
��

�a�
�b� �c�

Figure ���� The speed of S�s isocurve in the ruled direction is emulated by the ruled
surface �R approximating it� In �a�	 the jth column of S mesh	 P�j	 is projected in
�b� onto the line connecting P�j and Pmj � The spacing of the projected points is

used to construct the mesh of �R�s in �c��

face as a set of ruled surfaces is derived in algorithm ��
 based on this process�

Algorithm ��
 returns a set of ruled surfaces that approximates the original

surface S to within the required tolerance � � Figure ���� shows an example of three

consecutive stages of algorithm ��
�

Assuming S satis�es a Lipschitz condition	 which automatically holds for B

spline surfaces	 let ��X
�v

	 �Y

�v
	 �Z

�v
� be an upper bound on the �rst partial derivatives

of S in the v direction� Given a �nite range in the v parametric direction	 V	 a

bound on the Euclidean size is readily available as �V�X

�v
	 V�Y

�v
	 V �Z

�v
�� Because

algorithm ��
 halves the parametric domain in each iteration	 it halves the Euclidean

bound in each iteration as well	 so convergence in algorithm ��
 is guaranteed� Note

that we are concerned only with the v �ruled� direction because the representation

is exact in the u direction�

Therefore	 the less complex parametric direction	 by some norm	 may be a better

candidate to select for the ruling direction approximation� Another measure for the

selection of the subdivision direction may be the feasibility of the surface assembly�



�


Algorithm ���

Input�
S�u� v�� surface to be divided in the v parametric direction�

�� tolerance of approximation to be used�

Output�
S� Set of ruled surfaces� approximating S�u� v� to within ��

Algorithm�
RuledSrfApproximation� S� � �

begin

C��t�� C��t� � V min and V max boundary of S�

R � ruled surface between C��t� and C��t��
�R � R refined and degree raised in v�

If � maxDistance� S� �R � � � �

return f R g�
else

begin

Subdivide S into two subsrfs S�� S� along v�

return

RuledSrfApproximation� S�� � � �
RuledSrfApproximation� S�� � ��

end

end

If S is an elongated tube	 it may be easier to select and assemble the surfaces as

sequence of rings than as a sequence of elongated strips� A third consideration may

be whether the surface is closed in one direction or not� Such closed surfaces are

very common	 and it is very natural to approximate such surfaces as a set of rings

�see Figures ���� and ������

Once the set of ruled surfaces is determined	 the surfaces must be laid �at on

a plane	 so they can be cut out� Lemma ��� can be used to verify whether the

piecewise ruled surfaces are also developable� Because the isometry mapping is

nonlinear	 in general	 an approximation must be used� We start the process by



��

�a� �b� �c�

Figure ����� Three stages in approximating a surface with piecewise ruled surfaces�

approximating the two boundary curves of R that originated on S	 C��u� and

C��u�	 as piecewise linear curves �C��u� and �C��u�	 using re�nement� An identical

re�nement should be computed and applied to both curves to insure they have

the same number of linear segments	 n� A onetoone correspondence between the

piecewise linear approximation of each curve is therefore established� Then	 from

each pair of corresponding linear segments	 one from �C��u� and one from �C��u�	 a

bilinear surface is created� Each bilinear is further approximated as two triangles

along one of the bilinear diagonals� Finally	 the 
n triangles are incrementally laid

out and linearly transformed onto a plane �see Figure ���
��

As stated above	 the laying down of the surface is a nonlinear mapping and

is only approximated� During the piecewise ruled surface approximation stage	 it

would be required to increase the number of ruled surfaces if a better approximation

is necessary	 complicating the assembly process� However	 the penalty for a better

layout approximation is reduced to only an enlargement of the data set�
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�a�

�b� �c�

Figure ����� Piecewise ruled surface approximation layout of a sphere �a�	 its
piecewise ruled surface cross sections �b�	 and assembled �c��

����� Extensions

It is a logical next step to improve the e�ciency of algorithm ��
 by subdividing S

at v values that will minimize the number of ruled surfaces required to approximate

S to within a given tolerance � � Automatically determining candidate locations is

di�cult� However	 a greedy approach can be adopted to determine a local minimum

even though it does not guarantee global minimum in the number of ruled surfaces�

The normal curvature in the v direction �the direction in which the approximating

surfaces are ruled�	 �vn�u� v� can be computed symbolically� The maximum values

of �vn�u� v� can then be used as subdivision locations� See Figure ���� for one such

example� The normal curvature of the surface in tangent direction �S

�u

�u

�t
� �S

�v

�v

�t
is

�n �
II�a� b�

I�a� b�
�

II���

I���
�

�L�T

�G�T
� �����

where � � ��u
�t
� �v
�t
� � �a� b� and G and L are the matrices of the �rst and second

fundamental forms �
�	 �
�	 respectively�

From equation �����	 when � � ��� d�	 that is	 the tangent vector direction is

d�S
�v
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Figure ���
� A ruled surface is approximated by triangles and unrolled onto a plane�

�vn �
��� d�L��� d�T

��� d�G��� d�T

�
d�
D
n� �

�F
�v�

E
d�
�
�F

�v

��

�

D
n� �

�F
�v�

E
�
�F

�v

�� � �����

Equation ����� is the normal curvature of the surface in the v direction� Equa

tion ����� is also geometrically the curvature vector of the v isocurve projected in

the surface normal direction� For a nonarclength parameterized regular curve C�t�

�see �����	

�N � �B � T �
�dC
dt
� d�C

dt�
�� dC

dt�
ds

dt

�
�

�

where s is the arc length parameterization of C� Because hu� �v � w�i � h�u� v�� wi

� hN�ni �

D�
dC
dt
� d�C

dt�

�
� dC

dt
� n
E

�
ds

dt

��
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D�
dC

dt
� d�C
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�
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�
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� n

�E
�
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dt

��

�

D�
dC
dt
� n

�
�
�
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dt
� d�C

dt�

�E
�
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��

�

D�
dC
dt
� n

�
� dC

dt
� d

�C
dt�

E
�
ds

dt

��

�

D
n� d

�C
dt�

E
�
ds

dt

�� �

� �vn �����

because kdC
dt
k � ds

dt
and n is orthogonal to dC

dt
�

�vn can be symbolically represented as a scalar NURBs surface� Its isolated

local maxima are the suggested preferred locations for the piecewise ruled surface

approximation subdivision� For obvious reasons	 a maximum occurring on the

boundary is of no interest	 but C� discontinuities in the v parametric direction

are likely candidates for subdivision locations� Therefore	 a surface should �rst be

preprocessed and subdivided at all locations where it is not C� continuous� �vn�u� v�

should then be computed for the resulting C� continuous subsurfaces� If the original

surface is not C�	 �vn will not even be C
�� Special care should be taken in evaluating

�vn along those discontinuous edges	 because limits from both sides along the C�

discontinuities would converge to di�erent values�

An example is provided in Figure ����	 which shows a surface with two very

highly curved regions in the v direction �Figure ����a�� Those regions are very

noticeable in the �vn�u� v� �Figure ����b� computed for this surface� Therefore	

�vn�u� v� can be used to automate the scheme to make more optimal ruled surface

approximation�

In some cases	 the laid out ruled surfaces can be insu�cient to assemble the

model	 depending upon the assemblymethod� Some extra material might need to be



��

�a�

�b�

Figure ����� �vn�u� v� �b� is used to determine where to subdivide the surface �a��

included as stubs so the pieces may be stitched or welded together� Such stubs can

be constructed by o�setting �
�� the boundary curves of the planar representation of

the approximating ruled surfaces� Figure ���� shows an examples of stubs generated

using this approach that can be used for the layout of Figure ���� �c�� However	

such stubs can cause a C� seam between two folded developed surfaces resulting in

a little stair with height equal to the material thickness� An alternative approach

would be to connect two adjacent ruled surfaces using a separate stub made to span

the two surfaces	 from underneath	 eliminating the stair�

When Boolean operators are applied to freeform models	 trimmed surfaces re

sult ����	 and only part of each tensor product surface is used in the �nal model�

In order to approximate freeform trimmed surfaces with piecewise ruled surfaces	

it is necessary to position the trimming curves in the plane with the ruled surfaces�

The problem is equivalent to �nding the corresponding location of a speci�c surface

Euclidean point in the planar representation of a ruled surface	 given the �trimming

curve� point in the surface parametric space� With the added constraint that the

surface speed in the v direction must be constant to within a prespeci�ed tolerance	

locating the given �u� v� point in the planar ruled surface becomes a simpli�ed
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Figure ����� Stubs can be created by o�setting the planar boundary curves�

problem� Because the u direction is approximated as piecewise linear in the laying

out stage	 a binary search in u can e�ciently reveal the bilinear segment containing

the point� Within the bilinear surface the u direction is also assumed to be of

constant speed and the exact location is then interpolated from the �at bilinear

four corner points� Finally	 because the ruled surface representation is only an

approximation	 it may be desired to reexecute the Boolean operations on the ruled

surface approximations and create the appropriate trimming curves for the fabrica

tion surfaces instead of the original surfaces because the intersections curves are not

identical� Figure ���� shows a simple layout with trimming curves� Section �����

provides several examples of more complex models composed of trimmed surfaces

as well�

����� Examples

The algorithm developed was used to generate layouts for several computer

models	 automatically� Figure ���� shows the sphere layout on a plane with its �



��

Figure ����� Trimming curves should be laid out with the ruled surfaces�

dimensional piecewise ruled surface approximation� Figure ���� shows the layout of

the model in Figure ���� with an example of stubs� Figure ���� shows the layout of a

cone and a cylinder intersecting each other with their trimming curves� Figure ����

shows a helicopter model ����	 its layout projection with the ruled surface cross

sections	 and the assembled piece�

Figure ���� shows several models layed out using these techniques and then

assembled from heavy paper� Each developable surface was cut from paper and

folded into its �space shape� Paper connecting stubs were used to hold and keep

the pieces together�

More complex models can be created using Boolean operations when the model

is a union or intersection of several freeform surfaces� The layouts of the trimming

curves of these surfaces are also computed	 in a way similar to the ruled surface

layouts� Figures ���� and ���� show more complex models having several trimmed

surfaces�

Table ��
 provides some timing results for the model decomposition and layout

computation� Tests were run on a SGI�D 
�� GTX �R���� 
�MHz Risc machine��

All tests are measured in seconds�



��

�a�

�b�

�c�

Figure ����� A helicopter model �a� laid out �b� and assembled �c��

�a� �b�

Figure ����� Computer models �a� and assembled out of heavy paper �b��



��

�a� �b�

Figure ����� Teapot computer model �a� and assembled out of heavy paper �b��

�a� �b�

Figure ����� Computer model of an f�� �a� and assembled out of heavy paper �b��

Table ��
� Di�erent models layout construction times�

Model Time �Sec��
Tube �Figure ����� ���
Helicopter �Figure ����� �
Pawn �Figure ����� �
Teapot �Figure ����� �
f�� �Figure ����� ���



CHAPTER �

OTHER APPLICATIONS

Nothing is particularly hard if you divide it into small jobs�

Henry Ford

This Chapter will present several other applications that can bene�t from com

bined symbolic and numeric computation� Some of these problems have undergone

extensive research and are provided here to re�ect on the power of this combina

tion� In section ��� we develop an adaptive technique to approximate higher order

B�ezier curves using cubic B�ezier curves� In section ��
 we develop the tools so the

composition operation may be added to the set of operation de�ned in Chapter 
�

The composition tool will open the way for solving a whole set of problems� In

section ���	 we develop techniques for visualizing surface slopes and steepnesses�

The steepness of a model may be of interest when only a limited set of slopes is

allowed� This is important for road design or even for slides� Section ��� discusses

more surface properties� The speed of the surface has a direct a�ect on the way the

surface is milled� It also provides a bound on the amount of Euclidean movement

while moving a �xed distance in parametric space� The twist is another measure

for a surface shape and is not as intuitive as one would like	 as will be shown� Like

curvature estimation methods	 analysis techniques of twist have been previously

based on a presampled grid from the surface parametric space ���� As in Chapter �	

we will demonstrate in section ��� the use of property surfaces to globally bound

the twist properties�
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��� B�ezier Curve Approximation

Cubic polynomial curves are frequently used in graphics and CAGD� The fact

that piecewise cubic polynomial curves are the curves with the lowest order that can

provide C� continuous interpolation or approximation is one of the main reasons�

Because any polynomial basis may be used	 we select the Bernstein polynomial

which is numerically stable �����

One can �nd a growing number of hardware implementations for evaluating

cubic polynomials in modern workstations and devices	 for mainly display purposes�

Taking advantage of these implementations speeds up algorithms� Converting

other types of curves into this simple form is not always obvious� Higher order

curves cannot	 in general	 be represented as cubic polynomials� This is also the

case for rational curves� Even rational quadratic curves are not representable

as cubic polynomials� In other words	 approximation techniques must be used�

The Postscript ���� language is an example in which only cubic polynomial are

supported� Therefore NURBs curves or even rational B�ezier curves must be ap

proximated to display them on Postscript devices�

Currently	 the most common technique is to re�ne the curves and approximate

them as piecewise linear curves which are then displayed� Because linear segments

are displayable by almost every device	 portability is gained� However	 this method

su�ers from two major drawbacks� First	 the size of the data is huge  several

magnitudes larger than the original curves� Furthermore	 the data are not exact

any more and are not even C� continuous� Approximating higher order or rational

curves as cubic polynomials is probably a better approach� In ���	 ���	 a subdivision

based approach is used to create such an approximation� A cubic polynomial

is compared to the curve being approximated� If the cubic polynomial is not

accurate enough	 the curve is subdivided and the two new cubic approximations

are compared to the two parts of the original curve�
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In this section	 we enhance this technique so that the approximating cubic

piecewise polynomials join with C� continuity are everywhere within a prescribed

tolerance to the original curve everywhere�

Because we choose to derive this approximation only for with higher order or

rational B�ezier curves	 NURBs curves will be preprocessed and converted to an

ordered set of rational B�ezier curves of the same order�

In Chapter �	 we introduced a global method to compute the distance between

a curve and its o�set approximation� The same technique may be used here to

compute the distance between a curve and its approximation �superscript denotes

order	 subscript a denotes approximation��

Algorithm ��� provides a piecewise cubic approximation to a given curve in line

���� A cubic polynomial curve has twelve degrees of freedom �four E� points�� Six

of them are used to interpolate the original curve end points� Because we preserve

end points tangents �to easily preserve C� continuity�	 two degrees of freedoms are

left  the speeds of the tangents� One can use the original curve speed to provide

the information to determine the last two degrees of freedom	 a necessary condition

from the way ��t� is computed �see below�� This approach was used in Figures ���

and ��
�

Raising the order of B�ezier curves as done in line �
� in algorithm ��� is a fairly

simple task �see Chapter 
	 equation �
�����

The subdivision �line ���	 algorithm ���� exploits the distance function	 ��t�	

and instead of subdividing in the middle of the parametric domain	 a common

technique	 the curve is subdivided at the location of the maximum distance �error��

Because the end points of the piecewise cubics interpolate the original curve	 this

error is automatically reduced to zero�

A di�erent approach is to adjust the tangent speeds to minimize the distance

between the original curve and it approximation	 in a similar way to that of o�sets

in ��
� This approach needs further investigation�
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Algorithm ���

Input�
�� required approximation curve tolerance�

Cn�t�� input curve of order n�

Output�
C� set of piecewise cubic Bezier curves� C�

a�t� approx� Cn�t��

Algorithm�
CubicBezierApprox�Cn�t�� � �
begin

��� C�

a�t�� cubic Bezier approximation to Cn�t��
��� Raise C�

a�t� order to order n� Cn
a �t��

Compute distance ��t� between Cn
a �t� and Cn�t��

if � ��t� maximum distance � � � Do

begin

��� Subdivide Cn�t� at ��t� maximum into Cn
�
�t�� Cn

�
�t��

return CubicBezierApprox�Cn
�
�t�� � � �

CubicBezierApprox�Cn
�
�t�� � ��

end

else

return C�

a�t��
end

In some cases	 when approximating shape of a higher order curve using a lower

one	 the speeds of the curve is irrelevant� One such case is display on Postscript

devices	 in which the only requirement is to preserve the curve shape� For each

cubic B�ezier and its corresponding higher order subcurve that it approximates	

algorithm ��� guarantees

�� End points interpolate the original higher order subcurve	


� End point tangents are in the same direction as the original higher order

subcurve tangents �G��	 and possibly with the same length �C��	

�� The distance between the two curves is within the speci�ed tolerance	 and
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Figure ���� Cubic B�ezier approximation to higher order curves �two tolerance��

Figure ��
� Cubic B�ezier approximation to higher order curves �two tolerance��

�� The speed of both curves is the same to within the speci�ed tolerance�

The �rst three properties are required in order to mimic the curve shape� How

ever	 property � is only a result of the way the distance	 ��t�	 between the two curves

is computed� If one could e�ciently answer whether the two curves are within the

desired tolerance	 this constraint could be omitted� Unfortunately	 no such global

and e�cient algorithm exists and	 as a result	 the distances are computed with

the respective parameter values and curve speed is preserved as well� Modifying

the tangent lengths directly a�ects the speed of the curve so a di�erent distance

measure is needed�

��� Composition

Composition	 f � g	 is a powerful operation that has not found much use in

graphics and CAGD yet� Some work can be found on the implicit use of composition
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in deformations ���	 ���� The bivariate surface g is warped in a �eld de�ned as

a trivariate volume f 	 resulting in a bivariate composed and deformed surface�

This deformation	 implicitly using composition	 can serve as a modeling tool as

well and can provide exact and well behaved results� In ����	 a parametric curve

g � �u�t�� v�t�� is composed with the surface f�u� v� to �nd the exact Euclidean

representation of the curve f�u�t�� v�t��	 to be used as a �llet boundary curve in

�llet construction� f�u�t�� v�t�� can be used anywhere the exact representation of

the Euclidean curve is needed	 given the parametric curves� Mapping trimming

curves from parametric space to the Euclidean space is another example�

In this section we will explore the composition f�u�t�� v�t��� Extending this to

a trivariate deformation volume f�u�r� s�� v�r� s�� w�r� s�� is simple�

Let C�t� � �u�t�� v�t�� be a B�ezier curve such that u�t� � ��� � � � � ����t and

v�t� � ��� � � � � ����t� Let S be a B�ezier surface�

S�u�t�� v�t�� �
nX
i��

mX
j��

PijB
m
j �v�t��B

n
i �u�t��

�
nX
i��

�
� mX
j��

PijB
m
j �v�t��

�
ABn

i �u�t��� �����

The curvesurface composition is now narrowed to the problem of computing

the composition of Bn
i �c�t��	 where c�t� is a scalar curve� Assuming one can

compute and represent the compositionBn
i �c�t��	 c�t� � �umin� umax�	 as a curve	 the

curve S�u�t�� v�t�� is also representable because it involves in scaling	 addition and

multiplication of Bn
i �c�t�� terms only� These operations were explored in Chapter 
�

Bn
i �c�t�� �

�
n

i

�
���� � c�t��n�i�c�t��i� ���
�

Interestingly enough	 equation ���
� contains only tools developed in Chapter 


namely	 curve addition and curve multiplication �power��
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What if either the curve or the surface is rational� For a rational surface	 nothing

changes� The Pij in equation ����� should simply be treated as in projective space�

If the curve is rational	 equation ���
� now becomes

Bn
i �c�t�� �

�
n

i

��
��� �

c�t�

w�t�

�n�i �
c�t�

w�t�

�i

�

�
n

i

�
�w�t�� c�t��n�i�c�t��i

�w�t��n
� �����

Equation ����� should then be substituted into equation ����� in a similar way

to equation ���
�� If surface S�u� v� is rational as well the denominator term in

equation �����	 �w�t��n	 is canceled because it appears in both the surface numerator

and denominator� If however	 the surface was a polynomial	 the resulting composed

curve becomes rational�

Figures ��� and ��� show some examples for B�ezier curves and surfaces� Fig

ure ��� has a polynomial surface and several parametric curves mapped onto the

surface� Figure ��� has a surface which is an extrusion of an arc and	 as such	 is

rational� Both Figures have the parametric space on the left and the Euclidean

mapping on the right�

Unfortunately	 the order of the resulting composed curves is quite high� Let d

be the curve degree while the surface degrees are m and n as can be seen from

equation ������ It immediately follows from equations ����� and ���
� that the

degree of the composed curves is equal to dn� dm� Table ��� provides these orders

for common cases� Note that even when either the surface or the curve is rational

�or both�	 the order of the resulting curve does not change�

In some cases	 it can be important to reparametrize a curve� The composition

tool allows exactly that� By substituting s in C�s� by s � c�t�	 we reparametrize a

curve to�

C�c�t�� �
nX
i��

PiB
n
i �c�t��� �����
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Figure ���� B�ezier curve �polynomial� surface composition�

Figure ���� B�ezier curve �rational� surface composition�

Computing equation ����� involves scaling �with Pi� and addition of curves

resulting from the composition of Bn
i �c�t�	 which we dealt with in equations ���
�

and ������

Figure ��� demonstrates the speed of three arcs after reparametrizing with c�t� �

t� in the middle and reparametrizing with c�t� � t� on the right� The original arc

is on the left�
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Table ���� Curve on surface composition  orders�

Surface orders Curve order Composed curve order
� � � 
 �
� � � � �
� � � � ��
� � � 
 �
� � � � ��
� � � � ��
� � � 
 �
� � � � ��
� � � � ��

Figure ���� Rational B�ezier curve reparametrizing using composition�

��� Surface Steepness

The slope of a planar curve at a given point is equal to the angle between

the tangent to the curve and a reference line	 usually the horizontal axis� In

an analogous way we de�ne the surface slope at a given point	 p	 as the angle

between the plane tangent to the surface at p and a reference plane� Without loss

of generality	 in the discussion below we assume that the reference plane is the xy

plane�

Because the angle between two planes is equal to the angle between their two

normals	 to compute surface slope	 one need only compute the angle between the

surface normal and the z axis� Let n be the surface unit normal and let nz be its


