level analogue of

object�level dynamic binding as implemented by virtual function tables in C��	 In both

cases� the indirection is primarily motivated by code reuse and separate compilation	

Thus� the freeze method is implemented so that it statically 
i	e	 at module�de�nition

time� dereference�s the binding of its argument	 The hidemethod is implemented in terms

of freeze and restrict	 Implementing rename and copy as is straightforward	 Classes

Label� Value� Type� and Location are implemented almost directly as described earlier� as

C�� abstract classes	

��� Client Syntax and Semantics

As formulated above� a client will use Jigsaw�s abstractions by �rst creating objects of class

Module 
via the Module constructor�� then by invoking instantiate on the module objects

thus obtained to create objects of class Instance	 So� all Jigsaw related entities in the

client are instances of C�� classes� but are interpreted semantically di
erently depending

on the C�� class of which each is an instance	 Thus� in our current prototype� all client

language processors are written in C��� and all client languages have C�� surface syntax	

That is to say� each of the client languages is really C�� augmented with the Jigsaw model

of modules� which is provided as a set of classes	

However� we can permit clients to have their own surface syntax by adding parsemethods

for each of the abstractions in Jigsaw	 For example� we can have an abstract method parse �

module� Stream��Module� that produces a module object given a Stream 
as de�ned by

the client� of characters	 A default implementation of this method that implements one

particular syntax for modules will be provided in the framework	 This method is an abstract

method since it constructs a parse tree for the given stream by calling parse methods of

other classes� e	g	 parse value� parse type� and parse label� which are expected to be

provided by the client	 It would also recognize denotations of module combinators in its

input� and call the appropriate method that implements each such combinator	 Given the

parse methods� a parser for a client with its own syntax is built by using the parse methods

provided� and by supplying parse methods that are not	 Typically� however� we expect that

clients will rede�ne all the parse methods to support their own syntax	 We look forward to

��



the day when O�O languages will directly support I�O on customized lexical representations

for programmer de�ned data structures� as do some functional languages 
e	g	 CAML�	

� Language Processors Based On The Jigsaw Frame�

work

This concludes our general discussion of the abstractions in Jigsaw	 In this section� we

illustrate how these abstractions can be used to develop processors for a simple applicative

language and a simple imperative language� both with C�� surface syntax	 The languages

support the creation and manipulation of Jigsaw modules� and the creation and use of

instances of these modules	 We will not introduce any new surface syntax for clients here


i	e	 no parse methods will be used�� and thus the client syntax may at times seem a bit

baroque	� In the following section� we will �rst analyze the process of building language

processors by extending Jigsaw	

��� Extending Jigsaw To Build Processors

In Section � we enumerated the three levels of module characterization underlying the Jigsaw

approach	 We now clarify and re�ne those levels� in the context of an explicit client language

L
c
	 We also o
er some observations about the artifacts 
objects� arising at various levels	

�	 �Module abstraction�� This is class Module� the class representing Jigsaw�s no�

tion of modules	 Module is concrete� because it includes a generic de�nition of all its

attributes	 However� it remains indirectly abstract� since it relies on abstract auxiliary

classes� as shown in Figure �	

�	 �Module in Lc�� The Jigsaw notion of modules tailored to Lc is de�ned by providing

concrete de�nitions of these auxiliary classes� or by subclassing class Module in order

to re�ne or customize it� as appropriate for Lc modules	

�	 �Individual Lc modules�� Once the Lc notion of modules is made complete� particu�

lar L
c
modules can be de�ned� with speci�c interfaces� labels and bindings	 These are

obtained by invoking the Module constructor method of class Module as re�ned in

L
c
	

�Although certain extensibility features of C�� such as operator and function overloading enable a

surprisingly readable surface syntax�

��



�	 �L
c
module instances�� Finally� if the concept is supported by L

c
� instances 
ob�

jects� derived from particular Lc module de�nitions can be created by invoking the

instantiate method of an individual L
c
module	

This four�stage rei�cation process is central to exploiting the Jigsaw approach to man�

aging modules	 It is crucial for the reader to understand the role of each level� and to

maintain their conceptual separation	 Nevertheless� when Jigsaw is represented as a frame�

work in a single O�O language 
e	g	 C��� as in Section �	��� a very bene�cial representational

�attening occurs	 In particular� stages 
�� Individual L
c
modules and 
�� L

c
module

instances are each represented as objects in the framework implementation language 
e	g	

C���	 The objects representing 
�� automatically constitute dossiers in the sense of Inter�

rante and Linton �IL���	 These can drive fully polymorphic level 
�� object manipulation

functions� such as storage and retrieval from a persistent object store	 Indeed� dossiers can

be associated with 
�� objects as well� capturing implementation properties shared by all Lc

modules� e	g	 dispatch table layout conventions	 The implications of this representational

uniformity advantage of Jigsaw frameworks is explored in �BCLO���	

��� An Applicative Language

We now present a simple applicative language implemented by extending Jigsaw	 In this

L
c
� modules are created by invoking the Module constructor and specifying a list of labels

and their bindings� which can be either values� types� 
sub�modules� or interfaces	 Such la�

bels are instances of class Label Lc � public Label� which implements labels in L
c
as�

for example� strings of characters� and provides an implementation for the virtual method

label eq	 Similarly� values are instances of class Value Lc � public Value	 The class

Value Lc concretizes the Jigsaw notion of value� by implementing the domain of computable

values in Lc	 Let us suppose that our Lc provides integers� �oats� characters and functions

as value bindings for labels	 The function�valued bindings correspond to methods	 Value Lc

must also provide implementations for operations on the primitive values� e	g	 arithmetic

on integers and �oats� and application of method functions	 When queried for its type� a

Value Lc object must return an instance of class Type Lc � public Type that imple�

ments the space of types in Lc	 Type Lc also provides implementations for virtual functions

type eq and subtype	

A simple module de�nition in this applicative language is shown in Figure �	 In this

fragment of C�� code� the variables x� y� z� o� and n are �rst initialized to instances of

class Label Lc	 Within class Label Lc� the operator ��� has been overloaded to take any

binding 
e	g	 an integer� or an instance of class Value Lc or class Module� as its argument

��



Label Lc x� y� z� o� n�

Module� m � new Module

�x � ���

o � self refer�n���merge

�new Module �y � ���������

n � new Module �z � non local�x��

��

Figure �� Example module in an applicative language

and return an instance of class Attribute	 Thus� the C�� expression �x � ��� in the

�gure actually invokes the overloaded ��� operator of class Label Lc with � arguments

� the Label Lc object in variable x� and the value ��� and produces an instance of class

Attribute that represents the �binding� of the label in x to the value ��	 Several such

Attribute instances are passed as arguments to the constructor for class Module	 The

auxiliary function self refer�n� returns an instance of class Reference that contains

a link to the binding of label n	 The function non local implements the functionality of

importing bindings from surrounding scopes� as described in Section �	�	

Module m can be instantiated using� say� Instance� i � m��instantiate��	 The value

bound to label x can then be accessed using i��selectValue�x�	 Instances of the nested

module bound to the label n can be created using i��selectModule�n���instantiate���

and so on	

��� An Imperative Language

For an imperative language� we must provide a store consisting of locations each capable

of holding a storable value	 In this L
c
� let us suppose that values 
i	e	 instances of class

Value Lc� are the only types of entities that can be stored into a location	 If we wished to

provide for storing instances 
i	e	 objects of class Instance� or other entities� we would

need to subclass class Location accordingly	 We allow module attributes to be bound to

locations� i	e	 instances of class Location	 Value Lc objects can then be store�d into and

retrieved from 
using contents of� Location objects	

An example of a module de�nition using such objects is shown in Figure �	 The Lc

implemented in this illustration treats location bindings as instance�level 
i	e	 non�static� see

Section �	�� by default	 Integer values can be store�d and retrieved 
using contents of�

from the location binding of x	 The non�local reference to label x within the nested module

��



Label Lc x� w� z� n�

Module� m � new Module

�x � new Location �����

n � new Module �w � ���non local�x������

z � ����

��

Figure �� Example module in an imperative language

bound to n results in an import of the binding for x	 The import operation is implemented in

the prototype to treat imported location bindings as module�level	 This allows the contents

of the imported location binding to be shared among all instances of the nested module

bound to n� whereas each instance of the outer module gets a new location binding for

attribute x	

��� C�� As A Framework Implementation Language

We note that it is desirable for an O�O language to support the following features to maxi�

mize its utility as a framework speci�cation language� 
i� guarantee monotonic extension of

interfaces by subclassing� especially if classes and types are coupled� 
ii� prevent leakage of

encapsulation� 
iii� provide run�time type information� and 
iv� support multiple inheritance	

Extra expressive power in the language� such as the ability to specify invariants �JR��� would

further enhance its utility for framework implementation	

Run�time type information becomes desirable for the following reason	 Consider an

abstract class A which has a single public pure virtual method void foo �A��	 The intention

is that a concrete subclass of A� say class B � public A� will concretize the foo method

and perhaps add its own private data to do so	 But the implementation of foo in B can

only view its parameter as a pointer to A� although in reality it will be an instance of some

concrete subclass of A� perhaps B itself� Hence foo does not have access to the private data

of its parameter� unless it is downcasted to a known concrete subclass of A	 In general� it

might not even be possible to know which concrete subclass of A the parameter points to an

instance of � hence run�time types become essential for safe downcasting	 We note that such

safe downcasting is already supported in Jigsaw at the module level by the module of link in

class Instance objects	 However� the problem remains in the C�� framework implementation

� although dossiers solve this problem in the MSO object store �BCLO���	 An alternative

would be to allow the programmer to specify the type of a function parameter as the type of

��



this 
corresponding to the bound variable MyType in �Bru����� but other typing problems

accompany this approach	 Yet another alternative would be to provide a default or canonical

implementation for the private data of A� but this is clumsy and requires inordinate foresight

by the framework designer	 All this� of course� is related to ADT�style of programming which

is only partially supported by C�� 
more on this in Section ��	

In our experience� C�� as a framework implementation language has scope for improve�

ment	 Here are some of the shortcomings we observed during this implementation e
ort� 
i�

the lack of run�time type information� 
ii� the restriction that overloaded functions cannot

be distinguished simply by return types� and 
iii� the requirement that all de�nitions of a

virtual method must match exactly in type signature	 Although we are respectful of the engi�

neering judgments that entered into the design of C�� �ES���� we nevertheless observe that

its utility as a framework speci�cation language is adversely a
ected by these shortcomings	

� Related Work

The Jigsaw framework approach to building language processors has a strong relation to

re�ective systems� and is very similar to languages with meta�object facilities such as the

CLOS MetaObject Protocol 
MOP� �KdRB���� and Smalltalk��� �GR��� metaclasses	 The

CLOS MOP supports user�rede�nable protocols for meta�objects such as class� instance�

generic function� method� etc	 CLOS MOP provides the basis for the development of a

�space of languages with the default language being a distinguished point in the space	�

Smalltalk��� provides a highly intertwined collection of meta�classes starting from class

OBJECT	

Nevertheless� there are important di
erences between our approach and previous ones	

Our notion of modules is motivated by a desire to uniformly treat the semantics of inher�

itance	 In addition� encapsulation is an important semantic requirement in Jigsaw� since

we believe that it is crucial for software development in the large	 Static typing is another

important consideration in Jigsaw	 Furthermore� the Jigsaw class interfaces are derived from

a rigorous semantic foundation� rather than the requirements of dissenting language designs

already in existence	 The Jigsaw framework �nds applications in the interoperability among

languages� linkers and libraries	 As noted in the next Section� the Jigsaw framework can

be used for many purposes that the CLOS MOP has been put to use� notably persistent

objects	

��



� Future Work

We are encouraged by our preliminary results in this framework design and prototyping

exercise to envision further investigation in several areas	

�	 Module�based language processors� Clearly� we are keen to determine the practical

feasibility of re�ning our prototype into a software breadboard for experimentation in

constructing genuinely useful processors for module�based languages	 The integration

of yacc�lex�based tools to de�ne parse methods for surface syntax would greatly aid in

hiding C�� syntax from disinterested test users	 Such a full��edged implementation

could provide an excellent context for experimentation in fast and adaptive method

lookup implementations �HO��� CDMB���	 The design of a realistic language processor

for a modular extension of the programming language C encompassing these ideas is

currently in progress	

�	 Implications of persistence� Persistent stores raise many object module management

questions� including interoperability of O�O language processors �Mec���� transaction

control as an inheritance concept �Fr����� class evolution �DSS���� and instance level

module operations for object promotion �GS��� Sta���	 We believe our Jigsaw frame�

work prototype will prove very useful for carefully exploring these issues within the

context of a realistically complete� yet malleable� concept of modules	

�	 An ADT�based Jigsaw� In Section �	� we commented on the di�culty of accessing

private implementation data via abstract classes� and raised the possibility of default

or canonical data representations	 A better longer term approach would be to re�

develop the Jigsaw framework within the context of genuine abstract data types� with

existential types that permit tracking of hidden representation types via witness types

�CW��� DT���	 To quote Bracha �Bra����

�A formulation �of Jigsaw� based on existentially quanti�ed types is problem�
atic� because of type abstraction	 In particular� creating new abstract data
types by combining the abstract types from two modules runs into the same
di�culty that has arisen time and again in this dissertation � how to type�
check inheritance in the presence of type abstraction	 A rigorous de�nition
of inheritance on ADTs is an important and substantial research issue	�

��



� Conclusions

We have advanced the idea that it is feasible and worthwhile to abstract the notion of module�

and cast that abstraction into an O�O framework called Jigsaw	 This idea has been explored

in the concrete representational context of a C�� based prototype� within which we have

implemented two simple module�based languages	 This experiment has con�rmed our belief

that characterizing modularity in terms of a framework strengthens our understanding of

both concepts	 In particular� our Jigsaw prototype has enabled us to articulate and explore

subtle areas where the semantics of fairly well understood concepts interact in surprising

ways� notably nested modules and imperative client languages	 Incremental re�nement of

the original Jigsaw conception has also occurred through our experimentation	 In addition�

light has been shed on requirements for O�O languages for implementing such frameworks�

notably C��	 Several areas of attractive future work remain� including the construction of

genuinely useful processors for module�based languages� integration of support for persistence

into the Jigsaw framework� and reformulation of Jigsaw in abstract data type terms	

Acknowledgements

We are indebted to Gilad Bracha for his fundamental work in conceiving Jigsaw� his

generosity in permitting us to build on one of his unpublished working drafts� and his detailed

comments on a later draft of this paper	 The insights and support of Charles Clark� Douglas

B	 Orr� and all other MSO project participants are also gratefully acknowledged	

References

�BC��� Gilad Bracha and William Cook
 Mixin�based inheritance
 In Proc� OOPSLA Confer�

ence� Ottawa� October ����
 ACM


�BCLO�
� Gilad Bracha� Charles F
 Clark� Gary Lindstrom� and Douglas B
 Orr
 Modules as
values in a persistent object store
 Computer Science Department Technical Report
UUCS��
����� University of Utah� January �� ���



�BL��� Gilad Bracha and Gary Lindstrom
 Modularity meets inheritance
 In Proc� Interna�

tional Conference on Computer Languages� pages �������� San Francisco� CA� April
����
 ����
 IEEE Computer Society


�Bra��� Gilad Bracha
 The Programming Language Jigsaw� Mixins� Modularity and Multiple

Inheritance
 PhD thesis� University of Utah� March ����
 Technical report UUCS����
���� ��
 pp


�Bra�
� Gilad Bracha
 Private communication
 Electronic mail� January ��� ���



��



�Bru��� Kim B
 Bruce
 A paradigmatic object�oriented programming language� Design static
typing and semantics
 Technical Report CS������� Williams College� January 
�� ����


�Bru�
� Kim B
 Bruce
 Safe type checking in a statically typed object�oriented programming
language
 In Susan Graham� editor� Proc� Symposium on Principles of Programming

Languages� ���



�CDMB��� R
C
H
 Connor� A
 Dearle� R
 Morrison� and A
L
 Brown
 An object addressing mech�
anism for statically typed languages with multiple inheritance
 In Norman Meyrowitz�
editor� OOPSLA ��� Conference Proceedings� pages �������
 ACM Press� ����


�CM��� Luca Cardelli and John C
 Mitchell
 Operations on records
 Technical Report ���
Digital Equipment Corporation Systems Research Center� August ����


�Coo��� William Cook
 A Denotational Semantics of Inheritance
 PhD thesis� Brown University�
����


�CP��� William Cook and Jen Palsberg
 A denotational semantics of inheritance and its cor�
rectness
 In Proc� ACM Conf� on Object�Oriented Programming� Systems� Languages

and Applications� pages �

����� ����


�CW��� Luca Cardelli and Peter Wegner
 On understanding types� data abstraction� and poly�
morphism
 ACM Computing Surveys� �������������� December ����


�Deu��� L
 Peter Deutsch
 Design reuse and frameworks in the Smalltalk��� programming
system
 In Ted J
 Biggersta� and Alan J
 Perlis� editors� Software Reusability� volume ��
pages �����
 ACM Press� ����


�DSS��� Sean M
 Dorward� Ravi Sethi� and Jonathan E
 Shopiro
 Adding new code to a running
C�� program
 In USENIX Proceedings C�� Conference� pages �������
 USENIX
Association� ����


�DT��� S
 Danforth and C
 Tomlinson
 Type theories and object�oriented programming
 Com�
puting Surveys� ������������ March ����


�ES��� Margaret A
 Ellis and Bjarne Stroustrup
 The Annotated C�� Reference Manual

Addison�Wesley� Reading� MA� ����


�Fr���� Svend Fr�lund
 Inheritance of synchronization constraints in concurrent object�oriented
programming languages
 In O
 Lehrmann Madsen� editor� Proceedings ECOOP ����
LNCS 	��� pages ������	� Utrecht� The Netherlands� July ����
 Springer�Verlag


�Gor��� Michael J
 C
 Gordon
 The Denotational Description of Programming Languages

Springer�Verlag� ����


�GR�
� Adele Goldberg and David Robson
 Smalltalk��	� The Language and its Implementa�

tion
 Addison�Wesley� ���



�GS��� Philippe Gautron and Marc Shapiro
 Two extensions to C��� A dynamic link editor
and inner data
 In USENIX Proceedings and Additional Papers C�� Workshop� pages
�
�
�
 USENIX Association� ����


��



�Har��� W
 Harrison
 RPDE�� A framework for integrating tool fragments
 IEEE Software�
���	��	� November ����


�HC��� Jin Ho Hur and Kilnam Chon
 Self and selftype
 Information Processing Letters�

	������
�� ����


�HO��� William Harrison and Harold Ossher
 Attaching instance variables to method realiza�
tions instead of classes
 In Proc� International Conference on Computer Languages�
pages �������� San Francisco� CA� April ����
 ����
 IEEE Computer Society


�HP��� Robert Harper and Benjamin Pierce
 A record calculus based on symmetric concate�
nation
 In Proc� of the ACM Symp� on Principles of Programming Languages� pages
�
������ January ����


�IL��� John A
 Interrante and Mark A
 Linton
 Runtime access to type information in C��

In USENIX Proceedings C�� Conference� pages �

����
 USENIX Association� ����


�JR��� Ralph E
 Johnson and Vincent F
 Russo
 Reusing object�oriented designs
 Technical
Report UIUCDCS ����	�	� University of Illinois at Urbana�Champagne� May ����


�KdRB��� Gregor Kiczales� Jim des Rivi�eres� and Daniel G
 Bobrow
 The Art of the Metaobject

Protocol
 The MIT Press� Cambridge� MA� ����


�LK��� Gary Lindstrom and Robert R
 Kessler
 Mach Shared Objects
 In Proceedings Software

Technology Conference� pages �������� Los Angeles� CA� April ����
 DARPA SISTO


�Mec��� Robert W
 Mecklenburg
 Towards a Language Independent Object System
 PhD thesis�
University of Utah� Salt Lake City� Utah� June ����


�OH��� Harold Ossher and William Harrison
 Combination of inheritance hierarchies
 In OOP�

SLA Proceedings� pages ������ October ����


�OM��� Douglas B
 Orr and Robert W
 Mecklenburg
 OMOS � an object server for program
execution
 In Proc� International Workshop on Object Oriented Operating Systems�
pages �������� Paris� September ����
 IEEE Computer Society


�OMHL�
� Douglas B
 Orr� Robert W
 Mecklenburg� Peter J
 Hoogenboom� and Jay Lepreau

Dynamic program monitoring and transformation using the OMOS object server
 In
Proceedings of the �
th Hawaii International Conference on System Sciences� pages
�
������ January ���



�See��� Donn Seeley
 Shared libraries as objects
 In Proc� USENIX Summer Conference�
Anaheim� CA� June ����


�Sta��� Manfred Stadel
 Object oriented programming techniques to replace software compo�
nents on the �y in a running program
 ACM SIGPLAN Notices� �	����������� January
����


�VL��� John M
 Vlissides and Mark A
 Linton
 Unidraw� a framework for building domain�
speci�c graphical editors
 In Proceedings of the ACM User Interface Software and

Technologies ��� Conference� pages ������ November ����


��



�WGM��� A
 Weinand� E
 Gamma� and R
 Marty
 ET��� an object�oriented application frame�
work in C��
 In Proceedings of OOPSLA ���� pages �	���
 ACM� November ����


��


