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Algorithm ���

Input�
�� tolerance for subdivision control�

S�u� v�� an offset surface� possibly self�intersecting�

Output�
L� a piecewise linear representation of the self

intersection curves�

Algorithm�
Q � S�u� v�� a priority queue holding sorted data in z

according to minimum z of elements�

P � �� a set of all active polygons�

L � ��
While � Q �� � �

begin

Obj � first�Q��
z �minimumZ�Obj��
if � isSurface� Obj � �

if � isFlat� Obj� � � �

Convert to polygons� and for each polygon Pi Do

L � L � InterActiveList�Pi� z�P�Q��
else

Subdivide into two subsurfaces and insert both to Q�
else �� Its a polygon ��

L � L � InterActiveList�Obj� z�P�Q��
end

in the parameter space of the surface�

Removal of self�intersections in surface o�sets� is not totally solved and should

be further investigated� A complete study of the complex topology of the self�

intersection curves may provide some leads�
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Algorithm ��� continued

InterActiveList�P� z�P�Q�
begin

M� �� holding all self�intersections with polygon P�

if � minimumZ� P � � z �

Insert P to Q�
else

begin

For each polygon Pi in P do

begin

if � maximumZ� Pi � � z �

remove� Pi� P ��

else

M�M� IntersectPolyPoly�P�Pi��
end

Insert P to P�
end

return M�

end

Figure 
���� O�set surface self�intersection can be topologically complex�



CHAPTER �

SECOND ORDER SURFACE

ANALYSIS

It is our purpose to give a presentation of geometry� as it stands today�
in its visual� intuitive aspects� With the aid of visual imagination we
can illuminate the manifold facts and problems of geometry� and beyond
that� it is possible in many cases to depict the geometric outline of the
methods of investigation and proof� without necessarily entering into the
details connected with the strict de�nions of concepts and with the actual
calculations�

D� Hilbert� in �Geometry and the Imagination� ��
	�

A critical characteristic for many applications in computer graphics and in CAD

is the shape of the model�s bounding surfaces� Second order surface analysis can

be used to understand curvature characteristics� and thus shape� and to improve

the implementation� e�ciency and e�ectiveness of manufacturing and analysis pro�

cesses� Fundamental operations� such as adaptive subdivision and re�nement� use

shape information to decide where and how many knots to add� Algorithms for the

creation of tool paths for NC �Numerically Controlled� code generation for freeform

surfaces are usually based on ball end cutters with their spherical centers following

an �approximate� o�set surface of the original surface� Flat end cutters can remove

material faster and have a better �nish� however� �at end cutters can be used only

with � axis milling in convex regions �see Figure �����

De�nition ��� A surface trichotomy is a partition of a surface into three

types of regions� convex� concave and saddle shapes �Figure �����



��

�a� �b� �c�

Figure ���� Mainly concave �a�� convex �b�� and saddle �c� regions�

The ability to trichotomize sculptured surfaces into convex� concave or saddle

regions �Figure ���� is thus essential to the use of �at end cutters in milling freeform

surfaces� Also� regions with small curvature can be accurately milled faster with

larger ball end cutters� Tool changes should be minimized because the are time

consuming operations� Such minimization can be achieved by subdividing the

surface into regions with di�erent curvature bounds� each of which can be milled

using tools appropriate to that region�

Methods in use do not support the separation of original surfaces into trimmed

surfaces each of which with only one of the three characteristics throughout� That

is� each trimmed surface is either convex everywhere� concave everywhere� or saddle

everywhere� Second order surface properties are usually estimated locally by nu�

merically evaluating them at a grid of points or� in manufacturing� at a �nite set of

sampled points along a planned milling tool path� Research into the computation

of curvature has been done in the context of o�set operator approximations with

cubic B�spline curves ���� and bicubic patches �	���

There have been attempts �
� �� 	�� 

� to understand and compute second

order surface properties as well as twist by evaluation on a prede�ned grid� The

methods use the Gaussian curvatureK�u� v� � ��n�u� v��
�
n�u� v� and mean curvature

H�u� v� � ��
n
�u�v����

n
�u�v�

�
� where ��n�u� v� and ��n�u� v� are the principal curvatures

at the parameter value �u� v�� in an attempt to provide a bound on the surface

angularity� However� if the surface is a saddle at �u� v�� then ��n and ��n have
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di�erent signs so the magnitude of H is not a useful measure of such a bound� In the

extreme condition when the surface is minimal �	��� H � � regardless of the surface
angularity� The magnitude of K can also be ine�ective� Even if ��n is large� K may

be small because ��n is small� Therefore� neither K nor H by itself can provide

su�cient shape information for subdivision and�or e�cient NC applications� This

problem has been recognized by some of the authors cited above� These curvature

estimation techniques are local� because they make use of local surface information

only� More surface information might improve an algorithm or change a decision�

Local information is inferior to global information in complex settings� Symbolic

techniques can be used to help make decisions based upon the entire aspect of a

surface rather than a limited number of local samples�

In this Chapter� a hybrid approach using both symbolic and numeric operations

for computing curvature properties is developed� We use property surfaces �see

de�nition ���� whose de�nitions are derived from di�erent attributes of the original

surface� as auxiliary surfaces to help analyze the original surface�

Section ��� brie�y develops the di�erential geometry used in the analysis� In

section ��	� we compute second order properties� and use visualization to better

understand the shape of a given surface�

��� Di�erential Geometry

Surface curvature is well understood mathematically and the theory behind it

is developed in most introductory di�erential geometry books �	�� ��� �
�� The

set of analysis equations that are based on the second fundamental form are used

extensively in locally evaluating surface curvature� Because these equations are

crucial to our discussion� they are brie�y stated here�

Let F �u� v� be a C��� regular parametric surface� Let the unnormalized normal

to a surface F �u� v�� �n�u� v�� be de�ned as
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�n�u� v� �
�F

�u
� �F

�v
� �����

and de�ne the surface unit normal� n�u� v�� to be

n�u� v� �
�F

�u
� �F

�v

k�F
�u
� �F

�v
k � ���	�

Because F �u� v� is regular� k�n�u� v�k �� � and n�u� v� is well de�ned�

Let C�t� � F �u�t�� v�t�� be a regular curve on F � that is
���dC�t�

dt

��� �� �� The rate
of change of the arc length of C with respect to its parameter� t� is ds

dt
�

���dC�t�
dt

���
where s is arc length� Because dC�t�

dt
�

�
�F

�u

du

dt
� �F

�v

dv

dt

�
� one can show �
	� ��� �
�

that �
ds

dt

��

�

�
du

dt

dv

dt

�
G

�
du

dt

dv

dt

�T
� I

�
du

dt
�
dv

dt

�
�

I is known as the �rst fundamental form� with matrix G equal to�

G � �gij� �

�
���	
D
�F

�u
� �F
�u

E D
�F

�u
� �F
�v

E
D
�F

�v
� �F
�u

E D
�F

�v
� �F
�v

E


���� � ���
�

By considering all such curves� C�t�� through a point �u� v� and di�erentiating

twice� one can extract second order properties of the surface F at �u� v�� The

second order derivatives of C�t� contain terms with �F

�u
and �F

�v
as factors� However�

the inner product of these terms with n is always zero because the partials are in

the tangent plane of F �u� v�� Therefore�
D
n�u� v�� d

�C�t�
dt�

E
� the component of d�C�t�

dt�

pointing in the direction perpendicular to the surface is composed of second order

derivatives only�


n�u� v��

d�C�t�

dt�

�

�


n�u� v��

��F

�u�

��
du

dt

��

� 	


n�u� v��

��F

�u�v

�
du

dt

dv

dt
�


n�u� v��

��F

�v�

��
dv

dt

��

�

�
du

dt

dv

dt

�
L

�
du

dt

dv

dt

�T
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� II

�
du

dt
�
dv

dt

�
� �����

II is known as the second fundamental form� with matrix L equal to�

L � �lij� �

�
���	

D
n� �

�F

�u�

E D
n� ��F

�u�v

E
D
n� ��F

�u�v

E D
n� �

�F

�v�

E


���� � �����

Let �lij denote the inner product with the unnormalized normal �n�u� v�� For

example� �l�� �
D
�n� �

�F

�u�

E
�

The normal curvature on the surface F �u� v� in some tangent direction �� where

� �
D
��
�
dF

du
� dF

dv

�E
� and � �

�
du

dt
� dv

dt

�
� is de�ned �	�� 
	� ��� �
� as�

�n �
II�du

dt
� dv
dt
�

I�du
dt
� dv
dt
�
�

�L�T

�G�T
� �����

The normal curvature depends on the surface tangent direction �� and is equal

to the curvature of the osculating circle to the intersection curve between F �u� v�

and the plane through n�u� v� and � at �u� v� �Figure ��	�� The extremal values of

the normal curvature serve as bounds on the components of curvature not in the

tangent plane�

The normal curvature is an intrinsic property ���� �
� of the surface� By dif�

ferentiating ����� with respect to �� the problem of �nding extrema of �n is trans�

formed �	�� 
	� ��� �
� into the problem of solving for the roots of

jGj ��n � �g��l�� � l��g�� � 	g��l����n � jLj � a��n � b�n � c � �� �����

where jGj and jLj denotes the determinants of G and L� respectively�

The Gaussian curvature is a scalar value and is de�ned as the product of the

two roots of ������ ��n and ��n�

K � ��n�
�
n �

jLj
jGj � �����

The mean curvature is de�ned as their arithmetic average�

H �
��n � ��n
	

� ��g��l�� � l��g�� � 	g��l���
	 jGj � �����
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∆

n

Figure ��	� Normal curvature �n �circle� of F �u� v� at �u� v� in direction ��

��� The approach

The tools de�ned in Chapter 	 are used symbolically to compute the second

order properties of a given surface as described in Section ���� NURBs property

surfaces are derived whenever possible so that the method can take advantage of

the computational characteristics of NURBs�

����� Surface Trichotomy

Use of the curvature trichotomy of a surface can result in a more optimal freeform

surface milling process� Only convex regions �see Figure ���� are millable using �at

end cutters and � axis milling� Flat end cutters� as opposed to ball end cutters�

can mill faster and remove more material per time unit� Furthermore� the surface

�nish of �at end cutters is usually better� Using the trichotomy operator� convex
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regions within surfaces can be detected and milled in more e�cient way and with

a better �nish�

The determinant of L� jLj� in ����� is the key to this second order surface analysis�
If jLj � �� one of the normal curvature extrema �in must be zero� Assuming the
surface is curvature continuous� adjacent regions for which �in has a di�erent sign

must be separated by a curve� Cs� for which jLj � �� that is� one of the �in � ��
Furthermore� if jLj � � at some point p on the surface F � the surface is either

convex or concave at p� while if jLj � � the surface locally is a saddle� In order

to compute a property surface representing jLj using ������ it is necessary to �nd
a square root to compute n�u� v�� which cannot be represented� in general� as a

polynomial or as a piecewise rational� However� by reordering the operations to

use the unnormalized surface normal �n�u� v� and noting n�u� v� appears twice as a

factor in each term of jLj� jLj can be represented exactly as a rational function and
with no square roots�

jLj �
�l���l�� � �l���l��

k�nk� � ������

This equation is representable as a NURBs using only operations from Chapter 	�

�n is a cross product of two surface partials �F

�u
and �F

�v
� The components of L� �lij�

are inner products of �n with second order partials of F � Because only the zero set

is of interest� and F is assumed to be a regular surface� it is necessary to examine

only the numerator of ������� Once the zero set of jLj has been computed� trimmed
surfaces are created� each of which is completely convex� concave or saddle� The

sign of jLj at a single point on each trimmed surface is then used to classify the
saddle regions while convex and concave regions are distinguished from each other

by simply evaluating the sign of �l��� for example� at that single point� Whereas the

saddle region is an intrinsic surface characteristic� the convex�concave classi�cation

is parameterization dependent� Flipping the u or v �but not both� surface param�
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eterization direction will �ip the normal direction n�u� v� and therefore the sign of

�l���

Figures ��
 through ��� show some examples� Figure ��
 is a biquadratic B�

spline surface with three internal knots in each direction �patches of a B�spline

surface are counted as how many B�ezier patches would result from subdividing the

NURBs surface at each interior knot� so this surface yields �� polynomial patches��

while Figure ��� is a single biquadratic patch� The bicubic surfaces in Figures ���

and ��� have two internal knots in each direction� yielding � polynomial patches�

Figure ��� top is a bicubic NURBs surface with a single internal knot in each

direction� yielding four B�ezier patches� All �gures have been colored consistently�

with yellow marking the saddle regions� red representing a convex region and green

representing a concave region�

The biquadratic surface of Figure ��
 is not C� along each internal knot� and

the surface trichotomy is isoparametric along the internal knots lines�

However� in general� this behavior should not be expected� or even anticipated�

for biquadratic surfaces� because even a single biquadratic patch may contain both

convex and saddle regions simultaneously as shown in Figure ����

The surface in Figure ��� uses the same control mesh as the one in Figure ��


but is bicubic� Both surfaces in Figure ��
 and Figure ��� use appropriate uniform

open end condition knot vectors� A comparison of these two Figures graphically

demonstrates the in�uence of the order of the tensor product spline surface on

the shape� as shown by comparing the shapes and locations of the convex and

concave regions� This phenomenon is somewhat counterintuitive to the common

belief that two NURBs surfaces with the same mesh but di�erent order are very

similar� except that the one with higher order is a smoother version� The curvature

characteristics have actually been changed� Figure ��
 has one concave region� one

convex region and two �at regions� all of which have isoparametric boundaries�
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Figure ��
� Biquadratic surface trichotomy with �� polynomial patches�

Figure ���� Biquadratic polynomial trichotomy�

Figure ���� however� has only one concave region and one convex region� The union

of the two regions has a �gure eight boundary� where convex and concave change

at a single point� The curved boundaries of those regions are di�erent from the

straight line boundaries in Figure ��
�

Figure ��� shows that the combination of symbolic computation �of jLj as a
property surface� with numeric analysis �contouring the property surface� can

detect widely separated and isolated regions� In addition� it demonstrates the

robustness of this methodology by accurately detecting two very shallow concave
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Figure ���� Bicubic surface trichotomy� same control mesh as Figure ��
�

Figure ���� Bicubic with isolated convex and concave regions in a saddle region�

regions in the middle of the surface� In Figures ��� and ���� another ill conditioned

case is shown in which several convex and concave regions meet at a single point�

Because trimmed surfaces are formed� it was necessary that the boundaries be

completely and correctly de�ned� The points where the three regions meet are

correctly detected and determined and the topology of the regions is correctly

maintained� which also demonstrates another type of robustness�

To provide a better sense of the process� the bottom of Figure ��� also shows

the scalar property surface of the determinant of the second fundamental form� jLj�



�


Figure ���� Bicubic surface with convex and concave regions meet at a single point
�top�� The surface second fundamental form property surface and its zero set
�bottom��

with its zero set� as a function of u and v�

Figure ��� demonstrates this method on a more realistic object� The Utah teapot

trichotomy degenerated into a dichotomy because no concave regions exist in the

teapot model�

It is interesting to note that a su�cient condition for a surface to be devel�

opable �
	� is that its Gaussian curvature is always zero� K�u� v� � �� Because
K�u� v� � jLj

jGj
� this condition is equivalent to the condition that jLj � � for regular

surfaces were jGj �� �� Hereafter� a simple practical test that can answer whether
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Figure ���� Teapot trichotomy degenerates into a ditochomy �no concave regions��

a surface is developable or not can be derived by symbolically computing jLj and
comparing all its coe�cients to zero� Figure ��� show two developable NURBs

surfaces� The top one is ruled surface along an isoparametric direction while the

bottom one was bent along nonisoparametric direction�

����� Bounding the Curvature

The extrema of the surface curvature are important for analyzing the curva�

ture of a given surface� Normal curvature extrema occur in the principal direc�

tions �
	� ��� �
�� but the direct application of quadratic equation solution for

equation ����� would require �nding a square root� However� because the surface

has been subdivided into convex� concave� and saddle regions� each region carries

the following property�

� If the region has a saddle shape� then one of the principal curvatures� ��n� is
positive while the other� ��n� is negative�

� If the region is convex both principal curvatures are negative�

� If the region is concave both principal curvatures are positive�
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Figure ���� Two ruled surface examples�

Using quadratic equation properties for equation ������ it can easily be shown that�

� � �	H��

�
�
��n � ��n

��

�

�
� b

a

��

�

�
�g��l�� � l��g�� � 	g��l��

jGj
��

�

�
g���l�� � �l��g�� � 	g���l��

��
jGj� k�nk� ������

and
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	 � ���n � ��n�
� �

b� � �ac
a�

�
�g��l�� � l��g�� � 	g��l���� � � jGj jLj

jGj�

�
�g���l�� � �l��g�� � 	g���l���� � � jGj

����L���
jGj� k�nk� � ����	�

Both ������ and ����	� can be represented without square roots and are therefore

representable as NURBs using the model and tools de�ned in Chapter 	�

By using the property surface ��u� v� � ���n�u� v� � ��n�u� v��
� as a curvature

estimate for the convex and concave regions� the computed curvature will be at

most twice as large as the real normal curvature in the case where both ��n�u� v�

and ��n�u� v� are equal� Similarly by using 	 � ��
�
n�u� v����n�u� v��

� as the curvature

estimate for saddle regions one can obtain similar bounds�

��u� v� and 	�u� v� can be used as curvature estimates for the appropriate

trimmed regions and can be contoured to isolate regions with curvature larger

than some allowable threshold� Furthermore� one can use ��u� v� and 	�u� v� as

pseudo color values to render the input surface F �u� v� according to its curvature

and provide visual feedback on which regions are highly curved� In other words�

make the color of F �u� v� at the parameter value �u� v� depend on the value of

��u� v� in convex and concave regions� and on the value of 	�u� v� in saddle regions�

Using this technique� one can enhance the display of regions with high curvature�

low curvature� or within certain bands of curvatures� Figures ���� through ���	

demonstrate this� In Figure ����� the surface has been �rst subdivided into a

saddle region �yellow� and a convex region �red�� ��u� v� has been used as the

pseudo color in the convex region of the surface whereas 	�u� v� has been used

for the same purpose in the saddle region� to render the image in Figure ���	�

Figure ���� shows ��u� v� and 	�u� v�� Not surprisingly� ��u� v� is wider in the

highly curved convex region because the two principal curvatures cancel each other

in 	�u� v��
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Figure ����� Surface dichotomy � saddle and convex regions�

�a� �b�

Figure ����� ��u� v� �a�� 	�u� v� �b�� for the surface in Figure �����

A di�erent approach can be used to achieve a better bound� By expanding 	�

	 � ���n � ��n�
�

� ���n�
� � 	��n��n � ���n��� ����
�

Or


 � ���n�
� � ���n�

�

� 	� 	��n�
�
n

� 	� 	K

� 	� 	
jLj
jGj
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Figure ���	� Curvature estimate using surface dichotomy� for surface in Figure �����

�
�g���l�� � �l��g�� � 	g���l���� � � jGj

����L���
jGj� k�nk� � 	

jLj
jGj

�
�g���l�� � �l��g�� � 	g���l���� � � jGj

����L���
jGj� k�nk� � 	

����L���
jGj k�nk�

�
�g���l�� � �l��g�� � 	g���l���� � 	 jGj

����L���
jGj� k�nk� � ������

�
p

 is bounded to be at most

p
	 greater than the larger magnitude of the principal

curvatures� This worst case occurs when the two principal directions have the

same magnitudes� Furthermore� 
 can be represented using the tools described in

Chapter 	� Figure ���
 demonstrates this approach applied to the Utah teapot

model� The use of 
 may help to isolate regions with low curvature� which can

be milled using larger ball end tools in a more optimal way� Figure ���� shows

such a surface subdivided in such regions� The curvature bound surface� 
�u� v��

�Figure ����� of the surface in Figure ���� is being contoured and regions with

di�erent curvature bounds are formed� It is clear from Figure ���� that the blue

regions can be milled using a very large ball end cutter� the green regions with a

medium size cutter and only the yellow and red regions� which are less than � of

the whole surface area� should be milled with a small size tool�
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Figure ���
� Utah teapot curvature estimation�

Figure ����� The surface is subdivided into regions with di�erent curvature bounds�

��� Some Remarks

A method to partition a surface into three disjoint trimmed surfaces �convex�

concave� and saddle� and to determine global bounds on surface curvatures� has

been presented here which combines symbolic and numeric methods� The hybrid

method was found to be robust and fast� The computation involved in the creation

of a property surface that is exact to machine accuracy usually takes less than a

second for a bicubic B�ezier surface on an SGI 	���GTX �	�MHz R
����� This

symbolic computation has closed forms with complexity directly bounded by the
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Figure ����� Curvature surface bound� 
� of the surface in Figure �����

surface orders and continuity �knot vectors�� Contouring usually takes an order

of magnitude longer than that� This numeric process involves high order property

surfaces which make subdivision more expensive�

The orders of the resulting property surfaces are high� A second fundamental

form determinant property surface for a bicubic B�spline surface has degree ��� The

degree of the property surfaces ��u� v�� 	�u� v� and 
�u� v� is even higher� degree 
��

However� because the evaluation of B�ezier and B�spline representations is robust�

the high order does not introduce any numerical problems �
�� in evaluation�

Because milling is several magnitudes slower than even the contouring process�

and the same toolpath may be used thousands of times� computation time is not

a major factor in optimizing the milling process� The ability to isolate regions in

a surface with speci�c curvature bounds makes it possible to mill the surface more

optimally by using the largest tool possible for each region�


