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Algorithm 3.3

Input:
7, tolerance for subdivision control.
S(u,v), an offset surface, possibly self-intersecting.

Output:
L, a piecewise linear representation of the self
intersection curves.

Algorithm:
Q < S(u,v), a priority queue holding sorted data in =z
according to minimum z of elements.
P <10, a set of all active polygons.
L<=0.
While ( Q@ #0 )
begin
Obj < first(Q).
z <= minimumZ(Obj).
if ( isSurface( Ob; ) )
if ( isFlat( Oby, 7 ) )
Convert to polygons, and for each polygon F; Do
L < LU InterActiveList(P, z,P, Q).
else
Subdivide into two subsurfaces and insert both to Q.
else /* Its a polygon */
L < L UInterActiveList(Obj, z, P, Q).
end

in the parameter space of the surface.
Removal of self-intersections in surface offsets, is not totally solved and should
be further investigated. A complete study of the complex topology of the self-

intersection curves may provide some leads.



Algorithm 3.3 continued

InterActiveList(P, z, P, Q)
begin
M < (), holding all self-intersections with polygon P.
if ( minimumZ( P ) > z )
Insert P to Q.
else
begin
For each polygon F; in P do
begin
if ( maximumZ{( P, ) < z )
remove( P, P ).
else
M <= M U IntersectPolyPoly(P, P,).
end
Insert P to P.
end
return M.
end

//ﬁf N

Figure 3.15. Offset surface self-intersection can be topologically complex.

42



CHAPTER 4
SECOND ORDER SURFACE

ANALYSIS

It is our purpose to give a presentation of geometry, as it stands today,
in its visual, intuitive aspects. With the aid of visual imagination we
can illuminate the manifold facts and problems of geometry, and beyond
that, it is possible in many cases to depict the geometric outline of the
methods of investigation and proof, without necessarily entering into the
details connected with the strict definions of concepts and with the actual
calculations.

D. Hilbert, in “Geometry and the Imagination,” 1932.

A critical characteristic for many applications in computer graphics and in CAD
is the shape of the model’s bounding surfaces. Second order surface analysis can
be used to understand curvature characteristics, and thus shape, and to improve
the implementation, efficiency and effectiveness of manufacturing and analysis pro-
cesses. Fundamental operations, such as adaptive subdivision and refinement, use
shape information to decide where and how many knots to add. Algorithms for the
creation of tool paths for NC (Numerically Controlled) code generation for freeform
surfaces are usually based on ball end cutters with their spherical centers following
an (approximate) offset surface of the original surface. Flat end cutters can remove
material faster and have a better finish; however, flat end cutters can be used only

with 5 axis milling in convex regions (see Figure 4.1).

Definition 4.1 A surface trichotomy is a partition of a surface into three

types of regions: convex, concave and saddle shapes (Figure 4.1).
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K\ B2

(a)

Figure 4.1. Mainly concave (a), convex (b), and saddle (c) regions.

The ability to trichotomize sculptured surfaces into convex, concave or saddle
regions (Figure 4.1) is thus essential to the use of flat end cutters in milling freeform
surfaces. Also, regions with small curvature can be accurately milled faster with
larger ball end cutters. Tool changes should be minimized because the are time
consuming operations. Such minimization can be achieved by subdividing the
surface into regions with different curvature bounds, each of which can be milled
using tools appropriate to that region.

Methods in use do not support the separation of original surfaces into trimmed
surfaces each of which with only one of the three characteristics throughout. That
is, each trimmed surface is either convex everywhere, concave everywhere, or saddle
everywhere. Second order surface properties are usually estimated locally by nu-
merically evaluating them at a grid of points or, in manufacturing, at a finite set of
sampled points along a planned milling tool path. Research into the computation
of curvature has been done in the context of offset operator approximations with
cubic B-spline curves [66] and bicubic patches [29].

There have been attempts [3, 4, 20, 33] to understand and compute second
order surface properties as well as twist by evaluation on a predefined grid. The
methods use the Gaussian curvature K (u,v) = £} (u,v)x2(u, v) and mean curvature
H(u,v) = w, where &!(u,v) and &2 (u,v) are the principal curvatures

at the parameter value (u,v), in an attempt to provide a bound on the surface

angularity. However, if the surface is a saddle at (u,v), then x! and &2 have
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different signs so the magnitude of H is not a useful measure of such a bound. In the
extreme condition when the surface is minimal [21], H = 0 regardless of the surface

angularity. The magnitude of K can also be ineffective. Even if ! is large, K may

2

be small because &7

is small. Therefore, neither K nor H by itself can provide
sufficient shape information for subdivision and/or efficient NC applications. This
problem has been recognized by some of the authors cited above. These curvature
estimation techniques are local, because they make use of local surface information
only. More surface information might improve an algorithm or change a decision.
Local information is inferior to global information in complex settings. Symbolic
techniques can be used to help make decisions based upon the entire aspect of a
surface rather than a limited number of local samples.

In this Chapter, a hybrid approach using both symbolic and numeric operations
for computing curvature properties is developed. We use property surfaces (see
definition 1.1) whose definitions are derived from different attributes of the original
surface, as auxiliary surfaces to help analyze the original surface.

Section 4.1 briefly develops the differential geometry used in the analysis. In

section 4.2, we compute second order properties, and use visualization to better

understand the shape of a given surface.

4.1 Differential Geometry

Surface curvature is well understood mathematically and the theory behind it
is developed in most introductory differential geometry books [21, 48, 63]. The
set of analysis equations that are based on the second fundamental form are used
extensively in locally evaluating surface curvature. Because these equations are
crucial to our discussion, they are briefly stated here.

Let F(u,v) be a C?) regular parametric surface. Let the unnormalized normal

to a surface F(u,v), n(u,v), be defined as
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aF or
2 4.1
o) = 20 B8 (1.1)
and define the surface unit normal, n(u,v), to be
OF |, OF
n(u,v) (4.2)

— _Ou v ]

155 < 5l
Because F'(u,v) is regular, ||7(u,v)|| # 0 and n(u,v) is well defined.
Let C(t) = F(u(t),v(t)) be a regular curve on F, that is H%}@H # 0. The rate

. . . dS O 1
of change of the arc length of C' with respect to its parameter, ¢, is T = HJ—ZH

where s is arc length. Because dzgt) = (%i—? + 885 Cf;;), one can show [32, 48, 63]

ds\* _[du do] fdu do]’_fdu do
dt) — |dt dt dtdt|] —C\dt’ dt)’
I is known as the first fundamental form, with matrix GG equal to:
(3.3) (.5)
G =(gi) = : (4.3)
() ()

By considering all such curves, C(), through a point (u,v) and differentiating

that

twice, one can extract second order properties of the surface F' at (u,v). The
second order derivatives of C'(¢) contain terms with aF and L a5 factors. However,

the inner product of these terms with n is always zero because the partials are in

o)

dt2

d?C(2)
dt?

the tangent plane of F'(u,v). Therefore, <n(u,v),

> the component of &
pointing in the direction perpendicular to the surface is composed of second order

derivatives only.

() oot i) i + (e 55) ()
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du dv
= II|—, —]. 4.4
(dt’ dt) (4.4)

11 is known as the second fundamental form, with matrix L equal to:

9*F 9*F
<n7 Ou? > <n7 8u8v>

L=(l) = . (4.5)
(n i) (n 55)

Let lAij denote the inner product with the unnormalized normal 7(u,v). For

R o
example, [;; = <n, %>.
The normal curvature on the surface F'(u,v) in some tangent direction A, where

A= <5, (dF £)>, and 6 = (d“ d—”), is defined [21, 32, 48, 63] as:

du’  dv dto dt
du dv T
B ]](dt, dt) B 6L6
Ry =

(e ey = §GsT

dt? dt

(4.6)

The normal curvature depends on the surface tangent direction A, and is equal
to the curvature of the osculating circle to the intersection curve between F'(u,v)
and the plane through n(u,v) and A at (u,v) (Figure 4.2). The extremal values of
the normal curvature serve as bounds on the components of curvature not in the

tangent plane.

The normal curvature is an intrinsic property [48, 63] of the surface. By dif-
ferentiating (4.6) with respect to 6, the problem of finding extrema of &, is trans-

formed [21, 32, 48, 63] into the problem of solving for the roots of
|G| lii + (qr1l22 + l11g22 — 2g12l12)kn + | L] = Cl/ii +br, +c=0, (4.7)

where |G| and |L| denotes the determinants of G and L, respectively.
The Gaussian curvature is a scalar value and is defined as the product of the

two roots of (4.7), k! and &2,

]
G|

The mean curvature is defined as their arithmetic average,

s 12
K =k, K, =

(4.8)

KL+ K2 (g11l22 + L1922 — 212112)
J 7 no_ . 4.9
2 2G| (4.9)
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Figure 4.2. Normal curvature &, (circle) of F/(u,v) at (u,v) in direction A.

4.2 The approach

The tools defined in Chapter 2 are used symbolically to compute the second
order properties of a given surface as described in Section 4.1. NURBs property
surfaces are derived whenever possible so that the method can take advantage of

the computational characteristics of NURBs.

4.2.1 Surface Trichotomy

Use of the curvature trichotomy of a surface can result in a more optimal freeform
surface milling process. Only convex regions (see Figure 4.1) are millable using flat
end cutters and 5 axis milling. Flat end cutters, as opposed to ball end cutters,
can mill faster and remove more material per time unit. Furthermore, the surface

finish of flat end cutters is usually better. Using the trichotomy operator, convex
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regions within surfaces can be detected and milled in more efficient way and with
a better finish.

The determinant of L, |L|, in (4.7) is the key to this second order surface analysis.
If |L] = 0, one of the normal curvature extrema & must be zero. Assuming the
surface is curvature continuous, adjacent regions for which & has a different sign
must be separated by a curve, Cy, for which |L| = 0, that is, one of the &% = 0.
Furthermore, if || > 0 at some point p on the surface F', the surface is either
convex or concave at p, while if |L| < 0 the surface locally is a saddle. In order
to compute a property surface representing |L| using (4.5), it is necessary to find
a square root to compute n(u,v), which cannot be represented, in general, as a
polynomial or as a piecewise rational. However, by reordering the operations to
use the unnormalized surface normal n(u,v) and noting n(u,v) appears twice as a
factor in each term of |L|, |L| can be represented exactly as a rational function and
with no square roots,

111122 - 121112
]2

= (4.10)

This equation is representable as a NURBs using only operations from Chapter 2.
n is a cross product of two surface partials % and %. The components of L, Zij,
are inner products of n with second order partials of F'. Because only the zero set
is of interest, and F' is assumed to be a regular surface, it is necessary to examine
only the numerator of (4.10). Once the zero set of |L| has been computed, trimmed
surfaces are created, each of which is completely convex, concave or saddle. The
sign of |L| at a single point on each trimmed surface is then used to classify the
saddle regions while convex and concave regions are distinguished from each other
by simply evaluating the sign of Zn, for example, at that single point. Whereas the
saddle region is an intrinsic surface characteristic, the convex/concave classification

is parameterization dependent. Flipping the w or v (but not both) surface param-
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eterization direction will flip the normal direction n(u,v) and therefore the sign of
h.

Figures 4.3 through 4.7 show some examples. Figure 4.3 is a biquadratic B-
spline surface with three internal knots in each direction (patches of a B-spline
surface are counted as how many Bézier patches would result from subdividing the
NURBs surface at each interior knot, so this surface yields 16 polynomial patches),
while Figure 4.4 is a single biquadratic patch. The bicubic surfaces in Figures 4.5
and 4.6 have two internal knots in each direction, yielding 9 polynomial patches.
Figure 4.7 top is a bicubic NURBs surface with a single internal knot in each
direction, yielding four Bézier patches. All figures have been colored consistently,
with yellow marking the saddle regions, red representing a convex region and green
representing a concave region.

The biquadratic surface of Figure 4.3 is not C? along each internal knot, and
the surface trichotomy is isoparametric along the internal knots lines.

However, in general, this behavior should not be expected, or even anticipated,
for biquadratic surfaces, because even a single biquadratic patch may contain both
convex and saddle regions simultaneously as shown in Figure 4.4.

The surface in Figure 4.5 uses the same control mesh as the one in Figure 4.3
but is bicubic. Both surfaces in Figure 4.3 and Figure 4.5 use appropriate uniform
open end condition knot vectors. A comparison of these two Figures graphically
demonstrates the influence of the order of the tensor product spline surface on
the shape, as shown by comparing the shapes and locations of the convex and
concave regions. This phenomenon is somewhat counterintuitive to the common
belief that two NURBs surfaces with the same mesh but different order are very
similar, except that the one with higher order is a smoother version. The curvature
characteristics have actually been changed. Figure 4.3 has one concave region, one

convex region and two flat regions, all of which have isoparametric boundaries.
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Figure 4.4. Biquadratic polynomial trichotomy.

Figure 4.5, however, has only one concave region and one convex region. The union
of the two regions has a figure eight boundary, where convex and concave change
at a single point. The curved boundaries of those regions are different from the
straight line boundaries in Figure 4.3.

Figure 4.6 shows that the combination of symbolic computation (of |L| as a
property surface) with numeric analysis (contouring the property surface) can
detect widely separated and isolated regions. In addition, it demonstrates the

robustness of this methodology by accurately detecting two very shallow concave
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Figure 4.6. Bicubic with isolated convex and concave regions in a saddle region.

regions in the middle of the surface. In Figures 4.5 and 4.7, another ill conditioned
case is shown in which several convex and concave regions meet at a single point.
Because trimmed surfaces are formed, it was necessary that the boundaries be
completely and correctly defined. The points where the three regions meet are
correctly detected and determined and the topology of the regions is correctly
maintained, which also demonstrates another type of robustness.

To provide a better sense of the process, the bottom of Figure 4.7 also shows

the scalar property surface of the determinant of the second fundamental form, |L|,
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Figure 4.7. Bicubic surface with convex and concave regions meet at a single point
(top). The surface second fundamental form property surface and its zero set
(bottom).

with its zero set, as a function of v and wv.

Figure 4.8 demonstrates this method on a more realistic object. The Utah teapot
trichotomy degenerated into a dichotomy because no concave regions exist in the
teapot model.

It is interesting to note that a sufficient condition for a surface to be devel-
opable [32] is that its Gaussian curvature is always zero: K(u,v) = 0. Because
K(u,v) = %, this condition is equivalent to the condition that |L| = 0 for regular

surfaces were |G| # 0. Hereafter, a simple practical test that can answer whether
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Figure 4.8. Teapot trichotomy degenerates into a ditochomy (no concave regions).

a surface is developable or not can be derived by symbolically computing || and
comparing all its coefficients to zero. Figure 4.9 show two developable NURBs
surfaces. The top one is ruled surface along an isoparametric direction while the

bottom one was bent along nonisoparametric direction.

4.2.2 Bounding the Curvature

The extrema of the surface curvature are important for analyzing the curva-
ture of a given surface. Normal curvature extrema occur in the principal direc-
tions [32, 48, 63], but the direct application of quadratic equation solution for
equation (4.7) would require finding a square root. However, because the surface
has been subdivided into convex, concave, and saddle regions, each region carries

the following property:

1

o If the region has a saddle shape, then one of the principal curvatures, «,, is

positive while the other, k2, is negative.
o If the region is convex both principal curvatures are negative.

o If the region is concave both principal curvatures are positive.



)

Figure 4.9. Two ruled surface examples.

Using quadratic equation properties for equation (4.7), it can easily be shown that:

Y o= (2H)

_911122 + l11922 — 2912112) ?
|G|

. . NS
(911122 + l11922 — 2912112)

= 4.11
|G|2 fL 2 ( )

and
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b? —4
¢ = (Ki—ﬂi)ZZTM
_ (g11l22 + lingaz — 2g12012)* — 4|G| |L|
G|*
gi+ig —Zgi 2 _4|G||L
_ (11022 + 11922 2 1212) | |‘ ‘ (4.12)
G772

Both (4.11) and (4.12) can be represented without square roots and are therefore
representable as NURBs using the model and tools defined in Chapter 2.

By using the property surface o (u,v) = (k}(u,v) + £2(u,v))? as a curvature
estimate for the convex and concave regions, the computed curvature will be at

most twice as large as the real normal curvature in the case where both ! (u,v)

1
n

2

2(u,v))? as the curvature

and k2 (u,v) are equal. Similarly by using ¢ = (}(u,v)—«

estimate for saddle regions one can obtain similar bounds.

Yp(u,v) and ¢(u,v) can be used as curvature estimates for the appropriate
trimmed regions and can be contoured to isolate regions with curvature larger
than some allowable threshold. Furthermore, one can use ¢ (u,v) and ¢(u,v) as
pseudo color values to render the input surface F(u,v) according to its curvature
and provide visual feedback on which regions are highly curved. In other words,
make the color of F(u,v) at the parameter value (u,v) depend on the value of
Y (u,v)in convex and concave regions, and on the value of ¢(u, v) in saddle regions.
Using this technique, one can enhance the display of regions with high curvature,
low curvature, or within certain bands of curvatures. Figures 4.10 through 4.12
demonstrate this. In Figure 4.10, the surface has been first subdivided into a
saddle region (yellow) and a convex region (red). t(u,v) has been used as the
pseudo color in the convex region of the surface whereas ¢(u,v) has been used
for the same purpose in the saddle region, to render the image in Figure 4.12.
Figure 4.11 shows t(u,v) and ¢(u,v). Not surprisingly, ¥ (u,v) is wider in the
highly curved convex region because the two principal curvatures cancel each other

in ¢(u,v).
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Figure 4.10. Surface dichotomy - saddle and convex regions.

Figure 4.11. ¥(u,v) (a), ¢(u,v) (b), for the surface in Figure 4.10.

A different approach can be used to achieve a better bound. By expanding ¢,

= (rh)" = 2uhl 4 (k1) (4.13)

Or
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Figure 4.12. Curvature estimate using surface dichotomy, for surface in Figure 4.10.

B (911i22 + 311922 - 2912i12)2 — 4G L s IL|

B G 1A q

B (11122 + L1922 — 2912012)* — 4 || L s i
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_ (911i22 + 311922 —22912212)2 —2|d] I | (414)
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++/€ is bounded to be at most v/2 greater than the larger magnitude of the principal
curvatures. This worst case occurs when the two principal directions have the
same magnitudes. Furthermore, ¢ can be represented using the tools described in
Chapter 2. Figure 4.13 demonstrates this approach applied to the Utah teapot
model. The use of ¢ may help to isolate regions with low curvature, which can
be milled using larger ball end tools in a more optimal way. Figure 4.14 shows
such a surface subdivided in such regions. The curvature bound surface, {(u,v),
(Figure 4.15) of the surface in Figure 4.14 is being contoured and regions with
different curvature bounds are formed. It is clear from Figure 4.14 that the blue
regions can be milled using a very large ball end cutter, the green regions with a
medium size cutter and only the yellow and red regions, which are less than 5% of

the whole surface area, should be milled with a small size tool.
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Figure 4.13. Utah teapot curvature estimation.

Figure 4.14. The surface is subdivided into regions with different curvature bounds.

4.3 Some Remarks

A method to partition a surface into three disjoint trimmed surfaces (convex,
concave, and saddle) and to determine global bounds on surface curvatures, has
been presented here which combines symbolic and numeric methods. The hybrid
method was found to be robust and fast. The computation involved in the creation
of a property surface that is exact to machine accuracy usually takes less than a
second for a bicubic Bézier surface on an SGI 240/GTX (25MHz R3000). This

symbolic computation has closed forms with complexity directly bounded by the
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Contouring usually takes an order

Figure 4.15. Curvature surface bound, ¢, of the surtace in Figure 4.14.

surface orders and continuity (knot vectors).

of magnitude longer than that. This numeric process involves high order property

surfaces which make subdivision more expensive.

The orders of the resulting property surfaces are high. A second fundamental

form determinant property surface for a bicubic B-spline surface has degree 14. The

degree of the property surfaces ¢ (u,v), ¢(u,v) and £(u, v) is even higher, degree 30.

However, because the evaluation of Bézier and B-spline representations is robust,

the high order does not introduce any numerical problems [31] in evaluation.

Because milling is several magnitudes slower than even the contouring process,

and the same toolpath may be used thousands of times, computation time is not

a major factor in optimizing the milling process. The ability to isolate regions in

a surface with specific curvature bounds makes it possible to mill the surface more

optimally by using the largest tool possible for each region.



