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� Introduction

It has been pointed out by many researchers recently that asynchronous circuits�circuits

that do not employ global clocks�have a number of advantages over synchronous circuits

when it comes to building large and complex sequential systems ��� �� �� ��� In this pa	

per� we summarize recent developments in asynchronous circuit design and then present our

high	level synthesis system� SHILPA�� We will focus on the high�level optimizations used

by SHILPA� High	level optimizations are similar to 
�ow	graph level optimizations� in pro	

gramming language compilers ��� they should not be confused with circuit level optimizations

which are similar to machine code optimizations�

Synchronous vs� Asynchronous Circuits

Synchronous circuits are employed virtually everywhere� They have a number of desirable

characteristics� some of which are the following� The clock period of a synchronous circuit is

chosen to be long enough to allow its combinational stages to settle down� thereby preventing

failures due to hazards� In asynchronous circuits� hazards can be mistaken for genuine signal

transitions� Hence� it is of paramount importance to eliminate hazards� for instance by

employing special purpose Boolean minimization procedures ���� Synchronous circuits do

not have the overhead of handshaking� Very many simulation and testing techniques� as well

as Computer	Aided Design �CAD� tools� are available for them� Synchronous circuits also

have many shortcomings� Large synchronous circuits employ high frequency and low skew

global clocks� driving which can consume considerable amounts of power ���� The design

of synchronous�asynchronous interfaces�for example� peripheral interfaces�must be done

with great care� for fear of inviting failure due to metastability ����

There are many speci�c kinds of asynchronous circuits� some of which are� self�timed

circuits �those that generate completion signals�� delay insensitive circuits �whose behavior

�System for the High�level synthesis of Process to Asynchronous circuits
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is invariant over module	 and wire	delays�� and speed independent circuits �whose behavior

is invariant over module	delays� but not necessarily wire	delays�� These distinctions depend

largely on the granularity of the circuit primitives� For example� a synchronous system that

communicates externally using handshake signals can be regarded as a self	timed component

in a larger context� Asynchronous circuits are attractive in many ways� To a large extent�

they allow one to focus on functionality and not on timing details� This makes the task

of high	level synthesis centered around asynchronous circuits much easier in many respects�

For example� there is no need to perform clock scheduling� Operations whose durations are

data dependent as well as I�O dependent can be more cleanly and e�ciently handled in the

asynchronous high level synthesis framework� Asynchronous circuits can also exhibit better

average case performance� unencumbered by clocking rules ����

Despite these promises� many designers have have shunned away from asynchronous cir	

cuits� It is feared that asynchronous circuits are excessively larger than synchronous circuits�

Asynchronous circuits o�er the designer with even more freedom to explore the design space�

The designer has the choice of numerous concurrent algorithms to begin with� upon each

chosen algorithm� he can e�ect numerous high level optimizations� each lead to circuits to

which di�erent circuit level optimizations can be applied� �nally� each speci�c circuit has its

own 
best suited� circuit design style� and� all these tasks are inter	related� For instance� if

an addition operation is used in a thread whose average execution time should be kept low�

carry	completion addition would be a viable alternative� This may� in turn suggest a DCVSL

CMOS style implementation with its own associated transistor sizing rules� Without ade	

quate design space exploration support tools� this added freedom o�ered by the asynchronous

style can be a burden for the designer�

It is hoped that many of these limitations of asynchronous circuits can be overcome very

soon through additional research� Many of the early failures involving asynchronous circuits

can now be avoided through careful design ��� or veri�cation ����� Area overheads are be	
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coming less severe� especially if a slight increase in area can actually buy reduced design

time� Recently� there have been many convincing demonstrations of the practicality of large

asynchronous designs ���� ���� Many high	level ���� ��� ��� �� and low	level synthesis tools

���� ��� ��� have been developed�

The clean separation between 
synchronous�� and 
asynchronous� systems has already

begun to blur� Mixed synchronous�asynchronous circuits ���� ���� Q	modules ����� locally

clocked asynchronous systems ����� and the 
asynchronous style� synchronous control net	

works used in Olympus ���� are indicative of this trend� Whichever course the hardware

design community may ultimately follow� it seems inevitable that asynchronous design will

play an increasing role as time goes by� Based on this assumption� we are justi�ed in taking

the approach of studying asynchronous designs in isolation� in this paper�

Context and Motivation for our work

A prominent category of e�orts in asynchronous design deals with compiling behavioral

descriptions in high	level languages based on the communicating sequential process paradigm

into asynchronous circuits� In these e�orts� asynchronous design is viewed as concurrent pro�

gramming� where the computation to be implemented is expressed in a high	level concurrent

HDL� This approach is more suitable for system level synthesis� This is in contrast to the

works of ���� ���� as well as more recent works of ��� ��� �� ���� which are more suited for

low level synthesis and veri�cation of asynchronous state machines�

Our system� SHILPA� belongs to the former category� To the best of our knowledge�

systems similar to ours that have been fully implemented and tried out in practice are those

by Brunvand ����� van Berkel ���� ���� and by Martin and Burns ���� ���� Improvements

in SHILPA over these works are primarily the following� hopCP� the source language for

SHILPA� is more expressive than Martin�s input language �CHP�� Brunvand�s version of

�Occam�� or van Berkel�s language �Tangram�� We use a class of annotated Petri net	like �ow

graphs �called hopCP �ow graphs� or HFGs� as our intermediate form� This intermediate
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form is very amenable to �ow	analysis� Optimizations for resource sharing can be easily

carried out on HFGs� Life	time analysis for variable reuse is also easy to carry out on HFGs�

A tool called Concur ����� that can determine if two actions are serially ordered or not� could

be developed fairly easily� thanks to the HFG based notation� Concur is central to many of

the optimizations performed by SHILPA� The HFG based intermediate representation also

helps in smoothly integrating all the SHILPA tools �a compiled code simulator� Concur� and�

in future� performance evaluation tools�� SHILPA compiles circuits by taking each action in

the HFG and rewriting it to a normal form HFG �NHFG� fragment �to be explained later�

as well as the associated resources� this graph rewriting based compilation keeps the SHILPA

compiler modular� easier to understand� and �it is hoped� easy to verify �in future�� Flow

analysis based optimizations� a common intermediate form for a variety of asynchronous

design tools� and compilation through graph rewriting have not been addressed before in

asynchronous high level synthesis�

There are two classes of approaches for realizing asynchronous circuits in hardware� Boolean

gate based� and macromodule based� Asynchronous macromodules implement functions such

as rendezvous� arbitration� procedure call and return� and control merging� Many approaches

using macromodules view the given design problem as a concurrent programming problem�

more speci�cally� one of mapping a given concurrent program into an interconnection of

macromodules� There are also many e�orts in which macromodules are used directly for

realizing state machines �i�e� for low level synthesis�� Some examples are ��� ��� Some of

these distinctions are also rapidly blurring� with the use of complex gates that directly realize

multi	input multi	output Boolean functions as macromodules� In SHILPA� macromodules

are the target of compilation� at present� Our set of macromodules were originally developed

by Brunvand ���� using the Actel �eld programmable gate arrays �FPGAs�� we have made

numerous extensions to this cell set�





Organization

In Section �� we brie�y sketch the syntax and semantics of hopCP� In Section �� we

illustrate SHILPA on a two	stage pipeline� In Section �� we examine concurrent guard

evaluation in some detail� In Section � we present an example of parallel decomposition�

a useful technique for obtaining pipelined designs� Concluding remarks are provided in

Section ��

� hopCP System Overview

Syntax

A hopCP description consists of one or more sequential processes composed in parallel

�using the k operator�� Two sequential processes are shown in Figure �� through HFGs

as well as using a textual notation� A sequential process is one or more process de�nitions

composed in series �using the � operator�� such that for every process call� there is a cor	

responding process de�nition� Each sequential process shown in Figure � consists of two

process de�nitions each� The processes de�ned are P� Q� R� and S�

A process de�nition consists of a choice node annotated with a process name and a list of

formal parameters� Arcs lead o� from the choice node �a 
circle�� to one or more alternative

transitions that are annotated with actions� These actions are commonly known as guards�

Arcs lead o� from the guards to nodes that perform process calls�

The left	most process de�nition de�nes process P that has two formal parameters x and

y� �We will use the words process and state synonymously�� The guards of P are a�z and

b�x� These actions belong to the category data input� These transitions are� in turn� followed

by the process calls Q�x��� f�y�� z�x� and P�x�y� y�x�� Note that every process call has

a corresponding process de�nition in the same sequential process� When a process call is

made� the actual parameters are passed by value�
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action ::=  ch?
               |  ch!
               |  ch?var
               |  ch!exp
               |  var := exp
               | ( action1, ... , actionP)

; input synchronization
; output synchronization
; data input
; data output
; assignment
; compound action. . . . 

P[var, ... ,var]

P1[Exp, ... ,Exp] Pm[Exp, ... ,Exp]

action action

ACTIONDEFINITION  FOR  "P"

P[x,y]

b?x

| exp                                   ; expression action

a?z

P[x+y, y-x]Q[x+1, f(y), z-x]

Q[x1,y1,z1]

P[x1, x1+ dsvar]

; || 

R[x2]

odd(x2)

R[x2+1] S[]

;

S[]

Process Definitions

~odd(x2)

AN ABBREVIATION:

T[x] U[x+1]

U[x] T[x-1]

T[x]a?x

b!x+1

a?x

b!(x+1)+1T[x+1-1]

R[dsvar+1]

Sequential Processes

(c?, d!x1+y1) (b!dsvar+1)

� P�x�y� � a�z �� Q�x�	� f�y
� z�x�

� b�x �� P�x�y� y�x�

� Q�x	�y	�z	� � �c�� d�x	�y	

 �� P�x	� x	�dsvar�




�� � R�x�� � odd�x�
 �� R�x��	�

� �odd�x�
 �� S��

� S�� � b�dsvar�	
 �� R�dsvar�	�




Figure �� Overview of hopCP
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Figure �� Predicate Action Block and Ring	style Arbiter

The guard of process Q is the compound action �c�� d	�x��y���� A compound action can

appear as a guard if it is the only guard of a choice node� �Further restrictions on hopCP�s

guards are noted later�� This guard requires the input synchronization action c� and the data

output d	�x��y�� to be both �nished before the process call to P is made� All the constituent

actions of a compound action must be disjoint� i�e�� must not share channels� registers� or

other resources� so that they may run in parallel without interference� Compound actions

are useful for specifying a collection of primitive actions to be done in parallel� They are

also very useful for specifying the compilation rules of SHILPA which break up high level

actions into collections of simpler actions that can be done concurrently�

The guards of process R are the expression actions odd�x
� and �odd�x
�� These form

Boolean guards that decide where control passes from state R�x
�� We encourage designers to

specify Boolean guards in a mutually exclusive manner using the form formula and �formula�

as this situation arises very frequently� It compiles such guards using predicate action blocks

�Figure ��� A predicate action block evaluates pred�data� and steers the request transition

to either the T �if pred�data�� or the F �if �pred�data�� output� If SHILPA does not �nd

the pattern 
formula� and 
�formula�� it assumes that the Boolean guards are not mutually

exclusive� and uses an arbiter to select one of the true Boolean guards �Figure ��� We use the

ring	style arbiter from ���� which functions �roughly� as follows� after a request is applied�

a token is circulated within the arbiter� more than one reqi input may be asserted at any
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time� one of these requests is acknowledged� In general� arbiters occupy more area to realize

than predicate action blocks� They also use circuits such as the interlock ��� that cannot be

realized in many technologies� such as most of today�s FPGAs� �Note� The FPGA realization

in ���� is only an approximation� to permit rapid prototyping��

The di�erent categories of variables� channel names� and their scoping rules� are as follows�

Variables can either be local to a process de�nition �e�g�� x�y are local to P�� or declared to

be globals �in this example� dsvar has been declared as a global variable�� Variables used in

data input actions �e�g�� z� are local to the process de�nition in which they appear� their

scope begins at the data input action and lasts till the ensuing process call� Channel names

are local to a sequential process� Global variables can be shared across process de�nitions

as well as sequential processes� Other comparable description languages disallow sharing

global variables across parallel threads for a good reason� they have no tool support to

determine if global variable accesses can be potentially concurrent� In hopCP� we allow

such shared variables because �a� it has been our common observation that many real world

systems frequently communicate over shared registers �or busses�� �b� procedure Concur

can determine whether two actions in an HFG are serially ordered or potentially concurrent�

Using Concur� all accesses to global variables can be checked and made sure that they are

serial� �Notes� The serial ordering itself is imposed by the synchronizations between the

sequential processes��

Algorithm Concur works as follows� When invoked with two actions a and b as arguments�

Concur �rst composes the sequential processes into one HFG by merging transitions that can

rendezvous� Then it performs a reduction of the HFG by removing places and transitions

in such a way that the causal orderings between a and b are una�ected� Then� Concur

performs reachability analysis on the reduced HFG� to determine all the reachable markings�

It then checks whether there exists a marking y such that the union of the preconditions of

a and b is a subset of y� but the intersection of the preconditions of a and b is empty� if so�
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actions a and b are potentially concurrent� if not� these actions are serial� Concur assumes

that all Boolean guards are true� Therefore� although it can tell that only one guard will be

picked� it cannot tell which one will be picked� Hence� its results are pessimistic� Despite

this caveat� in practice� we �nd that it is relatively easy to determine whether two actions

are serially ordered or not� Though its worst case complexity is exponential in the HFG size�

Concur has performed reasonably fast on many practical examples�

A commonly used notational abbreviation is as follows� if a process de�nition has only one

reference �i�e�� only one process calls the process being de�ned�� then it is possible to in	line

substitute the process de�nition in place of the process call� This abbreviation is illustrated

on an example consisting of two process de�nitions for T and U that are mutually recursive�

Here� process U has exactly one reference� while process T has two references� because it

is also the initial state� We can eliminate an explicit de�nition for process U� The textual

syntax for this abbreviated de�nition would be �after simpli�cations��

T�x� � a�x �� bx�� �� T�x�

Informal Execution Semantics

The informal execution semantics of the example in Figure � are as follows �the formal

semantics of hopCP are given in ������ Suppose the execution is begun at P and R� These

processes begin their execution concurrently� Process P �rst makes a choice between the

guards a�z and b�x� This alternative �
choice�� command has the same meaning as in CSP	

like languages� For example� if action a�z is to take place� a matching action of the form

a	exp must also be enabled in another sequential process� in this case� a�z and a	exp are said

to rendezvous� whereupon the value of exp gets bound to z� In our example� the data input

action b�x of P is matched by the data output action b	�dsvar��� of S� a matching action

for a�z is not shown� Input and output synchronization actions are value	less counterparts

of data input and data output� respectively�
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In hopCP� data output follows the multicast semantics� a data output action such as

b	�dsvar��� can rendezvous with more than one data input action that uses the same channel�

For example� suppose that three concurrent processes P�� P� and P� attain a state in which

P� o�ers action b	�dsvar���� while P� and P� o�er b�v and b�x� respectively� According to

the multicast semantics� P� can proceed as soon as b	�dsvar��� is o�ered by P�� likewise�

P� can proceed as soon as b	�dsvar��� is o�ered by P�� However� P� can proceed only after

both b�x and b�v have been o�ered by P� and P�� respectively�

Valueless communication actions in hopCP follow the barrier synchronization semantics�

an output synchronization action such as e	 can synchronize with more than one e� action

in as many sequential processes� In this case� all the actions e� as well as the single e	 action

must wait for each other and proceed only after they all have been enabled�

A designer may use barrier synchronization when 
time alignment� is called for� Since�

in hopCP� interactions between concurrent threads can occur through value assignments on

global variables �as noted earlier� or through rendezvous� it makes a semantic di�erence

whether barrier synchronization is followed or multicast� In addition� the e�ect of multicast

can be obtained even for valueless communications� by suitably 
faking� a value communi	

cation �for example� following the syntax e	nullvalue and e�ignore��

The availability of barrier synchronization as well as multicast o�ers considerable �exibility

in specifying system level behavior� as we have shown through numerous large examples�

notably the speci�cation of the high level protocols obeyed by Intel ��� USART ����� These

constructs are also useful for specifying concurrent algorithms ����� These features of hopCP

are absent from comparable languages that are used for asynchronous high level synthesis�

Coming back to process P� consider a situation in which the communication actions a�z

and b�x can arrive potentially concurrently� In this situation� an arbiter would be used to

pick one of these communications �for example� as in ������ However� if it can be determined

�using Concur� that these actions are mutually exclusive� SHILPA compiles a circuit using
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the concurrent guard evaluation technique� This technique also uses a circuit that is smaller

and easier to realize than an arbiter� This is one of the high level optimizations to be

discussed later�

Coming back to the guards of P� if action b�x is chosen� the existing value of x is overwritten

during the data input action b�x� Then� control goes back to P through a process call P�x�y�

y�x�� when the current value of x gets replaced by the value of x�y and the value of y by the

value of y�x� Note that this particular process call P����� cannot have used variable z in its

actual parameter expressions because z is visible only in the scope of action a�z�

If guard a�z of P is chosen for execution� control reaches process Q� In the process� formal

parameters x��y��z� are bound to the values of expressions x��� f�y�� z�x� respectively� Pro	

cess Q performs a compound action� i�e�� it waits for the input synchronization c� and the

data output d	�x��y�� to both �nish before it engages in the process call P�x�� x��dsvar��

While the value of the global variable dsvar is being acquired during the computation of

expression x��dsvar� dsvar must not be concurrently changed by another process� We can

determine whether this is the case� using Concur� The execution semantics of processes R

and S are similar� Process R involves Boolean guards that are mutually exclusive� If control

passes to S� it performs the data output which can synchronize with action b�x of process P�

Notice the common subexpressions dsvar�� in process S� Currently SHILPA cannot avoid

recomputing dsvar��� however� this optimization can be incorporated in a straightforward

way� as done in standard compilers� However� SHILPA can be made to do resource sharing�

for example� since the two uses of ��� are in the same process de�nition� the designer can

request SHILPA to share the adder� if he�she so desires� The two invocations of add used

in process de�nitions Q and S can be shared only if they are guaranteed to occur serially�

Again� Concur can be used to determine if these two usages are always serial or not�
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Restrictions on Guards

Guards in hopCP have to obey a number of restrictions� These restrictions help in many

ways� they help avoid potentially dangerous situations �e�g� deadlocks�� They also help in

obtaining e�cient circuits without compromising the expressive power too much� Some of

the restrictions on guards are now listed� If a compound action is used as one of the guards�

it must be the only guard going out of the choice node� Similarly� if a data output action

is one of the guards� it must be the only guard going out of the choice node� Also� if an

assignment action is one of the guards� it must be the only guard going out of the choice

node� Two guards must not use the same input channel� All input channels used in guards

must be point	to	point� in other words� broadcast or multicast channels should not be used

in guards� The guards associated with a choice node may consist of expression actions�

data input actions� and input synchronization actions� During execution� however� all the

expression actions are examined before any of the non	expression actions within guards are

examined�

Summary of Features

To sum up� our work makes a number of advances over comparable works� hopCP has

been designed for supporting the speci�cation of large hardware systems at a high level� It

is more expressive than the HDLs used in comparable works� Although Martin ���� also

makes the distinction between mutually exclusive and non	exclusive 
guards�� his approach

is slightly di�erent� In Martin�s approach� an input guard is turned into a input probe

which is then made part of the Boolean guard� We do not use probes in hopCP for several

reasons� First� we believe that not having probes keeps the HDL simple� Second� many

of the proposed uses of probes can be replaced by corresponding uses of global variables�

The synthesis systems developed by Martin� van Berkel� or Brunvand do not support �ow

analysis or sharing analysis� Last� but not the least� we have built an integrated design

system that includes a �ow analyzer� an e�cient compiled code simulator� and a high level
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synthesis system� It generates circuits ready for implementation in Actel FPGAs� supported

by Viewlogic tools�

� Overview of SHILPA

SHILPA generates transition style circuits using bundled data� as presented in ���� We

illustrate SHILPA through the design of a two	stage pipeline�

�P�x� � a�y �� b�x�y
 �� P�y�


��

�Q�z� � b�z �� cz �� Q�z�


The top	level command in SHILPA for compiling this speci�cation is function compile� This

function �rst turns the textual description of hopCP into HFGs� The HFG for the pipeline

is shown below in textual form�

HFG for Process P HFG for Process Q

	 precondition ��s����x�y�� 	 precondition ��s����z�z��

actions ��b�x � y

 actions ��cz


postcondition ��P�y�� postcondition ��Q�z��

� precondition ��P�x�� � precondition ��Q�z��

actions ��a�y
 actions ��b�z


postcondition ��s����x�y�� postcondition ��s����z�z��

Each action in the HFG is then re�ned into simpler actions which consist of signal transitions

on allocated resources� This results in NHFGs� which were introduced in Section �� For

process Q� the NHFG is as follows�

��



	 precondition ��START� �� � precondition ��s���� �� � precondition ��s����� ��

actions ��start��
 actions ��c�out
 actions ��REG�	��ld


postcondition ��Q� �� postcondition ��s����� �� postcondition ��s����� ��

� precondition ��s����� �� � precondition ��s���	� ��

actions ��c�in��
 actions ��C�	��out��


postcondition ��Q� �� postcondition ��s����� ��

� precondition ��Q� �� � precondition ��s����� ��

actions ��C�	��in	
 actions ��REG�	��ldack��


postcondition ��s���	� �� postcondition ��s���� ��

Actions that end with two question marks are input signal transitions that are awaited� Ac	

tions that end with two exclamation marks are output signal transitions that are generated�

For example� C �� in��� is a signal transition generated on input in� of c�element num	

ber ��� Notice that the allocated resource instances for process Q include one c�element

and one register� SHILPA can explain why each resource is being allocated� in the following

form�

C�	��data assert for b�x � y
 REG���argument for AB���arg	

C�	��data query for a�y REG���argument for AB���arg�

REG��� datapath for x FAB���� for �x � y


REG�	��query var for z REG���result for �

REG�	��const for y CTREE���� for AB���arg� �� y

One example from this printout� FAB ��� for �x � y�� explains that function action block

�FAB� number �� of arity � has been allocated to support �x�y�� Control circuitry is now

generated in SHILPA by detecting shared resources�resources that are triggered from two

di�erent places� In the pipeline� there are no shared resources� Next� excess registers are

eliminated based on user�s interactive commands� For example� users may like to retain

result registers to function blocks� so as to share the results of evaluating common subex	

pressions� Retaining registers can also help pipeline the evaluation of nested expressions

�e�g� �x��y�z��w���
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Figure �� A Two Stage Pipeline

Sometimes� result registers have to be retained to prevent combinational loops from form	

ing� For instance� if value of the actual parameter expression in process Q is z��� then the

result of z�� is held in a result register and then only loaded back to z� Detection of these

situations is straightforward �though not automated at present��

After eliminating the desired number of registers� an abstract netlist can be generated�

connect�XOR�	��out�C�	��in	
 connect�REG���ld�FAB����ack
 connect�REG�	��out�REG���in


connect�XOR�	��out�C�	��in	
 connect�C�	��out�REG�	��ld
 connect�REG�	��in�b�data


connect�REG�	��ldack�FAB����
 connect�start�XOR�	��in�
 connect�REG���ldack�C�	��in�


connect�REG���in�FAB���out
 connect�REG���ldack�XOR�	��in�
 connect�REG���out�FAB���in	


connect�REG�	��in�a�data
 connect�REG�	��out�FAB���in�
 connect�start�XOR�	��in	


connect�REG�	��out�c�data
 connect�REG���out�b�data
 connect�REG�	��ldack�a�out


connect�REG�	��ldack�REG���ld
 connect�C�	��in��a�in
 connect�C�	��out�REG�	��ld


connect�REG�	��ldack�c�out
 connect�c�in�XOR�	��in	
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Figure �� Circuit for the Concurrent Evaluation of Mutex Guards

SHILPA checks whether this netlist is structurally well	formed �for example� whether two

outputs are connected together� etc��� this check is redundant �but quite re	assuring�� Then

it technology maps the netlist� currently to Actel FPGAs�

The resulting circuit is shown in Figure �� The circuit works as follows� First CLR

is lowered to reset the components� Then START is applied� This 
arms� both the c�

elements� which then await A IN as well as B IN� When A IN comes from the external

world� the lower C	element �res� It causes the lower reg module �variable y� to store the

data coming through the A DATA port� The acknowledge signal of this register is forked to

A OUT as well as starts the addition of x �held in the upper reg module� and y� Completion

of this addition triggers the upper C	element� thus �nishing the synchronization involved

with b�z� This causes the rightmost reg �variable z� to be loaded� thus �nishing the data

acquisition part of b�z� Finally� C OUT is generated� register x gets loaded with the value

of y� and process P is resumed� Process Q is resumed by the arrival of C IN�

� Concurrent Guard Evaluation

We shall illustrate concurrent guard evaluation through process P given below�

P�� � a� �� P�� � b� �� P��

��



Assume that Concur has determined that a� and b� are mutually exclusive� SHILPA then

generates the circuit shown in Figure �� Here� A IN and A OUT are the handshake lines for

channel a� while B IN and B OUT are for b�� The circuit is started by applying a transition

on START� This� in turn� puts transitions �through the XORs� into the inputs of both c�

elements� Depending on whether an A IN or a B IN transition comes� that c�element

�res� For example� if A IN comes� the upper c�element �res� It �rst subjects the lower XOR

to another transition� which results in the bottom input of the lower c�element seeing two

successive transitions� This c�element is therefore reset� Following this �the delay ensures

this�� control is returned back to the top XOR�

The circuit comprising the lower two XORs� the two Cs and the two delays actually forms

a � � � cal component ��� ��rst introduced by Molnar�� An M � � cal component can

be considered to be a generalized c�element� It has inputs a�� � � � � aM and b� and outputs

c�� � � � � cM � In any cycle of operation� a transition is received on exactly one of the ai inputs

and on b� the M � � cal then produces a transition on ci� The circuit in Figure �� with

the cal sub	circuit treated as a primitive �a 
black	box��� belongs to the family of delay

insensitive circuits�

A natural question at this stage is why we synthesize a cal component each time� and not

use a library primitive for a cal component� The answer is given by the following example�

P�� � a� �� b� �� P�� � b� �� a� �� P��

In this example� after engaging in an a� action� P engages in a b� action �and after a

b�� it does an a��� There are two invocations of the synchronous input action on channel

a� �and likewise on b��� The usual semantics of channels requires that these invocations

share the same resources �c�elements� and handshake wires� in our case�� Usually this is

achieved by using a call module ����
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Figure � Mutually Exclusive Guards with Sharing

Coming back to our example� assuming that the guards are mutually exclusive� SHILPA

generates the circuit shown in Figure � The circuit works as follows� After CLR� when

START is applied� both the call elements make a 
procedure call� onto the c�elements

through the respective R
 inputs� Suppose A IN happens �rst� then C
 �res� It generates

A OUT and also returns the 
call� through AS and A
 of CALL
� This transition �rst triggers

XOR� through its lower input� This causes another R
 on CALL��

We have selected the CALL implementation of ���� in which the sequence R�� R� causes a

sequence RS� RS �and likewise R
� R
 also causes RS� RS�� and in addition� the CALL element

is reset at the end of this sequence� Therefore� CALL� is reset by the two R
 transitions it sees�

Since the R
� R
 sequence causes an RS� RS sequence at the output of CALL�� c�element

C� also gets reset�

The value of delay must be large enough to make sure that this resetting happens before

a call is made through the A� input of CALL��

Though the generated circuit is large� the situation shown is fortunately rare� Thus�

in most instances� we will have to generate a circuit similar to that in Figure �� in those

circumstances� we can indeed use a library cal component�

��



The purpose of presenting this example was to demonstrate �a� how non	obvious the

interactions between features�for example concurrent guard evaluation and sharing�can

be� �b� to show that by imposing one	sided delay constraints� often 
clever� designs can

be obtained� As discussed in Section �� Martin�s implementation of mutually exclusive

guards uses probes and hence may avoid some of the di�culties we are facing� However�

an exact comparison is not possible between our approach and Martin�s approach� because

we synthesize two	phase transition style circuits �which have a large number of desirable

characteristics ���� while Martin synthesizes four	phase �level based� circuits�

� Concurrent Process Decomposition

It is easy to come up with iterative speci�cations for many computations� We have iden	

ti�ed a useful heuristic for implementing iterative computations through concurrent process

decomposition� Concurrent process decomposition is a very convenient way to achieve soft�

ware pipelining� To make this clear� consider the iterative speci�cation of a multiplier�

MULT�x� y� z� � �isZero y
 �� resultz �� MULT�x� y� z�

� �not �isZero y



�� �odd y
 �� MULT�x� �y�	
� �z�x
�

� �not �odd y

 �� MULT��lshift x
��rshift y
�z�

Notice that the value of the actual parameter z�x is not needed until the corresponding

formal parameter� z� is used in the body of MULTF� Also notice that z is used only in certain

threads� while �not �odd y�� is true� this updated value of z is not needed� �The situation

�not �odd y�� being true for many iterations can happen if the number being multiplied

has a string of �s in it�� Thus� holding up the recursive invocation of MULT till �z�x� has

�nished computing can be wasteful in time�

A modi�ed MULT algorithm can take advantage of this situation� Expressing such algorith	

mic modi�cations in traditional sequential HDLs �e�g�� VHDL� can be tricky� Fortunately�
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a CSP	style language is very expressive in this regard because� using rendezvous style com	

munications� the desired interactions between various threads of computation can be conve	

niently speci�ed� Note that concurrent decomposition� as we propose here� is di�erent from

Martin�s process decomposition� which essentially only gives the ability to call a subroutine

and return to the place of call�and not spawn two concurrent threads as we do�

The modi�ed speci�cation is as follows�

MULTPIPE �x� y� � �isZero y
 �� sz �� MULTPIPE �x� y�

� �not �isZero y



�� �odd y
 �� azxx �� MULTPIPE �x� �y�	
�

� �not �odd y

 �� MULTPIPE ��lshift x
��rshift y
�

��

PZ�z� � sz� �� resultz �� PZ�z�

� azx�x	 �� PZ�x	�z�

We �rst factor out variable z from MULT� and make it a local variable of a new process PZ�

PZ�s role is to treat variable z as an abstract data type object� allowing it to be accessed

only through two operations� operation sz that stands for 
send z�� and operation azx

that stands for 
add z to x�� These operations can be conveniently implemented through

rendezvous communications sz� and azx�x respectively� Notice that the second rendezvous

communication involves data x that is sent from MULT to PZ� The operation of MULTPIPE is

as follows� If �not �isZero y�� and �odd y�� it sends x to PZ and immediately goes back

to state MULTPIPE� While �not �isZero y�� and �not �odd y��� it ignores PZ� allowing it

to complete the previous add operation� if any� When z is needed inside MULTPIPE �occurs

when �isZero y� is true�� MULTPIPE orders PZ to send the value of z through the channel

result� This process transformation achieves the e�ect of software pipelining� We show

the results of compiling process PZ in Figure �� We do not show the rest of the circuit

to conserve space� Process PZ has been compiled to take advantage of concurrent guard

evaluation because it is clear �as was checked using Concur also� that the guards sz� and

azx�x� are mutually exclusive� Process PZ functions as follows� Upon receiving START� a
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Figure �� Process PZ of the Multiplier

transition is injected into IN� and IN��� These� in turn� arm the two C	elements to look

for request transitions on SZ IN and AZX IN� If AZX IN is triggered� the bottom C	element

is �rst reset� then� AZX DATA is loaded into the bottom reg module� Its acknowledgement

starts the addition and also generates AZX OUT� When the addition �nishes� the results

of addition are �rst loaded into the result register �top	left reg�� and then transferred into

register z �top	right reg� before restarting process PZ�

We are currently studying the process of semi	automating concurrent process decomposi	

tion in SHILPA ����� Until we have tool support for concurrent process decomposition� we

believe that this technique can still be applied manually without too much trouble�
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Figure �� Comparative Study of Circuits Produced by SHILPA and VHDLdes

� Concluding Remarks

In this paper� we have tried to demonstrate that asynchronous VLSI design can be greatly

facilitated by designing a high level synthesis system that uses an expressive HDL and

incorporates numerous optimizations� We have detailed such a system in this paper� It

is well known that writing and debugging concurrent programs is di�cult without tool

support� The hopCP notation avoids many of the possible pitfalls in writing concurrent

�HDL� programs by o�ering many high level descriptive mechanisms� To facilitate design

debugging� the hopCP system o�ers CFSIM� a compiled code functional simulator� and

Concur� a �ow analyzer� hopCP also allows low level hardware features� such as global

variables� to be used in hardware descriptions� and such usages checked for safety using

Concur� Last� but not the least� SHILPA tries to keep the designer fully informed about its

actions� and allows the designer to in�uence the �nal circuit in many ways� through many

interactive commands�

Unit	delay simulation of the pipelined multiplier showed that despite its pipelined nature�

it will run slower than its non	pipelined counterpart� The reason is that the ��� operation

�nishes too soon� thereby not allowing the ��� to overlap in any signi�cant way with other

operations� However� with other examples� we have actually observed signi�cant speed	

ups due to pipelining� As is clear from these examples� the main problem we are facing

��



currently is in performance estimation� In our experience� a high level synthesis framework

for asynchronous circuits o�ers the designer with even more freedom to explore the design

space� Tool support for conducting design space exploration in this manner is sorely missed

in SHILPA� but that is exactly what we will begin working on� next� At present� we have

synthesized many small circuits using the SHILPA system� Sizes of SHILPA generated

circuits seem to compare favorably with the results produced by one VHDL synthesis system

that generates synchronous circuits �the VHDLDesigner tool of the Viewlogic family was fed

VHDL descriptions obtained through hand	translation of hopCP descriptions�� Figure ��

These results� though by no means de�nitive� are at least reassuring�
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