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Both approaches do not bound the o�set error globally� To bound the er�

ror introduced by the piecewise arcs and lines approximation� a curve�line and

a curve�arc maximum global distance computation is required� Such computation

is traditionally performed using a �nite set of samples� A bound on the maximum

error over the entire curve region cannot be guaranteed using such a technique�

In the second method� a �nite number of samples are examined to estimate the

error for the entire curve region �typically one� in the middle of the parametric

domain�� which again cannot insure global error bound� Both methods usually

result in a piecewise representation of the approximation to the o�set� a more

di	cult representation to use in further applications if the o�set is to be used

as a modeling tool� Only the use of B�spline re�nement 
��� �� results in a single

curve� Approximations to o�sets of freeform surfaces are more di	cult to determine

because the subdivided components are subsurfaces� Piecewise bicubic patches have

been used to approximate a surface o�set of a given freeform surface 
��� This

method loses continuity across patches� unlike the re�nement technique 
��� which

can be adapted for surfaces and which maintains the original continuity�

Because of the advantages of the curve�surface B�spline re�nement technique�

we have used this method as the basis of this implementation for bounding the

global error� However� the method presented here for bounding the error is not

limited to this type of representation�

Trimming the loops formed by the self�intersection curves of the o�set is consid�

ered a di	cult problem 
��� An attempt has been made to make the calculation

using numerical techniques and to perform a direct search for cusps as a mean of

detecting and identifying self�intersections 
��� However� an approximation to the

o�set may have no cusps simply because it is just an approximation� For surfaces�

unidimensional successive searches have been used to isolate self�intersection points

by minimizing the ratio of the Euclidean space distance �which goes to zero at
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a self�intersection point� over the parametric space distance �which should be

nonzero at such point� 
�� Because this method converges to a local minimum�

the initial guess location is crucial but is picked at random� Thus� robustness is

not guaranteed� Self�intersection curves have been traced using surface �walking�

techniques 
� that can also be combined with the detection methods developed

here�

Section ��� develops the method for bounding the error and then shows how to

use that information to isolate the regions with maximum error� Then� we show

how to apply local improvement steps iteratively� so convergence to a prespeci�ed

tolerance is assured� In section ���� we attempt to improve o�set approximations

by perturbing control points using an analysis of the error function� Section ���

extends this method to support a variable o�set operator that can be used as a

modeling tool� Section ��� shows how to use the tools developed in section ��� to

robustly detect and trim loops formed by self�intersections of the o�set�

��� A Global Bound for the O�set Operator

Let C�t� be a planar regular parameterized curve� which without loss of gener�

ality� is assumed to be in the x� y plane� An o�set curve for C�t� by an amount

d is de�ned mathematically as�

�Cd�t� � C�t� �N�t�d �����

where N�t� is the unit normal to the curve at t� Becuase N�t� �ips its direction by

���o at in�ection points� a di�erent de�nition for N�t� should be used to de�ne a

manufacturing or design o�set�

De�nition ��� The o�set binormal� Bo�t�� to a planar curve in the x�y

plane is a unit vector in �z direction� Then the o�set normal� No�t�� is

de�ned as No�t� � Bo�t� � T �t�� where T �t� is the unit tangent to the

curve�
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Throughout this Chapter� and unless otherwise speci�ed� only the o�set normal�

No�t�� is used�

Cd�t� � C�t� �No�t�d �����

Similarly for surfaces� an o�set surface for surface S�u� v� by an amount d is

mathematically de�ned as�

Sd�u� v� � S�u� v� � n�u� v�d �����

where n�u� v� is the surface unit normal to the surface at parameter values �u� v��

In this Chapter� we will concentrate on characterizing methods for the NURBs

representation because the B�ezier representation is a subset of it� Given two

freeform NURBs curves C��t�� C��t�� their sum� di�erence �equation ������� and

product �equation ������� is also a NURBs curve as seen in Chapter �� Derivatives

of NURBs curves are also NURBs curves �equation ������� as are constant functions

�i�e�� equation ������

Therefore� if No�t� �n�u� v�� could be computed and represented as a NURBs�

so could Cd�t� �Sd�u� v��� respectively� Unfortunately� however� the general form

of a normal involves a square root which is usually not representable as either a

polynomial or a piecewise polynomial� Thus� o�sets of freeform curves and surfaces

will� in general� be approximations�

Let Cad �t� be an approximation to the o�set curve of C�t� by an amount d

�equation ������� and let ��t� � Cad �t� � C�t� be the di�erence curve� Ideally� if

Cad �t� � Cd�t�� then ��t� � No�t�d�

Two tests could be applied to ��t� to determine the accuracy of the o�set approx�

imation� First� the deviation of ��t� from the direction of No�t� could be measured�

by testing whether ��t� is orthogonal to the curve tangent� If �T �t� � C ��t�� then

T �t� �
�T �t�

k �T�t�k
is the unit tangent of C�t��

�
�T �t�

k �T�t�k
�

��t�
k��t�k

�
measures the cosine of the

angle between �T �t� and ��t�� and is equal to zero everywhere along the exact o�set
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curve� However� �nding T �t� and k��t�k requires representing square roots� and

therefore is impractical when using a piecewise rational representation� However�

the square of this inner product�
D
�T �t�� ��t�

E D
�T �t�� ��t�

E

k �T �t�k�k��t�k�
� �����

can be represented�

Although equation ����� is representable as a piecewise rational� it is a complex

process� The equation requires at least six curve products �more if the curves are

rational�� each of which doubles the degree�

Instead� a second test that measures the magnitude of ��t� can be applied to

determine the accuracy of Cad �t�� Computationally� it is much more attractive� Cur�

rent o�set techniques usually test accuracy by evaluating this magnitude on a set

of sampled points� Direct representation of k��t�k would require the representation

of a square root� so ��t� � k��t�k� is used instead and compared with d��

��t� � k��t�k� � �x�t�
� � �y�t�

� � �z�t�
� �����

where �x�t�� �y�t� and �z�t� are the components of ��t��

Equation ����� can be directly represented using multiplication and addition

which are computable for rationals and piecewise rationals� Hereafter� assume ��t�

can be computed and represented as a scalar NURBs curve� For exact o�sets� � is

a constant value curve equal to d�� By subtracting d� from �� the di�erence curve

is obtained�

��t� � ��t�� d�� �����

The extremal values of the coe	cients of � provide a global error measure� It

is important to examine the consequences for computing ��t� instead of ��t� �

k��t�k�d� the Euclidean error between the exact o�set curve and its approximation�

��t� � ��t�� d� � k��t�k� � d� � ���t� � d�� � d� � ��t�� � �d��t� � �d��t� �����
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In other words� by computing the di�erences of the squared magnitude� the

resulting error bound is scaled by the magnitude of twice the o�set distance� �d�

which is a constant and therefore easy to control� ��t�� has been ignored because

it is much smaller than �d��t�� when the error converges to zero�

The problem of �nding the global o�set error has been reduced to a problem

of �nding the extrema of a freeform explicit curve� Because the values of a scalar

B�spline curve over an interval lie between the maximum and minimum values of

the coe	cients of the nonzero B�spline functions� a simple and computationally

e	cient way of locally bounding the curve is immediately available�

The error between a C� continuous function and its Schoenberg variation di�

minishing spline approximation over a knot vector ftig is O�jftigj��� where jftigj �

maxifti�� � tig� By using a sequence of Schoenberg variation diminishing spline

approximations to No�t�� each one based on a knot vector that is a re�nement of the

previous one� and a sequence� fCi�t�g� of re�ned representations to C� based on the

same sequence of knot vectors� we form a convergent sequence of approximations

to Cd� If the approximation is close over one interval� it is unnecessary to re�ne

over that interval just to make the mesh norm smaller� because the approximation

error is based on maximum error bounds over local regions� Hence� we need only

re�ne over intervals where the error is large� as determined by the extrema of ��

We derive an iterative algorithm in which each step uses the direct polygon

transformation method 
�� to compute o�set approximations� The criterion for

proceeding to the next step uses the magnitude of the extrema of ��t�� Then� the

locations of the extrema are used to re�ne C�t� �going from Ci�t� to Ci���t�� and

to create a new approximation to the o�set� The process terminates when the

magnitudes of the extrema of � are within the tolerance�

Algorithm ��� retains its curve re�nement history in the Ci�t� sequence� The last

curve in the sequence can be o�set to within a provided tolerance by an amount
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Algorithm ���

Input�
�� required offset curve tolerance�

C�t�� input curve�

d� offset distance�

Output�
Ca

d �t�� offset curve approximation within � accuracy�

Algorithm�
C��t�� C�t��
i� ��
Do

Compute offset approximation Ca
d �t� for Ci�t��

Compute offset error ��t� for Ci�t�� Ca
d �t��

Ci���t� � Ci�t� refined at ��t� highest error region�s��

i� i� ��
While ���t� highest error � ���

d� Because the algorithm �knows� more about the curve� improvements can be

applied in a more optimal way than simply subdividing the curve at its midpoint

as has been done in the past� Even for polynomial representations such as B�ezier

curves� it is common to split the curve at the middle of the parametric domain if

the accuracy of the o�set is not good enough� Using the global error measure� one

can now split the curve near the parameter value with the highest error� This will

usually result in requiring fewer subdivisions to achieve a given tolerance�

One can compute and re�ne the curve at the maxima of ��t� only in each

iteration� However� simultaneous re�nement of all regions whose respective errors

were larger than allowable was found to be much faster� The computation of

��t� is much more demanding than single knot insertion� By using simultaneous

re�nement� this computation is fully exploited�
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Figure ��� shows four stages of algorithm ���� using global re�nement� operating

on a chess pawn cross section� Single knots have been inserted in all parametric

regions whose error was above the tolerance level� The number of control points and

the respective error function ��t� for each iteration are also provided in Figure ����

The error is improved by almost an order of magnitude on each iteration up to the

required tolerance of �������

Finding approximations to o�sets of surfaces are usually more di	cult� but the

above method can be applied to �nding errors of o�set surfaces as well� ��t�� ��t�

and ��t� would be simply explicit surfaces instead of explicit curves� i�e�� ��u� v��

��u� v� and ��u� v�� In Figure ���� this error bounding extension surface is used to

automatically iterate� re�ne� and improve an o�set B�spline surface to a speci�ed

tolerance� It is interesting to compare the two o�set surfaces in Figure ���� They

both have the same tolerance but the o�set distance is di�erent� The o�set error

increases as d becomes larger and therefore more re�nements are required to achieve

the same accuracy�

��� Better Approximation of O�sets

In section ���� a technique was developed to provide a global bound using a global

error function� This error function can be used to attempt to reduce the maximum

error by perturbing the control points instead of re�nement� as in section ����

Ideally� for each control point� the gradient direction that maximizes the change in

the error function would be computed and the control point would be moved in that

direction� Such a computation is extremely expensive and slow and a compromise

must be made� By re�ning and o�setting in the normal direction� it is known the

o�set approximation converges to the exact o�set� Therefore� the normal direction

is a simple candidate for a preferred direction to use� We will also see that this
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Max. Err. = 0.017198

Max. Err. = 0.004370

Max. Err. = 0.000344

Max. Err. = 0.000095

Num. Pts. = 17

Num. Pts. = 72

Num. Pts. = 253

Num. Pts. = 319

Figure ���� Four stages in global error bounding ��t� and simultaneous re�nement�

direction allows an exact representation of o�set of quadratic circular curves with

no re�nement at all� The iterative process follows in algorithm ����

In each iteration� the error function is computed and each control point is moved

in the normal direction by the error amount at the node parameter value associated

with this control point� This process repeats itself until no improvement is gained

in the maximum error �i�e�� no convergence� or the required tolerance is being

achieved�

Figure ��� shows a unit circle composed of four �� degree quadratic arcs� The

�rst o�set is obviously underestimated� but it converges quite quickly to the exact

o�set by moving only the corner points� These points have nonzero error� as can be

seen from Figure ��� which also shows the respective error function as the process
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Figure ���� Error bounded o�set surface� using simultaneous auto re�nement�

converges� The points in the error function in Figure ��� at which the error is

always zero correspond to the end points of the four �� degrees B�ezier segments

forming the circle� Because the normals for the corner control point node values

are in the direction �vectors ��a��a�� pointing to the corner control points of a

larger similarly represented circle� this process converges to an exact o�set circle�

with no re�nement�

In Figure ���� the quadratic curve consists of three arcs of ��� degrees and three

lines� The o�set error along the line is zero and no improvement is applied there�

The arcs can be improved to the exact representation� The required tolerance of

���� terminated this process at that accuracy as can be seen in Table ����

Figure ��� is a case in which exact representation of the o�set as a NURBs does

not exist� Control points perturbation can improve the result� but re�nement is

still necessary to meet the required tolerance of ���� as can be seen from Table ����

Figure ��� shows the same process applied to a unit sphere� This time the process

does not converge to the exact representation because the normals at the node

values of the corner points are not in the exact direction �vectors ��a��a��a���
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Algorithm ���

Input�
�� required offset curve tolerance�

C�t�� input curve�

Ca
d �t�� offset approximation to input curve�

d� offset distance�

Output�
�Ca
d �t�� improved curve approximation�

Algorithm�
Ca
� �t�� Ca

d �t��
i� ��
MaxErr � Infinity�

Do

Compute offset error ��t� for C�t�� Ca
i �t��

Ci���t� � Ci�t� perturbed according to ��t� at node values�

LastMaxErr �MaxErr�

MaxErr �min�LastMaxErr� ��t� highest error��
i� i� ��

While �MaxErr � � and MaxErr � LastMaxErr��

Even so� the improvement gained is quite signi�cant� The right side of Figure ���

is the regular o�set while the left side shows the same surface �and same number

of control points� after perturbing it� Table ��� provides the convergence steps for

this case� up to the prespeci�ed tolerance of ����� Figure ��� right is stage � of

Table ��� while Figure ��� left is stage ��

��� The O�set Operator as a Modeling Tool

The o�set operator can be used as a modeling tool� In fact� one can extend the

global error �nding method developed in section ��� and allow variable distance

o�sets as well� Given a parameter value� t� one needs to specify the o�set distance

required at that location� A scalar explicit distance function d�t� �or d�u� v� for
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Figure ���� Control points perturbation converges to exact o�set circle�

Figure ���� The error function convergence to zero� of the circle in Figure ����

surfaces� having the same domain as C�t� �S�u� v�� can be used� The only change

that must be made to the method developed in section ��� is that equation �����

should now read�

��t� � ��t�� d��t�� �����

where d� which used to be constant� is now a distance function� In equation ������

it was shown that the global error bound depends on d� so now the extrema of d�t�

are used to bound the error� Algorithm ��� described in section ��� is identical to

the one that should be used here� Figures ��� and ��� show some simple examples

of the operator�s power� for both curves and surfaces�
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Table ���� Convergence errors of Figure ��� o�set curve using perturbation�

Step Error Comments
� ����
� �����
� �����
� �����
� �����
� �����
� �����
� �����
� �����
�� �����
�� �����
�� � ���� Tolerance is met�

Table ���� Convergence errors of Figure ��� o�set curve using perturbation�

Step Error Comments
� ����
� �����
� �����
� �����
� �����
���

���
�� ����� No improvement � re�nement stage
�� �����
�� �����
�� � ���� Tolerance is met�

��� Trimming Self�Intersection Loops

Two types of loops are sometimes created in Ca
d �t� when C�t� is a C

� continuous

curve� If 	�t�� the curvature of C�t�� is larger than �
d
� where d is the o�set distance�

a loop will be formed �see Figure ������ Because this loop is local to a region in

which the curvature is too high� this type of loops will be referred to as a local loop�

However� not all loops resulting from o�set operations are of this kind� Some of the

loops formed� as can be seen in Figure ����� are the result of two separate regions
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Figure ���� Error function convergence to zero� for three ��� degrees arcs in curve�

in C�t� so close that the o�set curve in those regions intersects itself� This type of

loop is referred to as a global loop�

Detection of these loops is a di	cult problem� A search for cusps was sug�

gested as a method to detect local loops 
��� However� because Cad �t� is only an

approximation� it is possible that no cusps will be formed �see �rst �top� stage of

Figure ����� Moreover� the cusps� when detected� must be grouped in pairs� which

is not a natural process using this technique� We use a more robust method to

correctly detect all loops�

Let T �t� be the tangent vector to Cd�t� and let 	�t� be the curvature of C�t��

Luckily� local loops have a distinct characteristic that when 	�t�� �
�
d
� kT �t��k � ��

and Cd�t� has a cusp at t� �see 
�� and appendix ��� So� if C�t� is curvature

continuous� each time 	�t� � �
d
and N�t� � No�t�� kT �t�k � �� If 	�t� � �

d
and

the normals coincide� T �t� �ips its direction ���o� When 	�t� continuously changes

from � �
d
to � �

d
and then back to � �

d
and the normals coincide� two cusps will be

formed in Cd�t� at the places where 	�t� �
�
d
�

Using this characteristic� the cusp pairs can be identi�ed by �nding the zero set
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Figure ���� The error function does not convergence to zero� for general curves�

of � �t� � hT �t�� T �t�i� The regions where � �t� is negative are the regions where T �t�

�ips its direction �i�e�� normals coincide and 	�t� � �
d
�� Figure ���� demonstrates

this process on the pawn cross section in Figure ���� The tangent curves T �t� ��a�

in Figure ����� and T �t� ��b� in Figure ����� have been derived� Their dot product

��c� in Figure ������ � �t� � hT �t��T �t�i� is computed and used to identify the two

local loops in the resulting o�set approximation in its two negative regions ��d� in

Figure ������ Once the two loops have been identi�ed� they can be trimmed away

��e� in Figure ������

The usage of � �t� to identify local loops make this process more robust� even if

no cusps are formed in the o�set approximation� The tangent vector� T �t�� still

�ips its direction and still makes � �t� negative �Figure ���� �c��� Furthermore� by

detecting the negative regions of � �t� the cusps are virtually paired because each

cusp pair is the negative � �t� region boundary�
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Table ���� Convergence errors of Figure ��� o�set sphere using perturbation�

Step Error Comments
� �����
� ����
� �����
� �����
� �����
� �����
���

���
�� ����� No improvement � re�nement stage
�� �����
�� �����
�� �����
�� �����
�� �����
�� � ���� Tolerance is met�

Once a local loop has been identi�ed using � �t�� the algorithm splits the curve

into three parts� the region before the �rst cusp� the region after the second cusp�

and the region between the two cusps� The third part� between the cusps� must be

deleted� The �rst two should then be intersected against each other to �nd the self

intersection point using standard curve�curve intersection algorithms 
��� ��� ���

trimmed properly to the intersection point� and then merged back� See Figures ����

and ���� for some examples�

Global loops have no such characteristic and are therefore more di	cult to

isolate� It is necessary to �nd all the self�intersections of a curve� However� a curve

which is monotone in one dimension can never intersect itself� Therefore� one way

to approach this problem is to split the curve into monotone subcurves� intersect

all the subcurves against each other using curve�curve intersection algorithms� and

isolate all the self�intersection points if any� Loops can now be formed by tracing

the self�intersection points along the parameter space� Given an intersection point

Pi� when C�t�i � � C�t�i �� the sign of the dot product hT �t�i �� No�t�i �i can be used
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Figure ���� Control points perturbation can also improve o�set surface accuracy�

to determine if a loop is to be purged or not� Given Pi� the normal No�t�i � de�nes

the relative position of the original and o�set curve� If the dot product is negative�

it means the intersecting curve �with tangent T �t�i �� in Pi is closer locally �P� in

Figure ����� to the original curve than the o�set amount� Because curves are

continuous� it implies the whole loop is closer than the o�set amount and therefore

should be removed �loop � in Figure ������ Similarly� the dot product is found to

be positive in P� in Figure ���� so in the neighborhood of P�� loop � distance to the

o�set curve in the N� direction is larger than the o�set amount and therefore loop

� is locally �and globally� valid� The loops are tested while following the parameter

values of the curve from its beginning to its end� For each intersection of an untested

loop i� the tangent Ti of the current curve parameter is computed along with the

o�set normal Ni of the other curve at the intersection point i� Using the example

in Figure ����� loop � is tested �rst� hT�� N�i is found to be negative and therefore

loop � is purged� Because hT�� N�i is positive loop � should not be purged� etc�
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�a� �b�

Figure ���� Variable distance o�set �a� using a scalar distance function �b��

This approach has been used to trim out the global loops of Figure �����

The curve o�set local loop detection method may be extended to surfaces as

well� If the surface radius is smaller than the o�set distance� the normal of the

o�set surface may �ips its direction� If both principal curvatures are the same and

equal to 	 �i�e�� an oblique point which is locally a sphere of radius �
�
�� then an o�set

by more than �
�
will cause both tangents in the isoparametric directions to be �ipped

or the normal of the o�set will point to the same direction� If� however� the two

principal curvatures are di�erent �say 	� � 	��� the normal to the surface will be

�ipped when the o�set distances passes �
��
� and �ipped back when later the distance

grows beyond �
��
� Because exact spherical shapes are fairly rare and simple to deal

with� the normal �ipping may be a useful tool in detection of self�intersections� Let

N�u� v� be the normal surface to the original surface S�u� v� and N �u� v� be the

normal surface to the o�set surface S�u� v�� and de�ne


�u� v� � hN�u� v��N �u� v�i � �����

Equation ����� can be used to detect self�intersections� If 
�u� v� � �� there must

be a self�intersection� In Figure ���� the apex of S�u� v� is an oblique point and near
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Figure ���� Variable distance surface o�set �u direction linear� v constant��

Figure ����� O�set operation local loops are trimmed using a distinct characteristic�

it both N�u� v� and N �u� v� point to the same direction because both �
��

� d and

�
��

� d or both tangents to the S�u� v� in the isoparametric directions are �ipped�

However� in the intermediate region of S�u� v� the u direction �surface of revolution

circular direction� curvature has reached the o�set distance and so the tangents in

the u isoparametric direction are �ipped� while the tangents in the v isoparametric

direction are not� In that region� obviously �
��

� d � �
��

and 
 is negative� which
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Figure ����� Global loop are being trimmed using numerical techniques�

(a) x

y

(b) x

y

(c)

t

m

(d) (e)

Figure ����� Product of a curve and its o�set tangents used to identify local loops�

together signal the self�intersection�

Trimming surface loops are much more di	cult because� in general� they are

not isoparametric� Because an analytic approach was not feasible� an approach

which subdivided the surface into polygons and detected self�intersections on this

approximation was used� To simplify the process� it was assumed the the original

surface was completely visible from the z direction �envisioning a � axis pocket for

NC applications�� The z was used as the sweeping axis� in algorithm ���� to mini�

mize the number of polygon�polygon intersection tests� in the detecting of possible

self�intersections in the o�set� minimumZ and maximumZ� in algorithm ����
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Figure ����� Global loop classi�cation is based on hNi�t
�
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Figure ����� O�set surface self�inter� may be detected using hN�u� v��N �u� v�i sign�

return the z extrema of given object� IntersectPolyPoly �nds the linear segment

of two intersecting polygons� and �nally isSurface and isFlat are two predicates�

As if these di	culties are not enough� the topology of the self�intersection can

be extremely complex� Figure ���� left shows an o�set surface of a simple surface�

The centered region of the surface has large enough curvature to cause the o�set

surface to intersect itself� Extremely complex self�intersection loops are generated

as can be seen on the right of Figure ���� which shows the self�intersection curves


