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z component. Then, the tangent of the slope angle S is equal to:
\/1 —n?
tan(S) = +——. (6.5)
Nz
When n, = +1 the surface orientation is horizontal. If n, = 0 the surface is
vertical, and finally if n, = —1 that surface is horizontal again, but this time facing
down.
Inspection of the surface unit normal equation shows that n(w,v) cannot be
computed directly using the symbolic tools of Chapter 2 because of the need to
determine the square root. However, the z component of the unnormalized normal

surface, n, is equal to:

. B Ox(u,v) dy(u,v)  dy(u,v)dx(u,v)
s (1, v) = ou v du ov (6.6)

where x(u,v) and y(u,v) are the x and y components of surface S(u,v), and

n,(u,v) = n,(u,v)/||n(u,v)||, where ||2(u,v)| is the magnitude of n(u,v).

Even though n.(u,v) contains a square root factor, it can be squared and

2 can be represented as a rational function.

n,(u,v)
Given a slope § in degrees (or radians), binding n2(u,v) is straightforward using

equation (6.5). Therefore, given a certain slope S, one can compute n, and n? using

2

equation (6.5). Because n?

is representable using (piecewise) rationals, one can
contour this surface to find the specified n? levels. Figures 6.6 and 6.7 demonstrate
this exact process.

Alternatively, one can use the symbolically computed property n?(u,v) as a
scalar map designating the color of the surface at each location, much like a
texture map. Figure 6.8 is an example for this approach, for the same surface

as in Figure 6.7.

The technique presented here has also been used to compute silhouette curves
of surfaces [22], and is equivalent to the zero set of equation (6.6). f.(u,v) is sym-

bolically computed and its intersection (contouring) with the plane z = 0 provides
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Figure 6.6. Different Steepness regions example

Figure 6.7. Different Slope or Steepness regions of the surface

the silhouette curves in parametric space for the specified speeds. Figure 6.9 shows
one such example.

Unlike curvature, slope is not an intrinsic surface property. In fact, because it is
orientation dependent, it provides the designer with a measure on the planarity of

the surface in a specific orientation.

6.4 Surface Speed

The speed of a curve is defined as the distance moved in Euclidean space per

unit of movement in parameter space. For a curve,
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Figure 6.9. Silhouettes are equivalent to the zero set of equation (6.6) (rotated).

- |52

- J (fl—f)z + (%)2 + (Z—j)z. (6.7)

We define the speed bound of surface S(u,v) as the supremum of the speeds of

all curves on the unit circle of the tangent plane using the first partials as a basis.
Let a(t) be a curve in the parametric domain of S(u,v), i.e., a(t) = (u(t),v()).

By providing this speed bound of the surface parametrization, one can compute
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certain properties on «(t) and use the speed bound to extrapolate and provide

bounds on the properties on the composed curve S o o = S(u(t),v(1)).

Let y(f) be an auxiliary arc length parametrized curve with its image in the

parametric space of S(u,v), i.e., y(t) = (u(t),v(t)), with (%)2 + (%)2 =1, for

all . Then

IA

because
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Figure 6.10. Degenerated boundary provides the two extremes on speed bound.

CE)E e

and the upper bound established in equation (6.8) is reached. Therefore this bound
is minimal.
Because it is not possible to represent the square root of equation (6.8) as a

(piecewise) rational surface, in general, we compute instead

s = () B 5 ()3 () o

Figures 6.11 and 6.12 are two examples of using S(u,v) to compute a speed
bound on the surface.

The speed surface can be used to provide a measure on the quality of the
parametrization. This can becomes especially important if the surface is to be
evaluated (for any purpose, including rendering) at a predefined set of parameter

values.

6.5 Variations on Surface Twist

Also interesting is the ability to visualize surface twist. Basically the twist is

defined as the cross derivative component:
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Figure 6.11. Parametrization speed estimate (same surface as Figure 6.7).

Figure 6.12. Parametrization speed estimate for the teapot model.

T(u,v) = %. (6.12)

This equation is representable and can always be computed symbolically for
(piecewise) rationals. Figures 6.13, 6.14, and 6.15 shows this property as a texture
mapped on the surfaces.

Using equation (6.12) as a twist measure has a major drawback as can be seen
in Figure 6.14. Even though the surface is flat, the twist component is not zero

because the speed of the parametrization is changing. In other words, the mapping
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Figure 6.13. Twist component of a surface (same surface as Figure 6.7).

Figure 6.14. Twist component of a flat surface.

from the parametric space to the Euclidean space is not isometric. It would be more
helpful to use the twist component in only the surface normal direction (see [3]) to

eliminate the twist as a result of a nonisometric mapping.

0*F
Ly =ln = (n, m) (6.13)

where [15, and = 5 are two of the components of second fundamental form, L (see

Chapter 2).
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Figure 6.15. Twist component of the teapot model.

Obviously, this time the [;5 component in the flat surface in Figure 6.14 is zero
showing no twist in the normal direction. Furthermore, the use of this property
showed that the teapot has virtually no twist in the normal direction as well. All
the twist in Figure 6.15 was a result of the nonisometric mapping. Figure 6.16
shows a nonplanar surface, similar to the one in Figure 6.14 using 15 as property
surface mapping colors onto the surface, as texture.

Because now one can compute both the total twist (equation (6.12)), and the
twist in the normal direction (equation (6.13)), one can consider computing the
twist in the tangent plane to the surface as the difference of the two quantities.
This difference would provide another measure as to the quality of the surface

parametrization.
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Figure 6.16. Twist component of a nonplanar twisted surface.



CHAPTER 7

CONCLUSIONS

Computers are useless; they can only give answers.

Picasso

It is our hope that symbolic computation will find its way as a useful tool in
computer aided geometric design and in computer graphics. We hope that the
symbolic approach developed throughout this work has demonstrated the capability
and usefulness of this representation.

Several questions were left unanswered in this research. Detecting and isolating
self-intersection in offsets of curves and surfaces is a difficult unsolved problem [51].
This thesis introduced a new robust method to isolate self intersections occurring in
curve offsets. Extending the self-intersection isolation to surface offsets is difficult
and is still a future research topic.

The work presented in Chapter 4 makes it practical to use second order surface
analysis as a tool to support the development of robust, accurate, optimal algo-
rithms for design and NC toolpath generation and to support alternative criteria
for surface subdivision based on the second order properties of the shape. Con-
sideration of Figures 4.3 and 4.5 shows another area of use. Users of NURBs are
frequently unaware of the implications on the shape of the surface from using dif-
ferent orders. Manipulating the same control mesh can give different, unexpected,
shapes depending on the order. The ability to accurately visualize second order
properties in a reasonable time will enable better inspection and understanding of

the effect of order, and potentially knot vector, changes. Furthermore, while NC
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verifications frequently simulate the tool path moving over the surface geometry,
they do not check that a tool path for a convex region is actually cutting a convex
region. The work presented here can be used in implementing that larger visual
process validation. The viewer can use the understanding gained from exhibiting
second order properties to take effective action.

The adaptive isocurve generation algorithm developed in Chapter 5 was exten-
sively and successfully used for 3 axis machining. Adopting it to 4 or 5 axis toolpath
generation is straightforward. However, this multi axis toolpath generation raises
difficult questions regarding accessibility that must be addressed first. In 3 axis
milling the accessibility problem is equivalent to an orthographic projection the
hidden surface problem. “What you see is what you can mill”. Although not
simple, the hidden surface problem is well understood by the computer graphics
community. Unfortunately, this does not work in 5 axis any more. The tool axis
(“view direction”) is not constant and in fact may vary as the tool moves. This
area is under current research.

During the presentation of the new layout fabrication method in Chapter 5, it
was implicitly assumed that the material thickness is negligible. Unfortunately, this
is not always the case and compensating for the distortion that can result should be
further investigated. In addition, extending this methodology to support stretching
and tearing, should be investigated as well. Not only will that enable dealing
with arbitrary surfaces (which cannot be decomposed into piecewise developable
surfaces) but this algorithm may then support the ability to handle fabric and
other anisotropic materials.

Chapter 6 introduces several small applications that can benefit from symbolic
computation. The high order curve approximation using lower order Bézier curves
method should be qualitatively and quantitatively compared to currently known

approaches. Furthermore, it should be investigated whether a combined approach



112

can yield an even better result.

The composition tool was also introduced in Chapter 6. In [42] the composition
tools developed in this work were used to derive new and exact methods for fillet
construction. The full potential of the composition operator combined with the
symbolic tools derived in Chapter 2 should be further investigated.

Several shape measures, namely surface steepness, surface speed, and surface
twist, where defined and shown to be computable and representable symbolically,
in Chapter 6. The advantages these shape measures can provide the designer or
the manufacturing engineer should be explored.

Undoubtedly, other applications in computer aided geometric design and in
computer graphics can benefit from these tools. These fields matured enough to
a level in which robustness is becoming an increasingly important issue. Symbolic
computation is one such tool that can help alleviating the numerical problems we

are facing today.



APPENDIX

CUSP EXISTENCE PROOF

This appendix shows that a cusp is formed in the offset curve C4(¢) any time the
curve, C(t), has curvature (1) equal to 1 where d is the offset distance and the
mathematical curve normal N(t), coincides with offset normal N,(¢). Conditions
for detecting curvature higher than % are also derived.

Let C(t) be a regular planar parametric curve that may not be arc length
parameterized. Without loss of generality assume C(?) is in the @ — y plane. Let
Ca(t) be the offset curve of C'(¢) by amount d. Let T, N and 7, N be their unit
tangents and normals respectively. A nonunit length vector will be tagged with a
hat, i.e., 7.

The tangent, T, of the planar curve, ', is equal to

T(t) =

#(1).4/()) -

From differential geometry theory [48, 63]:

C'(t) x C"(t)

N [T
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B (0,0,\11)
= e =

Because B,(t) has been selected in +z direction (see equations (3.1) and (3.2)),

N,(t) is equal to

N,(t) = B,(t)x T(t)

(—y/(t),l'/(t))' (73)

The offset curve Cy(t) of the planar curve C(t) by amount d is defined as

(equation (3.2)):

Cult) = C(t)+ N,(t)d
= (e(t)y(1) + —(_y/("tj);’r/(t))d
(O] = y' O yDIT] + 2'(1)d)
7]

(7.4)
The first derivative ’j'(t) of the offset curve Cy(t) is:

7(1)

= Cylt)
_ ((x’(t)!\T!\ + eI — " ODIT| — (=OIT] = ' D)
I71* 7

W OITI+yOITI + 2" ODITI] = GBI + x’(t)d)!\T!\’)
17
_ (w’(t)!\T!\2 —y"OIT)d + yOIT'd. y' OIT|* + 2| T]ld x’(t)!\T!\’d) _
17

(7.5)

We are now ready to inspect the value of ’j'(t) in a case where d is equal to ﬁ

Using equation (7.2):
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- . (7.6)

Substituting d in the & component of ’j'(t) we have:

A SO = " OITd + ' I
7

—y"OITI + @I

|
(1) (1) y/’(t)y'<t>2|+ y|'<t>x'<t>x"<t> (102 ()

v

—y" (') + ¥ (D' (12" (1)

K2

= L)+

_ {f’ U >0 (1.7)

because

ITINTN" = 2" (8)? + (1)

and
177 = 2'(t)* + 3/ (1)

From equation 7.6, d may be substituted into the y component of ’j'(t), ’j;(t),
in a similar way for the same result. Therefore, ’j'(t) = 0 in this situation or C()
has a cusp if ¥ = 2'(¢)y"(t) — 2”(t)y’'(t) > 0 or the binormal B(t) is positive and
coincides with the definition of B,(?).

Moreover, if d > , then the tangent vector T flips direction as can be shown

1
k(1)

by its dot product with 7. Rewriting equation (7.5) as:
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SN — (1) (=" (1), 2"(t)d | (y'(1), —'(t)||T|'d
7i0) = (), y/0) + S W
and substituting it into
(T(t).T
_ Sy (—y"().2"(0)d ('), ' O)TIaY
= {[iwon i+ DO 0TV, 1)
— xl(t)2 —I-y’(t)2) 4 (_y (t)l‘ (t’)‘;—Hx (t)y (t))d
e ey Y4
= (@) +y' (1)) 7

because the last term of ’j'(t) is perpendicular to T(t) Using equation (7.2):

(T, 7))
/ 2 / 2 \I}d
- 0 ) -
(200 + /(1)) = SR = (7 + v (7)1 =
(@0 + /(1) + SR = (1) 4y 1)1 4
/i

V' (t)

Because C'(1) is a regular curve, T'(t) is never zero and (a/(¢)* +

everywhere. Therefore, for cases where the mathematical normal, N(t), coincides
with the offset normal, N,(t), or ¥ > 0, we get:
sign((T (1), T(1))) = sign((2'(t)* +y'(t)*)(1 — (t)d))
= sign(l — k(t)d). (7.8)

Now for small x(?) or a relatively straight curve, (1 — x(#)d) is positive. When
k(1) reaches 1, the expression becomes zero, or ’j'(t) = 0 because T(t) is never
zero. If k(1) is larger than 1, the expression is negative, that is ’T( ) has flipped its

direction.

If ¥ < 0 the expression is never zero because both d and k() are positive.
This is not a surprising result because such offset only increases the radius of the

osculating circle and hence can never make it vanish.
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