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ABSTRACT

Detailed analysis of manymathematical properties of sculptured models has been

hindered by the fact that the properties do not have the same representation as

the surface� For example� unit tangents� surface normals� and principal curvatures

are typically computed at prede�ned discrete sets of points on the surface� As

such� aliasing can occur and features between samples can be missed� Synthesizing

information about the shape of an object and operating on the model� whether by

physical machining tools� graphics display programs� or mathematical analysis� has

been treated as either a discrete or local problem in general� The research being

reported on here has focused on another approach� that of creating algorithms that

construct the mathematical properties in closed form� or construct approximations

to those mathematical properties through symbolic computation� Global analysis

can then be applied while an accurate error bound is obtained�

Basic tools required for such symbolic computation are presented and their usage

in a broad range of applications from o�set approximations through curvature

analysis to generation of machining toolpaths are demonstrated� The combination

is not only shown to be powerful but it also provides a novel approach to problem

solving in an elegant and robust way�
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CHAPTER �

INTRODUCTION

�Where shall I begin� please your Majesty�� he asked� �Begin at the

beginning�� the King said� gravely� �and go on till you come to the end�

then stop��

Alice�s Adventures in Wonderland� Lewis Carroll

The �eld of CAGD has evolved signi�cantly in the last decade� The B�spline

representation� introduced to the �eld of CAGD during the ��s� has become a

dominant representation in mechanical design� Techniques to manipulate� evaluate�

mill� render� and analyze freeform surface based models have undergone extensive

research� It is common for surfaces	curves to be approximated by a set of poly�

gons	polylines for milling� rendering� and analysis purposes� Other properties are

computed at discrete locations and interpolation is used to provide the information

over the entire domain�

This thesis applies symbolic computation to some of these problems� The power

of symbolic computation for freeform curves and surfaces will be demonstrated

throughout this document� Symbolic computation provides the ability to compute

properties with exact precision� It virtually eliminates the fundamental problems

that rise from discrete sampling� If the domain being sampled contains information

in higher frequencies than that of the samples� the original data cannot be recon�

structed precisely �Nyquist theorem�� Unfortunately� many important problems

have that characteristic�

The use of symbolic computation opens the door for solving problems using a

global approach� It may be useful to demonstrate the di�erences between global and



�

local methods using an example from computer graphics� Two commonmethods are

used to render realistic scenes� ray tracing and radiosity� The �rst ��res� a single

ray at a time and samples the world along that particular line� This is clearly a

local approach� The second looks over the problem globally and �nds all the energy

distribution simultaneously in the equilibrium state� Given a scene� this second

technique is ideally global because it takes into account all data� We say �ideally�

because several approximations are commonly performed in this method to obtain

faster results� It is not surprising then� that ray tracing methods face severe aliasing

problems� Major research e�orts in the computer graphics community are devoted

to overcoming the ray sampling problems� The ideal radiosity method does not

introduce aliasing problems� although the scene subdivision and polygonization

stage does� simply because most of the subdivision techniques are local�

Another way to distinguish global techniques from local ones is that global tech�

niques can arrive at all their results at the same time while local methods provide

the viewer with sequential information� A global method may be used to analyze a

whole surface at once� The ray tracing technique from the above example processes

one sampled ray at a time� whereas the radiosity method computes and returns the

light distribution information for all elements in the scene simultaneously�

Greedy algorithms are local� as shown by the coin based example in ���� pp� ���

emphasizing their global ine�ciency� Taylor approximations are another example

of exploiting local information� The Newton Raphson curve root �nding is clearly

a local technique in that it converges to roots in a neighborhood of the initial

guess� Recall that it does not ensure �nding all the roots� On the other hand� if

an algorithm uses properties of the entire surface and makes decisions based on

both local and global information� it is referred to as a global algorithm� An ideal

method should �nd all the solutions quickly and so must be global�

We use derived surfaces� called property surfaces� whose de�nitions are derived



�

from di�erent attributes of the original surface as auxiliary surfaces to help analyze

the original surface� For example� �F

�u
�u� v� is a property surface of F � and so

is n�u� v�� the surface of unit normals� The two surfaces of principal curvatures�

��n�u� v� and ��n�u� v� are also property surfaces�

De�nition ��� Suppose S� and S� are vector spaces of surfaces� An

operator P � F � p � S�� for all F � S�� is called a property operator

if the image surface� p� is associated with a property of F � the domain

surface� In that case� p is called a property surface�

Some property surfaces are of the same �type� as the original surface whereas

others are not� If F is a tensor product NURBs surface� then �F

�u
�u� v� is a property

surface which is also a tensor product NURBs surface with the same knot vectors�

but with di�erent �lower� order and continuity properties� �F

�u
�u� v� � �F

�v
�u� v�

is also a property surface� that is� a tensor product NURBs surface� but with

di�erent knot vectors� di�erent �higher� order� and di�erent �lower� continuity�

These two property surfaces share the trait with F that they are NURBs surfaces�

but n�u� v�� ��n�u� v� and �
�
n�u� v� are not NURBs surfaces� in general� They cannot

be represented as a piecewise parametric rational functions� as we shall later see�

and hence� cannot be represented as NURBs surfaces�

We restrict ourselves �de�nition ���� to using property surfaces that are either

representable as NURBs or to property surfaces for which we can derive approx�

imations that are representable as NURBs� This restriction enables us to apply

any algorithmic approach developed for the NURBs representation to the property

surfaces� Not every property is representable as a NURBs surface� A unit normal

surface has a square root in the denominator of its normalization which is not

representable as a NURBs�

Contouring techniques �� �� ��� developed for freeform surfaces can be applied

immediately to a NURBs representation of a property surface� Because both the





original and the property surfaces share the same parametric domain� one can

easily create a trimmed surface consisting of those regions in the original surface

having the desired property values� In other cases the zero set of certain property

surfaces may be required� For example� let �nz�u� v� be the z component of �n�u� v��

where �n�u� v� � �F �u�v�
�u

� �F �u�v�
�v

is orthogonal to the parametric surface F �u� v� at

�u� v�� Then the set of zeros of �nz�u� v� is simply the parameter values along the

silhouettes of the original surface when F is being viewed from ��� ����� Hence� the

silhouette extraction problem is equivalent to a root �nding problem �contouring��

which is usually simpler� Trimmed surfaces ��� �� are the natural way to represent

the regions de�ned by the contouring operator� In fact� the parameter values of

the contours of certain property surfaces can serve as the parameter values of a

trimming curve for the original surface�

In this thesis� we apply global techniques based on symbolic computation to a

broad range of problems� In Chapter �� we develop the tools� some of which are

described above� that will be used throughout this dissertation� It may be a surprise

how small the number of required tools is�

As is discussed in Chapter �� o�sets of freeform piecewise polynomial	rational

curves and surfaces are not� in general� representable in the same domain� Ap�

proximation techniques are used instead� However� we use a symbolic method to

compute the error function of these approximations� We use this error function in

two ways� First its extrema serve as a bound on the error� In addition� isolation of

the regions of the error function with large error allow us to automatically improve

the approximation until a prescribed tolerance is achieved�

In Chapter � surface curvature analysis is performed globally using symbolic

computation of curvature property surfaces� Curvature analysis has applications in

modeling as well as in manufacturing� Symbolic computation provides the ability

to trichotomize a surface into three regions� convex� concave� and saddlelike regions�
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This trichotomy� which can dramatically improve milling algorithms e�ciency� is

almost impossible without a global approach�

In Chapter �� the questions of toolpath generation for NC machining is dealt

with� Optimal toolpaths for freeform surfaces is known as a di�cult problem and

current approaches fails in extreme cases� We will present a symbolic algorithm

that generates a toolpath for machining freeform surfaces that performsmuch better

than current local schemes� This algorithm is then enhanced so it can automatically

generate machining toolpaths for real models consisting of several trimmed surfaces

while avoiding any gouging� Because the algorithm provides a bound on the

redundancy in the generated toolpath� it was successfully modi�ed and used as a

rendering tool� The toolpath curves are rendered using curve rendering techniques

to form the image�

Finally in Chapter �� several other applications are addressed� Approximation

of higher order curves using lower order ones is the �rst� We also add a composition

operator to the set of operators we de�ned in Chapter � and discuss its potential�

Other surface properties such as speed� and slope are de�ned and considered� and

twist is considered as part of a global symbolic approach�



CHAPTER �

SYMBOLIC AND NUMERIC

COMPUTATION

Equations are more important to me� because politics is for the present�

but an equation is something for eternity�

Albert Einstein

This Chapter develops the symbolic representational and numeric computational

tools required to carry out the analysis performed throughout this document�

The derivations of the tools for the B�ezier representation are presented while

the appropriate references to derivations for the equivalent tools for the NURBs

representation are made�

��� Symbolic Representation

The following basic symbolic representations will be required for B�ezier and

NURBs curves and surfaces�

� derivative representation�

� sum	di�erence representation�

� product representation�

This quite minimal set of representations is extremely powerful tool as is demon�

strated by the following Chapters� Because a division by a scalar entity can always

be de�ned as a rational expression� we never have to compute such an operation
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explicitly� x�y � x

y
� It should be carefully noted that these representations

represent the result of symbolic operators� That is� they represent the result by

means of symbols instead of evaluating it numerically at a single point� More

practically� the result is represented in the same B�ezier or NURBs domain as a curve

or a surface� so a closure is formed� This closure enables arbitrary composition of

these operators�

����� Derivatives Representation

Representing the derivatives of B�ezier and NURBs curves and surface is straight�

forward ����� Di�erentiation of a single B�ezier basis function may be expressed as

a linear combination of two lower order B�ezier basis functions�
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For curves it immediately follows that�
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Extension to tensor product surfaces is straightforward because there is no

dependency between the two surface parameters �m is the degree��
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and similarly for �S�u�v�
�v

�

Di�erentiation in the NURBs domain follows the same procedure ���� �k is the

degree��
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and for surfaces�
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����� Representation of Sum�Dierence

Finding a representation for the sum or di�erence of two B�ezier or NURBs curves

or surfaces can be achieved by bringing them to a common representation� If the

two curves do not share the same parametric domain� their knot vectors can always

be a�nely transformed without modifying the curves� so their parametric domains

will match� If the two curves or surfaces are not of the same polynomial order� the

lower one should be degree raised ���� ��� to the higher order� If internal knots

�of a B�spline curve� have di�erent multiplicities in the two curves� at each knot�

the curve with the lower multiplicity should be re�ned ��� ��� to match the higher
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multiplicity� Once both curves are transformed to have a common order and knot

vector� their control polygons can simply be summed or di�erenced because�
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This condition also holds for surfaces� Once the two surfaces share the same

orders and knot vectors� their meshes can be simply subtracted or added�

S��u� v�� S��u� v� �
kX

i��

lX
j��

PijB
m
i��u�u�B

n
j��v�v��

kX
i��

lX
j��

QklB
m
i��u�u�B

n
j��v�v�

�
kX

i��

lX
j��

�Pij �Qkl�B
m
i��u�u�B

n
j��v�v� �����

Bringing two B�ezier curves to a common domain only requires elevating the

degree of the lower one�
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Therefore a B�ezier basis function of degree n may be represented as a convex

combination of two B�ezier basis functions of degree n� ��
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Given a B�ezier curve of degree n� raising it to degree n � � involves�
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Once again� similar procedures can be followed for B�ezier surfaces�

It is desired to be able to subtract or add a constant to a freeform surface

or curve� Because
Pm

i��B
m
i � �� a K constant curve may be represented as the

following B�ezier curve�

K � K
mX
i��

Bm
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mX
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KBm
i �t� ������

and hence� using equations ����� and ������ constant subtraction or addition is

equivalent to subtracting or adding this constant from all curve coe�cients� An

equivalent formulation holds for surfaces� and the NURBs representation�

A simple formulation can be de�ned for adding and subtracting rational curves
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Addition of rational curves requires the capability to �nd products� Rational

surface addition and	or subtraction may be represented in a similarway� See ���� ���

for additional details�



��

����� Product Representation

Although �nding the symbolic derivative� sum and di�erence of B�ezier or NURBs

curves and surfaces is straightforward� �nding products of curves and surfaces is

more di�cult� We start by considering the product of two B�ezier curves and then

derive the analogous formulation for surfaces�

Given two B�ezier basis functions Bm
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Using equation ������� one can easily derive product formulas for curves and

surfaces�
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The formulation for product surface follows much the same derivation�

S��u� v�S��u� v� �
mX
i��

nX
j��

PijB
m
i �u�B

n
j �v�

pX
k��

qX
l��

QklB
p
k�u�B

q
l �v�



��

�
mX
i��

nX
j��

pX
k��

qX
l��

PijQklB
m
i �u�B

p
k�u�B

n
j �v�B

q
l �v�

�
mX
i��

nX
j��

pX
k��

qX
l��

PijQkl

�
m

i

��
p

k

�
�
m�p

i�k

� Bm�p
i�k �u�

�
n

j

��
q

l

�
�
n�q

j�l

� Bn�q
j�l �v�

�
m�pX
r��

n�qX
s��

RrsB
m�p
i�k �u�Bn�q

j�l �v� �����

where�

Rrs �
min�r�m�X

i�max���r�p�

min�s�n�X
j�max���s�q�

Pi�jQr�i�s�j

�
m

i

��
p

r�i

�
�
m�p

r

�
�
n

j

��
q

s�j

�
�
n�q

s

� �

Finding the products of polynomial B�spline and NURBs is far more di�cult�

A direct approach has recently been developed in ��� which supports symbolic

computation of the coe�cients of the product after �nding the knot vector� How�

ever� because it is computationally expensive and complex to implement� one

might choose to exploit the uniqueness property of the process and compute the

coe�cients of the product by solving an interpolation problem� First� one would

form the knot vector of the product� which can be derived from the knot vectors and

orders of the factors� The order of the product curve� C�t� � C��t�C��t�� is equal to

O � O��O� � �� where O� and O� are the orders of C��t� and C��t�� respectively�

The knot values and the continuity of the product curve at its knots are determined

by the factor curve with the lower degree of continuity at that knot� Let 	i be a

vector holding all distinct values in 
 i� the knot vector of C i� arranged in ascending

order� At each knot value �j of 	i� let �i��j� be multiplicity of �j in C i� Then the

continuity of C i at this knot is equal to Cij � Oi��i��j���� 
 i can be decomposed

into two vectors� 	i holding all distinct values and Ci holding their continuities�

i�e�� 
 � 	 f	�� C�g and similarly 
 � 	 f	�� C�g� Let 	 be the merged ordered set

of the distinct values from both 	� and 	�� and let C be de�ned so that the mth

knot Cm � min�C�j � C
�
k� if 	

�
j � 	�k � The resulting knot vector 
 will contain all the

distinct values in 	 with multiplicity � equal to ���m� � O�Cm���
�m � 	� The

resulting knot vector� 
 � is minimal in the sense that any curve C�t� representing
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the product C��t�C��t� will have a knot vector which contains 
 � One can �nd

the unique B�spline curve de�ned over 
 that interpolates C���i�C���i� for all �i�

the node values of 
 � From uniqueness� such a curve interpolates C��t�C��t�� This

process transforms the problem into an interpolation problem� producing a set of

linear equations that must be solved for the control polygon points of C�t�� The

matrix formed is banded�

The resulting curve is unique in the sense that it minimizes the loss of continuity�

Each interval between two adjacent distinct knots of 
 may be represented as a

polynomial� and can be represented as a B�ezier segment� However� such an approach

guarantees only C� continuity at the knots�

��� Numeric Computation

Knowing the zero set of a property surface and	or knowing all regions in which

the property surface values are larger than some threshold or even equal to some

speci�ed value is frequently useful in extracting shape information from given

curve�s� and surface�s�� The ability to slice the given curve	surface with a plane is

called contouring and is equivalent to �nding the intersection of a curve and a line

or a surface and a plane�

Contouring is used extensively to extract data from property surfaces �see Chap�

ter ��� Once the contours are computed� their domain values in the parametric space

can serve as bounding trimming curves for the original surface� S�u� v�� so that the

trimmed surface will hold all regions in S�u� v� known to have property values larger

�or smaller� than the contouring level� or will contain regions bounded between two

property values�

����� Contouring in E�

This contouring process is closely related to the surface�surface intersection and

ray�surface intersection ��� problems� with their inherent numerical complexities
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and instabilities�

Let F �u� v� � � x�u�v�
w�u�v�

� y�u�v�
w�u�v�

� z�u�v�
w�u�v�

� and P � Ax�By � Cz �D � � be a prop�

erty surface and a contouring plane� respectively� By substituting the coordinate

functions of F �u� v� into P one can solve for all the values of u and v in the domain

for which F �u� v�� P �� �

S�u� v� � A
x�u� v�

w�u� v�
�B

y�u� v�

w�u� v�
� C

z�u� v�

w�u� v�
�D

�
Ax�u� v� �By�u� v� � Cz�u� v� �Dw�u� v�

w�u� v�
� ������

A single NURBs surface representation for equation ������ can be found using the

operators de�ned in ������ ������ namely surface addition and surface multiplication�

The zero set of the surface S�u� v� is the set of parametric values for the required

intersection� Because both F �u� v� and S�u� v� share the same parametric domain�

mapping the parametric domain information to F �u� v� is trivial� S�u� v� is a scalar

surface� which leads to a simpler and faster computation� Assuming w�u� v� �� ��

the zero set of S�u� v� is computed using only the numerator of S�u� v�� Thus� even

when F �u� v� is a rational surface� the contouring computation can be performed

on a scalar polynomial surface�

To �nd the contours� the scalar surface resulting from equation ������ is recur�

sively subdivided so subsurfaces intersecting the contouring plane are isolated� At

each stage� the scalar surface coe�cients are classi�ed into three categories�

�� all coe�cients are positive�

�� all coe�cients are negative�

�� coe�cients with di�erent signs exists�

Using the convex hull property of B�ezier and NURBs surfaces� it is clear the

�rst two cases have no intersection with the contouring plane� The third case
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Algorithm ���

Input

S�u� v�� input surface�

P� the contouring plane


� tolerance of subdivision used in termination criteria�

Output

Subsurfaces of S�u� v�� intersecting the contouring plane�

Algorithm

IntersectingSubSrf� S �

begin

M � S control mesh�

If termination criteria hold with 

return f S g�

else if M control points are all positive or all negative

return ��
else

begin

Subdivide S into two subsurfaces S� and S��

return IntersectingSubSrf� S� � � IntersectingSubSrf� S� ��

end

end

suggests the surfaces may intersect and further investigation is in order� so only the

third type needs further subdivision� These steps are similar to the one presented

in ���� ����

Figure ��� shows this �rst stage of isolating the subsurfaces crossing the con�

touring plane�

Termination criteria obviously relate to �atness testing� However� it is also

required that the cross section of the patch with the contouring plane be simple�

where

De�nition ��� A simple patch during the contouring process is a patch

which intersects the contouring plane along one and only one connected
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Figure ���� Subsurfaces intersecting the XY parallel contouring plane�

curve� Furthermore� this curve must start and end on two di�erent bound�

aries of the patch�

It is clear from Figure ��� that tracing the patches to form a piecewise linear

approximation of the contour may be ambiguous� because a single patch may have

more than two �one in and one out� neighbors�

Coercing the termination condition to allow only simple patches at the lowest

level simpli�es the task of disambiguating and connecting the patches into a piece�

wise linear approximation� This termination condition also simpli�es the problem

of correctly identifying the contours at degenerate points such as saddles� These

points can never satisfy the simplicity condition �de�nition ����� because at a saddle

point four contour curves meet� The �atness criteria will terminate the subdivision�

and will mark such points so they can be treated in a special manner� depending

on the application�

Once traced into a a list of patches� one can pick the middle of each patch to

form the piecewise linear approximation of the contouring curve� However� by using

a higher order approximation on the intersection of the patch boundary and the
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Figure ���� Subsurfaces chaining into piecewise linear approx� may be ambiguous�

contouring plane one can obtain a much better result �Figures ��� and ����� Because

the patches are simple� a boundary crossing the contouring plane must have one

of its ends above the contouring plane and the other below it� The use of a �rst

order approximation � a linear segment connecting the two end points � to �nd

the intersection with the contouring plane was found to be inadequate because it

provided no information about the interior of the boundary curve� The subdivision

approach described in ����� can be used� Numeric methods may be used as well

considering that the single solution is bounded by the boundary curve end points�

In practice� as in Figure ���� the secant method was used� which is derived in any

introductory numerical analysis book� and which guarantees convergence because

the patch �and boundary� are simple�

One can� at this stage� attempt to numerically improve the curve by �marching�

along the surface as suggested in ����� Furthermore� middle points may be in�

troduced and improved as well� We found that for most purposes� as used in later

Chapters� this stage was unnecessary and acceptable accuracy could be extracted in

reasonable time using only subdivision� The robustness of this �marching� process

has not been proven to be reliable enough�
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Algorithm ���

Input

C�u�� input curve�


� tolerance of output�

Output

Zero set of C�u��

Algorithm

zeroSet� C �

begin

P � C control polygon�

If length of P� kPk� is smaller than 

return f middle point of P g�

else if P control points are all positive or all negative

return ��
else

begin

Subdivide C into two subcurves C� and C��

return zeroSet� C� � � zeroSet� C� �

end

end

����� Contouring in E�

Computation of zero sets of curves is� in general� a much simpler task because

the result� for nondegenerate curves� is a �nite set of points� A simple subdivision

based algorithm exploiting the Convex Hull property of B�ezier and NURBs curves

can be easily formulated in a similar fashion ���

As pointed out in ������ numeric improvement is possible� but for our purposes

subdivision what found more robust and su�ciently fast�
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One can easily extend algorithm ��� to �nd the solution�s� of C�u� � K for some

constant K by de�ning a new curve �C�u� as follows�

�C�u� � C�u��K

�
mX
i��

PiB
k
i �u��

mX
i��

KBk
i �u�

�
mX
i��

�Pi �K�Bk
i �u� ������

using equation ����� and equation �������



CHAPTER �

OFFSETS

When it is dark enough you can see the stars�

Ralph Waldo Emerson

O�set curves and surfaces are very important in manufacturing� Therefore�

computation and approximation of o�set curves and surfaces have undergone ex�

tensive research� For curves� the o�set is an intuitive operation and has been

mathematically known for more than a hundred years ��� �
� ���� The o�set

operation is closed for arcs and lines� i�e�� an o�set of an arc and a line are an

arc and a line� respectively� This is not so� in general� for B�ezier and NURBs

curves� so approximations are usually derived�

Two methods for �nding approximations to o�set curves are commonly used�

The �rst approximates the curve using piecewise lines and arcs and then �nds the

representation of the exact o�set to the arc and line approximation� That approach

was introduced ���� and used successfully in ����� The second method attempts

to approximate the o�set by directly transforming the curve representation� in

particular the control points ���� �
� �
� ��� ��� ���� To improve the accuracy of the

approximation in the second method� the original curve is subdivided ���� ��� ���

or manually re�ned ���� when the error is above a prespeci�ed tolerance level� The

same o�set technique is then applied to each of the subdivided pieces� The original

curve is usually subdivided in the middle of its parametric domain ���� ��� ����

although in general� that is not the optimal location� Curve in�ection points have

also been considered as splitting points for o�sets �����


