
CHAPTER �

MACHINING APPLICATIONS

Computing and numerical control �NC� has made great progress at
that time� and it was certain that only numbers� transmitted from drawing
o�ce to tool drawing o�ce� manufacture� patternshop� and inspection�
could provide an answer� of course� drawings would remain necessary�
but they would only be explanatory� their accuracy having no importance�
Numbers would be the only and �nal de�nition�

P� B�ezier �on NC capabilities in the ����s�

��� Introduction

Generating optimal NC code to drive milling machines for models de�ned by

freeform trimmed surfaces is a di	cult problem� In practice
 two main approaches

are used to generate toolpaths for surfaces
 neither of which is optimal
 in general�

The �rst exploits the parametric representation and generates isocurves that are

uniformly distributed across the parametric domain� This approach is not optimal

if the surface mapping into Euclidean space is not isometric� The second approach

contours the models by intersecting the surfaces with planes equally spaced in

Euclidean space
 resulting in a piecewise linear toolpath approximation which is

nonadaptive to the local surface geometry� Furthermore
 the toolpath generated by

contouring is suitable for � axis milling but is inappropriate for � axis milling� This

Chapter addresses some of the relevant issues in this �eld of realizing computer

models�

In section ��

 an algorithm developed to adaptively extract isocurves for render�

ing �
�� is adapted and enhanced to generate milling toolpaths for models consisting

of trimmed surfaces
 and can be used in both � and � axis milling� Section ��
��



�


develops and de�nes this new algorithm� Sections ��
�
 and section ��
�� deal with

some practical problems while section ��
�� provides some examples and results�

Finally
 in section ���
 a whole new approach to realizing computer models is derived

using piecewise ruled and developable surface approximations�

��� Adaptive Isocurves Toolpath

In order to evaluate the quality of toolpaths
 two criteria are introduced� One

deals with the validity of a set of toolpaths and the other with its optimality�

De�nition ��� A set of curves C in a given surface S is called a valid

coverage for S with respect to some constant � if for any point p on S

there is a point q on one of the curves in C� such that kp� qk� � �� where

k � k� denotes the Euclidean distance�

De�nition ��� provides a validation criterion on a given toolpath and a tolerance

� such that any point on the surface is at most � from the nearest toolpath curve�

De�nition ��� takes into consideration only the distance between an arbitrary point

p on the surface and the closest point on the toolpath� Other criteria
 such as

bounding the curvature
 could be added to the de�nition of validity of a toolpath

to provide a tighter bound on the resulting scallop height without a�ecting any of

the rest of the algorithm�

We also would like to consider the optimality of a valid toolpath�

De�nition ��� A toolpath for a given surface is considered optimal if it

is valid and if its path length is minimal�

De�nition ��
 considers optimality based only on the cutting motion part of the

toolpath� Tool retraction and traversals are not considered as optimality conditions

in this Chapter� One might decide to traverse the iso�curves in incremental cross



��

iso�direction so that the portion of the surface of the machining tool that performs

the actual milling is approximately the same throughout the milled surface� Any

other type of traversal might
 in some stage of the milling
 require the tool to

cut using its entire milling surface perimeter
 an undesired tool machining motion�

Unfortunately
 the time to �nd an optimal traversal of the piecewise cutting motion

toolpath is exponential in nature� more on this problem can be found in ��
��

There are two main approaches used to generate tool paths for freeform surfaces�

In one
 isoparametric curves are extracted from the surface
 usually in equally

spaced parametric steps ���
 �

 �

 ���� These isocurves usually span the entire

parametric domain of the surface �see Figures ���a and ��
a� and will be referred to

as complete�isocurves� Isocurves that span only a portion of the surface parametric

domain �see Figures ���b and ��
b� will be referred to as subisocurves� Although

simple to determine
 toolpaths created using complete isocurves equally spaced

in parametric space
 are clearly not optimal according to de�nition ��
 and are

redundant
 as can be seen in the example of Figure ���a
 where the toolpath is

redundant in the middle region of the surface� In order to guarantee the validity

of the toolpath
 a certain parametric stepsize is selected for the complete isocurves

�for example
 derived by the top and bottom regions of the surface in Figure ���a�

and which undoubtly leads to a much smaller distances between adjacent complete

isocurves in other surface regions than required causing redundancy �in the middle

of the surface in Figure ���a�� Further
 it might be di	cult for the user to determine

the parameter stepping tolerance that will create valid toolpaths to within a given

�
 even if the top and bottom regions of the surface in Figure ���a are treated

separately� The user is interested mainly in the shape of the represented geometry

and the associated milling
 so the parametric representation of the surface should

not require his attention
 but be internal�
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�a� �b� �c�

Figure ���� Isocurves are obviously not an optimal solution as a toolpath for
this surface �a�� Adaptive isocurves are
 in general
 more optimal
 exact
 and
compact �b�� Contouring with equally spaced parallel planes might be optimal but
is piecewise linear �c��

An alternative method for generating toolpaths is based on contouring planes
 in

which the surface is intersected by �usually geometrically equally spaced� parallel

planes� The intersection curves are used to drive the milling tools ��
 ���� The

resulting toolpath is
 in general
 only a piecewise linear approximation to the real

intersection
 and the size of the piecewise linear approximations of the intersection

curves is usually several magnitudes larger than isocurve data� For relatively �at

surfaces the contouring algorithm seems to yield acceptable results �see Figure ���c��

However
 as is the case for the complete isocurves algorithm
 some frequently

occurring surfaces can be pathological to this contouring algorithm� If the surface

has regions almost coplanar to the contouring plane
 adjacent contours would be

distant from each other
 as can be seen from Figure ��
c
 invalidating the toolpath�

How to set the parallel plane spacing and the parallel plane direction to create a

valid toolpath is not obvious� Even if an algorithm could be created to adaptively
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�a� �b� �c�

Figure ��
� Toolpath using isocurves will be not optimal in this complex surface
�a�� Adaptive isocurves are more optimal
 exact
 and still correctly spans the entire
surface �b�� Contouring with equally spaced parallel planes is too sparse in coplanar
regions �c��

space the contours based on the coplanarity of one surface region
 this spacing

would be �xed for the entire contoured model� Local coplanarity in one region of

the surface would set the spacing for the entire model�

Attempts to improve those techniques have been geared mainly toward local

adaptation of the algorithm to speci�c regions which require a di�erent number of

samples to gain the required tolerances ���
 ���� Others used adaptation of scanline

fashion rendering ���
 ��� to get a piecewise linear approximation for the toolpath�

An adaptive subisocurve extraction approach is introduced for rendering in �
���

That scheme provides a more optimal and valid coverage of the surface by adap�

tively introducing partial subisocurves in regions yet uncovered by already created

subisocurves �de�nition ����� Furthermore
 the algorithm frees the user from the

need to determine both the surface parameter spacing or contouring plane spacing
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and the direction to use to insure adjacent isocurve distances to produce a valid

coverage� Instead
 a bound on the required distance between adjacent subisocurves

can be directly speci�ed
 and guaranteed automatically�

It is clear that a valid coverage generated using complete isocurves can be very

ine	cient �see Figure ���a�
 which can increase machining time and a�ect part

�nish� If the redundant portion of each complete isocurve could be a priori detected

and not be generated as part of the valid coverage
 one would be able to generate

a more optimal toolpath with the appeal of the isocurves� The adaptive isocurve

extraction algorithm does exactly that for rendering �see Figures ���b and ��
b��

because the adaptive isocurve extraction algorithm is developed for rendering in �
��

it will be brie�y discussed here� The interested reader can also refer to �
���

It is appealing to use isocurves because their representations are compact
 ex�

act
 and they are straightforward to use as milling toolpath� Isocurves can be

approximated more compactly and accurately using piecewise arcs �and lines�
 if

circular motion is supported by the milling machines than by using piecewise linear

approximation alone� Furthermore
 isocurves could be sent directly to a milling ma�

chine that supports NURBs or B�ezier curve toolpaths� Isocurves are also invariant

under a	ne transformations and therefore are view direction independent
 unlike

the results of the contouring technique� Scallops resulting from isocurve based

toolpaths are usually more attractive than those resulting from contoured based

toolpaths because they follow the model�s basic streamlines� Finally
 when comput�

ing toolpaths for models having trimmed surfaces
 it is easier to trim isocurves to the

appropriate domains than to trim contours whose parametric domain representation

can be arbitrary�

Recent literature ��
 ��
 ��� has suggested that the contact point numerical

improvement approach
 such as used by APT ��
�
 is unstable and slow� Computa�

tions of a toolpath for a single surface are usually measured in minutes ���
 ���� A
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di�erent known approach ���� was selected in this work� The model was o�set by

the tool ball end radius and toolpaths for the tool center were generated using the

o�set surface�

Section ��
�� brie�y discusses the adaptive subisocurve algorithm� Section ��
�


describes the o�set computation required for ball end tool milling
 and section ��
��

deals with the method used for the rough cutting process� Finally
 section ��
��

presents some results obtained from an implementation of the new algorithm for

NURBs based models using the Alpha � solid modeler�

����� Adaptive Isocurves Algorithm

Using isocurves as the coverage for a surface
 we de�ne adjacency and iso�distance

between isocurves�

De�nition ��� Two �sub�isocurves of surface S�u� v�� C��u� � S�u� v���

u � �us�� u
e
�� and C��u� � S�u� v��� u � �us�� u

e
��� v� � v�� from a given

set C of isocurves forming a valid coverage for S are considered adjacent

if� along their common domain U � �us�� u
e
�� � �us�� u

e
��� there is no other

isocurve from C between them� That is� there does not exist C��u� �

S�u� v�� � C� u � �us�� u
e
�� such that v� � v� � v� and �us�� u

e
�� � U �� ��

De�nition ��� The iso�distance function ����u� between two adjacent

�sub� isocurves along their common domain U is equal to

����u� � kC��u�� C��u�k�

�
q
�cx��u�� cx��u��� � �cy��u�� c

y
��u��� � �cz��u�� cz��u����

�����
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Given two isocurves
 C��u� and C��u�
 on a surface S�u� v�
 one can compute

and represent the square of the iso�distance
 ��
���u�
 between them symbolically as

a NURBs or as a B�ezier curve� Computing the coe	cients for the representation

of ��
���u� requires the di�erence
 sum
 and product of curves
 all computable and

representable in the polynomial and piecewise polynomial domains� Furthermore


given some tolerance �
 it is possible to compute the parameter values where

the iso�distance between C��u� and C��u� is exactly � by computing the zero set

of ���
���u� � ��� ����� By subdividing the two curves at these parameters
 new

subisocurve pairs
 fC i
��u�� C

i
��u�g
 are formed with the characteristic that each

pair is always iso�distance smaller or always larger than �
 in their open interval

domains� If the two curves in the pair fC i
��u�� C

i
��u�g are closer than � in the

iso�distance metric then the Euclidean distance tolerance condition is met for that

pair� If
 however
 the two curves� iso�distance is larger than �
 a new subisocurve


C i
���u�
 is introduced between C i

��t� and C i
���t� along their common domain U and

the same iso�distance computation is recursively invoked for the two new pairs

fC i
��u�� C

i
���u�g and fC

i
���u�� C

i
��u�g�

Starting with the two U boundaries or two V boundaries of the surface
 the

algorithm can invoke this iso�distance computation recursively and ensure two

adjacent isocurves will always be closer than some speci�ed distance � by verifying

that their iso�distance is not larger than �� Because a middle isocurve is introduced

i� the iso�distance is larger than � and � is small
 resulting iso�distances between

adjacent isocurves
 as computed
 are rarely less than �

�� Furthermore
 because the

resulting set of isocurves covers the entire surface S
 it can serve as a valid toolpath

for S with distance ��

Algorithm ���
 the adaptive isocurve extraction algorithm
 generates a valid

and more optimal coverage by minimizing the cutting speed motion required by

minimizing redundancies while providing a bound on the scallop height via the
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Algorithm ���

Input	
Surface S�u� v��
Iso�distance tolerance ��

Output	
Adaptive isocurve toolpath for S�u� v��

Algorithm	
AdapIsoCurve� S�u� v�� � ��

begin

C��u�� C��u� � S�u� v� two u boundary curves�

return AdapIsoCurveAux� S�u� v�� �� fC��u�� C��u�g ��

end

bound on the distance between two adjacent isocurves�

It is important to realize that bounding the distance between adjacent isocurves

is a necessary condition to bound the scallop height� The surface curvature bound

�See �
��� could be added to the de�nition of validity to decide whether to introduce

a middle isocurve in algorithm ��� and obtain a tighter bound on the scallop height�

����� The O
set Computation

Because the toolpath generated by the adaptive isocurve algorithm provides a

valid coverage of the surface
 it can serve as a toolpath for both � axis and � axis

milling� In this discussion
 we will concentrate on � axis milling using ball end

tools� Such a method requires the computation of an o�set surface to the model

at a distance equal to the radius of the ball end tool� This simpli�es the toolpath

generation because keeping the center of the ball end tool on the o�set surface


keeps the tool tangent to the original surface so it can not gauge�

Unfortunately
 the exact o�set of a freeform piecewise polynomial or rational

surface is not representable
 in general
 as a piecewise polynomial or rational
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Algorithm ��� continued

AdapIsoCurveAux� S�u� v�� �� fC��u�� C��u�g �

begin

��
���u�� kC��u�� C��u�k�� iso�distance between C��u� and C��u��

if ���
���u� � ��� �u� then

return ��
else if ���

���u� � ��� �u� then

begin

C���u� � Middle isocurve between C��u� and C��u��

return
AdapIsoCurveAux� S�u� v�� �� fC��u�� C���u�g �

S
AdapIsoCurveAux� S�u� v�� �� fC���u�� C��u�g ��

end

else

begin

fC i
��u�� C

i
��u�g � subdivided fC��u�� C��u�g at all u

such that ��
���u� � ���

return
S
i AdapIsoCurveAux� S�u� v�� �� fC i

��u�� C
i
��u�g ��

end

end

surface �
��� Quite a few methods have been developed in recent years to provide

approximations to surface o�sets �

 ��
 
�
 
��� In �
��
 a technique to approximate

o�sets of freeform B�ezier and NURBs surfaces by B�ezier and NURBs surfaces was

developed with the property that error in the approximation surface is globally

bounded� That global bound can be used directly to determine a global bound on

the accuracy of the milling and the amount of gouging that may occur�

Extending the generation of surface toolpaths to models de�ned using construc�

tive solid geometry ���� and consisting of several
 possibly trimmed
 surfaces is not

obvious� Let O�A� denote the exact o�set of A� It is unfortunate but O�A � B�

is not always the same as O�A� � O�B�� For example
 A � B and hence O�A � B�
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could be empty but O�A� � O�B� might be a nonempty�

Several types of manufacturing o�sets can be de�ned for piecewiseC� models ���


��� that are constructed by constructive solid geometry� In general
 one should

attempt to prevent gouging even at the expense of not being able to mill the entire

model� A C� discontinuous concave corner created by a union of two surfaces cannot

be milled using a ball end tool of any size� One could de�ne the o�set operator for

a piecewise C� model so that at no time would the center of the ball end tool be

closer than its radius to any of the surfaces of the model� Using such de�nition it

can be guaranteed that during the entire milling process


kTc � Si�u
i� vi�k� 	 Tr� �i� ���
�

where Tc and Tr are the center and the radius of the ball end tool
 respectively


where Si�u� v� is the ith surface in the model
 and �ui� vi� is a parametric location

in the untrimmed domain of surface Si�

If O�Si� designates the exact o�set surface to surface Si at distance Tr
 it is

clear that the ball end tool could not gouge Si if Tc were kept on O�Si�� We de�ne

the manufacturing o�set of a Boolean union operation of two surfaces
 Si
S
Sj


to be the union of the o�set surfaces
 that is bO�Si SSj� 
 O�Si�
S
O�Sj�
 even

though the model might not be completely milled along the intersection curve of

Si and Sj in concave regions� Such a de�nition guarantees that the tool will gouge

neither Si nor Sj � Similarly
 the manufacturing o�set of a Boolean intersection

operation of two surfaces
 Si
T
Sj is de�ned as the intersection of the o�set surfaces


that is bO�SiTSj� 
 O�Si�
T
O�Sj�� Because the Boolean intersection operation

only �removes material
� it is not possible for it to form concave corners from an

intersection of two C� continuous surfaces
 so the bO de�nition of an o�set of a

Boolean intersection operation supports the milling of the entire region along the

intersection curves�



�


Because an o�set of a single surface is another single surface �
��
 Boolean

operations can be performed on the o�set surfaces in much the same way they

were computed for the original models� Consider surfaces Si and Sj that intersect�

If the intersection occurs near the boundary of either surface
 it can happen that

O�Si� does not intersect O�Sj�� For open surfaces
 one solution that forms correct

intersection curves is to extend them in the cross boundary tangent directions�

����� Rough Cutting Stage

The toolpath derived in section ��
�� cannot
 in general
 be directly applied to

the stock from which the model is to be machined� In some cases
 the depth of

milling required is simply too large� A rough cutting stage is usually applied in

which the excessive material is removed crudely� Then
 in the �nal stage
 when the

toolpath derived in section ��
�� is applied
 it is necessary to remove only a limited

amount of material�

One way to discard the excessive material
 in � axis milling
 is to slice the

o�set approximation of the model with several parallel planes and remove the

material external to the part at each contour level� Two�dimensional pocketing

operations ��
� can be used to remove the excessivematerial at each contoured layer�

Figure ��� shows those contours of a �house on the hill� model� The rough cutting

stage can be automated
 similarly to the adaptive isocurve extraction algorithm�

����� Results

Several results are presented in this section
 as are some timing considerations�

The adaptive isocurve toolpaths for the knight in Figure ��
b have been used to

mill the complete knight� Two �xtures
 one for the right side and one for the left

side of the knight have been used� Figure ��� shows a raytraced version of the

model while Figure ��� shows the milled piece� A ball end tool was driven along an
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Figure ���� Parallel plane contouring is used to generate pockets for rough cutting�

o�set �
�� of the knight surface in � axis milling mode� The knight model consists

of a single highly complex NURBs surface�

This algorithm produces only isoparametric curves that are simple to clip against

the surface trimming curves de�ning a trimmed surface� A �house on a hill� model


consisting of several trimmed surfaces was used for this example� This model was

milled using a ball end tool in � axis mode� Figure ��� shows a raytraced version

of the model
 while Figure ��� shows the adaptive isocurve toolpath used in the

�nish stage of the model in Figure ���� The o�set of the model was automatically

computed using the the bO o�set method described in section ��
�
� Furthermore


it was unnecessary to introduce any auxiliary check or driver surfaces ��
� as part

of this automated toolpath generation process�

To gain some insight regarding this algorithm
 Table ��� provides some timing

results for computing the adaptive isocurve toolpaths for the tests displayed� Tests

were running on a SGI�D 
�� GTX �R���� 
�MHz Risc machine�� The surface in

Figure ��� is a B�spline ruled surface with � B�ezier patches �patches of a NURBs
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Figure ���� Raytraced image of the knight model�

Table ���� CPU times for adaptive iso�curves extraction�

model cpu time � isocurves�
Figure ���b � surface ��� sec� ��
Figure ��� � knight ���� sec� �


Figure ��� � �house on a hill� ��
�� sec� ����

surface are enumerated as the number of B�ezier patches that would result from

subdividing the NURBs surface at each original interior knot�� The knight is a far

more complex NURBs surface� Its �� B�ezier patches accounts for its long processing

time� Although the �house on the hill� model has � NURBs surfaces in it
 none of

them is as complex as the single surface de�ning a knight�

��� Fabrication Using Layout Projection

It is common to �nd freeform surfaces manually approximated and assembled

as sets of piecewise developable surfaces� �Developable surfaces are of considerable

importance to sheet�metal� or plate�metal�based industries and to a less extent

to fabric�based industries� ����� Parts of aircrafts and ships are assembled from
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Figure ���� Aluminum milled version of the knight model�

piecewise planar sheets unidirectionally bent into their model positions� Certain

fabric and leather objects are made using patterns made from planar sheets�

Because developable surfaces can be unrolled onto a plane without distortion


they can be cut from planar sheets
 bent back into their �nal position
 and stitched

together�

In ���
 a �attening approximation is computed for freeform surfaces to eliminate

the distortion in texture mapping� Surfaces are split into patches along feature

�geodesic� lines and approximated as �ats� However
 we are mainly interested in

isometric projections that preserves intrinsic distances and angles �
��� Physically


such maps only bend the surface with no stretching
 tearing
 or distortion� One

of the most interesting properties of developable surfaces is their ability to be laid

�at on a plane without distortion by simply unrolling them �
�
 �
�� Therefore


we would like to generate a surface approximation using piecewise developable

surfaces �
�
 �
�
 for which an isometric map to a plane exists�

Currently
 the process that determines how and where to decompose the model

requires human ingenuity and does not provide a bound on the accuracy of the



��

Figure ���� Raytraced image of the �house on the hill� model�

approximation� We explores a technique for automatically decomposing the sculp�

tured model
 using a C� approximation with error bound control
 into sets of

developable surfaces�

The Gaussian curvature of a developable surface S�u� v�
 K
 is zero every�

where �
�
 �
�
 i�e�
 K�u� v� 
 �� The class of developable surfaces is di	cult

to deal with
 so we will �rst concentrate on a superset of it
 namely the class of

ruled surfaces� In order to be able to use ruled surfaces instead
 we need to derive

the conditions in which a ruled surface is also developable� Let jGj and jLj be the

determinants of the �rst and second fundamental form �
��
 respectively�

Lemma ��� Let R be a regular ruled surface� R�u� v� � C��u��v�C��u��

��� v�� v � ��� ��� R is developable if and only if
D
nr�

��R

�u�v

E

 ��

Proof	 Given a regular surface S
 its Gaussian curvature
 K
 is zero everywhere

�therefore
 it is developable� if jLj 
 � because K � jLj
jGj

 and jGj �� � for regular

surfaces�

jLj �

�
n�
��S

�u�

��
n�
��S

�v�

�
�

�
n�

��S

�u�v

��

� �����
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Figure ���� Adaptive isocurves toolpath for �O o�set of �house on the hill� model�

By di�erentiating R twice in v
 it is clear that ��R
�v�


 �� We can immediately

rewrite jLj as

jLRj � �

�
nr�

��R

�u�v

��

� �����

and the result follows�

Therefore
 to determine if a ruled surface is developable
 one can symbolically

compute ��u� v� �
D
nr�

��R

�u�v

E
�That is
 represent the scalar surface ��u� v� as a

B�ezier or NURBs scalar surface� and make sure it is zero everywhere within a

prescribed tolerance� In other words
 using the convex hull property of the B�ezier

and NURBs representations
 all the coe	cients of the scalar surface ��u� v� must

be zero within a prescribed tolerance�

The mixed partials
 also called the twist of the surface ���
 are a measure of

the �crosstalk� in the parameterization� Equation ��� measures this �crosstalk�

projected in the direction of the surface normal�
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Figure ���� Aluminum milled version of the �house on the hill� model�

Assuming one can approximate a given surface by a set of disjoint �except along

boundaries� piecewise ruled surfaces within a prescribed tolerance
 lemma ��� can

be used to test that each member of the set of ruled surfaces is also developable�

Each developable surface can then be unfolded
 laid �at and cut from a planar

sheet such as paper or metal� By folding each back to its Euclidean orientation

and stitching them all together
 a C� approximation of the computer model is

constructed�

Section ����� develops the background required for this method
 and presents the

basic algorithm� In section ����
 we investigate several possible extensions including

optimization
 stub generation
 and handling of trimmed surfaces� Section ����� lays

out several examples including some models assembled from paper�

We will concentrate in our discussion on the NURBs representation although

the developed technique may very well �t into any other piecewise polynomial or

rational representation�
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����� Algorithm

Let S�u� v� be a nonuniform polynomial B�spline surface� Let the curves C��u� �

S�u� V min� and C��u� � S�u� V max� be the V min and V max boundary curves of

S�u� v� respectively
 C��u� �� C��u�� Let R�u� v� be the ruled surface constructed

between C��u� and C��u�� Let �R�u� v� be the representation for R�u� v� in the

same B�spline basis as that of S�u� v�� �R�u� v� can be obtained from R�u� v� via

appropriate degree raising ���
 ��� and re�nement ���� in the linear �ruled� direction


v� Then

kS�u� v�� �R�u� v�k � k
mX
i��

nX
j��

PijB
m
i���u�B

n
j���v��

mX
i��

nX
j��

QijB
m
i���u�B

n
j���v�k

� k
mX
i��

nX
j��

�Pij �Qij�B
m
i���u�B

n
j���v�k

� max�kPij �Qijk� �i� j�� �����

because the B�spline basis functions are nonnegative and sum to one�

The di�erence of two rational surfaces can be computed in a similar way although

it is more complex and must deal with products of scalar surfaces when the two are

brought to a common denominator�

From the way �R is constructed it is clear that the �rst row of S control mesh

is the same as the �rst row of �R control mesh
 that is P�j � Q�j �j� Similarly


the last row of S control mesh is the same as the last row of �R control mesh


that is Pmj � Qmj �j� The jth column of S control mesh will be referred to as

P�j� Equation ����� provides a simple mechanism to bound the maximum distance

between S and the ruled surface R�

Isocurves of R �and �R� in the ruled parametric direction have constant speed

because R is linear in this parameter� The bound in equation ��� provides a good

bound of the distance when the v isocurves of S also have constant speed
 that is

when k�S�u� �v�
�v

k � c
 for all u��



��

Unfortunately
 when �S
�v

is not constant
 the number of ruled surfaces in the

resulting approximation can be unnecessarily large in order to meet the required

tolerance� A method to correct for this problem uses the fact that control points

can be associated with spline node values to obtain a surface�mesh parametric

relation ����� By degree raising R into �R
 equally spaced in Euclidean space rows are

introduced into the mesh that preserves the constant speed in the ruled direction
 v�

Because S does not have
 in general
 constant speed v isocurves
 one can consider

unequal spacing of the introduced mesh rows� Such strategy can project a single

column in the v direction of the control mesh of S
 P�j
 onto the linear segment

connecting P�j and Pmj which are also control points of C��u� and C��u� respectively

�see Figure ����� The spacing of these projected points can then be used to place

the interior control points of �R� Figure ��� demonstrates this process� Figure ���a

has the original surface S� The control mesh of S is used in Figure ���b to de�ne

the mesh of �R
 by projecting a single column of the mesh of S
 P�j 
 onto the line

connecting P�j and Pmj� The new ruled surface
 �R
 constructed with this new

spacing is shown in Figure ���c�

The added degree of freedom of a nonuniform v speed ruled surface approxi�

mation includes the uniform v speed ruled surface as a special case and so can

always be as good approximation as the uniform speed approximation� Let C��v�

and C��v� be two isocurves of S in the v direction� Because we consider only one

column of S mesh
 this strategy will be able to emulate S v speed well only if���dC��v�
dv

��� ����dC��v�
dv

��� is almost constant for all v� This condition holds fairly well for

large classes of surfaces
 but will not necessarily hold for surfaces constructed via

highly nonisometric operations such as warp ����� However
 it does eliminate the

need for degree raising or re�nement in the construction of �R
 because the continuity

�knot vector� of S in the v direction is inherited�

A distance bounded algorithm approximating an arbitrary tensor product sur�


