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Abstract

We “unbundle” several roles of classes in existing languages, by providing a suite of
operators independently controlling such effects as combination, modification, encapsulation,
name resolution, and sharing, all on the single notion of module.

All module operators are forms of inheritance. Thus, inheritance not only is not in
conflict with modularity in our system, but is its foundation.

This allows a previously unobtainable spectrum of features to be combined in a cohesive
manner, including multiple inheritance, mixins, encapsulation and strong typing.

We demonstrate our approach in a language (called Jigsaw, as in the tool, not the puzzle!).
Our language is modular in two senses: it manipulates modules, and it is highly modular in
its own conception, permitting various module combinators to be included, omitted, or newly
constructed in various realizations. We discuss two pragmatic avenues for the exploitation
of this approach:

1. Adding modules to languages without modularity constructs.

2. Embedding selected new modularity capabilities within existing object-oriented lan-
guages (which we are undertaking as a “proof of concept” in the case of Modula-3

[5]).1
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4046, and (ii) the National Science Foundation under Grant No. CCR89-20971. The opinions and conclusions
contained in this document are those of the authors and should not be interpreted as representing official
views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the
National Science Foundation, or the US Government.



1 Introduction

This paper argues that inheritance, properly formulated, is a powertul modularity mecha-
nism, and can constitute the basis of a module manipulation language.

We arrive at our formulation of inheritance by observing that in languages supporting
multiple inheritance (e.g., [10, 23, 27]), classes are burdened with too many roles. The
class construct is “large” and monolithic. We opt to simplify classes, and partition their
functionality among separate operators.

Classes are reduced to a simple notion of module - a mutually recursive scope. These
modules form a uniform space of values upon which operators act. The operators accept
modules as arguments, and produce modules as results. The notion of module with its
associated operations can thus be viewed as an abstract datatype.

The set of operators we present supports encapsulation, multiple inheritance, mixins
and strong typing in a single, cohesive language. These features have not been successfully
combined before.

Apart from the obvious relevance to object-oriented programming languages, our frame-
work can be used to introduce modularity to a variety of languages, regardless of whether
they support first class objects.

Our approach is itself modular. Language designers can use this approach, and add,
remove or replace operators. This makes the benefits of extensibility and modifiability asso-
ciated with object oriented programming, available at the language design level.

We demonstrate these points via the module manipulation language Jigsaw. For con-
creteness, we assume that Jigsaw manipulates modules written in an applicative language
with a type system based upon bounded universal quantification [8]. However, the discus-
sion remains virtually unchanged if modules are written in another language. In particular,
our operator definitions are not significantly impacted by the use of an imperative language.
Similarly, though we assume a subtype relation, we do not rely on its particulars. Hence our
approach applies to languages without subtyping as well. These have type equivalence as a
trivial subtyping relation.

Jigsaw’s semantics are defined by a translation to an untyped A calculus augmented with
basic types, records, record operators, and let and where constructs.

The interesting part of the translation is that which defines modules and the operations
upon them. Jigsaw is a typed language that guarantees the type safe use of module operators.
However, we have chosen to define the operators in an untyped A calculus. A typed calculus
is not used, because we do not know of one that can express all the module operators defined
here in their full generality.

Instead, we informally derive sufficient typing constraints on the primitive module oper-
ations. These constraints provide guidance as to the formulation of the typechecking rules
of Jigsaw. Under the crucial assumption that the types of modules are always completely
known, typechecking is straightforward. We do not give the formal type rules of Jigsaw here,



P = object
{ x=0y=0;
dist = function(aPoint)
{
sqrt(sqr((x - aPoint.x)) + sqr((y - aPoint.y)))
}
}

Pgen = As.{x =0,y =0,dist = )\aPOint.\/((s.:Jc — aPoint.x)? + (s.y — aPoint.y)?)}

Figure 1: An object and its generator

but mention the relevant typing constraints on each operation.

The remainder of the paper is structured as follows. We begin by reviewing necessary
background material in section 2. Section 3 discusses the many roles played by classes in
object oriented languages. Section 4 then demonstrates how each of these roles is supported
by Jigsaw’s operators. Section 5 discusses the application and implementation of the model.
Section 6 relates the present paper to previous work by the authors and others. Finally, we
present our conclusions.

2 Background

2.1 Generators

In object oriented programming, objects include data and code that operates upon that
data. Objects are thus inherently self-referential. The standard technique for modeling self
reference is fixpoint theory [22]. Using fixpoint theory, an object may be modeled using a
record-generating function (called a generator following Cook [9]). Figure 1 shows a simple
object and its associated generator function. This function takes a record as a parameter,
and returns a record as a result. The result record is similar to the object being modeled.
The object’s methods, such as dist, are represented by function valued fields in the result.
The object’s data are represented by fields with ordinary values (e.g., x and y). All self
reference in the object is replaced by reference to the generator’s formal parameter, s. The
desired object is the least fixed point of the generator function Y (Pgen).

2.2 Record Operations

We now define our record operations. Similar operations have been used in the study of
typed record calculi [7, 11, 31, 26]. However, this paper is not concerned with the typing



problems raised by these operators. Here, record operations are only used in the definitions
of module operators. These, in turn, are used only when the types of their operands (i.e.,
modules) are exactly known, so that type safety is easily guaranteed.

Each record operator has a corresponding operator for generators (see section 4). Related
operators are distinguished by subscripts (e.g., 6, is a record operator, and §, is a generator
operator?). We denote records with r, 7y, ry, names of record attributes with a, b and lists of
attribute names with A.

The operators used here are:

o Merge, ||,. r1 ||, r2 yields the concatenation of vy and ry. The records must not have
any names in common.

e Restrict, \,. r\,a removes the attribute named a from r. If « is not defined, r\,a = r.

e Project, .. rm.A projects the record r on the names A. The names in A must be

defined in r.

e Select, ... r..a returns the value of the attribute named @ in r. The name a must be

defined in r.

e Override, «,. ry «—, 73 produces a result that has all the attributes of v and ry. If rq
and r have names in common, the result takes its values for the common names from
2.

e Rename, [_ — ,. rla < b], renames the attribute named a to b. The name ¢ must be
defined in r, and b must not.

For a record operator 6,, 0, is what is referred to in [9] as the distributed version of 6.

4



MP = P override
{ dist = function(aPoint)
{

(x - aPoint.x) + (y - aPoint.y)

}

MPgen = As.Pgen(s) <, {dist = AaPoint.(s.x — aPoint.x) + (s.y — aPoint.y)}

Figure 2: A manhattan point inherits from a point

2.3 Inheritance

This subsection discusses the denotational semantics of inheritance [14, 25, 9]. Inheritance
provides a way of modifying self-referential structures [9]. When a value is modified via
inheritance, all self reference within the result refers to the modified value. Inheritance
involves manipulating the self reference within objects. Technically, this is achieved by
manipulating generators, before taking their fixpoint [25], [9]. Figure 2 illustrates this process.
The object MP inherits from P, but specializes the dist method. MP is modeled by a generator
that invokes the generator for P. This invocation yields a record that is combined using the
override operation with another record which represents the specialized or new methods.
In the modifying record, self reference is modeled in the usual way, by reference to the
generator’s parameter. P’s generator is passed this parameter as well, thereby binding self
reference in all methods to the modified object.

2.4 Mixins

In Figure 2, the keyword override is followed by a clause modifying the object P (viz. { dist
= ... }). It is often desirable to denote such a modification independently, and reuse it.
An example is given in Figure 4. Such a denotable modification is called a mizin. Mixins
represent an important form of reuse, but have been expressible only in dynamically typed
languages (e.g., [15, 29]), where inheritance violates encapsulation. Support for mixins in an
encapsulated manner has been been the topic of recent research [4, 12].

2.5 Abstract Classes and Frameworks

One of the most useful ideas in object-oriented programming is that of an abstract class. An
abstract class is an incomplete definition, in which one or more of the methods declared by
the class are not given definitions. The expectation is that these missing method definitions
will be provided in subsequently defined subclasses. In some languages, abstract classes have
no special linguistic support. Programmers define “dummy” routines that typically produce



a run-time error. More recent languages [10, 23] explicitly support abstract classes. In these
languages, methods that are undefined in the abstract class are identified by special syntax.
Here we use the C++ terminology, and refer to such methods as pure virtuals.

Abstract classes are essential to the definition of frameworks. A framework is a collection
of classes designed to support a particular application in a modifiable and extensible manner.
The user of a framework will adopt it as a basis for his or her application, typically moditying
some of the framework’s abstract classes to tailor them to specific needs. Examples of

frameworks are [19, 30, 33].

Abstract classes support a powerful form of parameterization, unique to the object ori-
ented paradigm. While standard parametrization allows entities to refer to parameters,
abstract classes close the loop by also allowing parameters to refer to the parameterized
entity (i.e., via a self construct).

Semantically, an abstract class may be modeled as an inconsistent generator. An in-
consistent generator has the form As: o .e, where ¢ : ¢’ and o is a subtype of ¢’ [9]. This
captures the fact that self reference within the class (o) assumes more methods than the class
provides (o’). One cannot take the fixpoint of such a generator, since its domain is a proper
subtype of its range. This models the fact that abstract classes must not be instantiated.

In many object oriented languages, types are identified with classes and subtyping with
inheritance. In such languages, the notion of abstract class is often abused, by being pressed
into service as a substitute for a more versatile concept of interface. In this case, the abstract
class provides no definitions at all, only declarations. This is inescapable in such a language,
when multiple implementations of an abstraction are required. In languages where types
and subtyping are separated from classes and inheritance, this subterfuge is unnecessary.

The next section outlines functionality required of (possibly abstract) classes in an object
oriented language. Following that, we present a set of operators on abstract classes that
support the required functionality.

3 Roles of a Class

In a language supporting multiple inheritance, the class construct typically supports a large
subset of the following functions:

1. Defining a module.
2. Constructing instances of a module definition.
3. Combining several classes together. This is characteristic of multiple inheritance.

4. Modifying a class. This function is characteristic of all inheritance systems, single or
multiple.



5. Resolving name conflicts among class attributes. This can be done in various ways, by
renaming or by explicitly specifying the desired attribute.

6. Defining sharing constraints among classes. When classes are combined, certain at-
tributes or groups of attributes may exist in several of the classes being combined.
The question is whether these attributes should be duplicated for each participant
class, or shared. Too often the semantic decision has been taken at the language level.
In fact, different applications have different needs in this respect, and programmers
should be able to make the choice.

7. Restricting modifiability. Usually, all visible attributes of a module are subject to
modification. It is sometimes desirable to restrict this flexibility, and state that a
certain attribute may not be modified by inheritance. This is useful both from a
design point of view, and also for optimization.

8. Determining attribute visibility. Different mechanisms may be available, to determine
visibility to users, heirs or “friends”.

9. Accessing overridden attributes. It is common that a method in a modified class makes
use, during computation, of the method it has overridden, using special notation.

In addition, if the language is strongly typed, we often find that a class fulfills additional
roles:

10. Defining a type.

11. Defining a subtyping relation.

Following other modern object-oriented language designs (e.g., [1, 5]), we separate inher-
itance from subtyping.

The following section presents Jigsaw’s operator suite. The roles detailed above are
examined in turn, and, for each role, the relevant operator(s) described.

4 The Jigsaw Operator Suite

4.1 Module Definition

The primary definitional construct in Jigsaw is the module. A module is a self-referential
scope, binding names to values. A binding of name to a value is a definition. Unlike ML
[20], modules do not bind names to types. Type abbreviations may be used, as syntactic
sugar.® Typing in Jigsaw is purely structural.

3In ML terms, only type declarations, not datatype declarations, are supported.



module
{ x=0,y=0;
dist = function(aPoint:{ x:Int, y:Int })

{
}

} 1 { define x:Int, y:Int, dist:{ x:Int, y:Int } — Real }

sqrt(sqr((x - aPoint.x)) + sqr((y - aPoint.y)))

Figure 3: A module and its interface

Modules may include not only definitions, but declarations. A declaration gives the type
of an attribute, but no value for it. Declarations are used to define “abstract classes”.
Modules may be nested. Every module has an associated interface, which gives the types (or
interfaces, for nested modules) of all visible attributes of a module. The subtyping relation
on interfaces is defined as interface equivalence. Two interfaces are equivalent if they have
exactly the same attribute names, and the attributes have equivalent types or interfaces.

Modules have no free variables, and module operators do not require access to the det-
initions of their operands. This allows for separate compilation, including inheriting from
separately compiled modules.

In the semantics of Jigsaw, all modules are modeled as generators. Module combination
operators are then modeled as functions that manipulate generators, and return new gener-
ators as results. The operator definitions make use of the record operations introduced in
section 2.2. All module operators employ the technique demonstrated above to manipulate
self reference. Modules with declarations are modeled as inconsistent generators. Module
operators can take inconsistent generators as operands and may return them as results.
Viewing Jigsaw as an abstract datatype, generators are the hidden representation used for
modules. Module operators rely on this representation, but users of the operators are isolated
from it.

4.2 Instantiation

A module M is instantiated by the expression instantiate M. The result of this expression
is an object. The module in Figure 3 can be instantiated into an object equivalent to P in
Figure 1.

In an applicative language, all instantiations of a module are identical. Then why dis-
tinguish between a module and its instance 7 The main reason is typing. It is extremely
desirable to use instances polymorphically. On the other hand, module operations require
exact knowledge of the type of their operands. Distinguishing modules from instances allows
separate type rules to be given for each.

An alternative would be to introduce a new judgement into the type system, indicating
that a value is exactly of some type, in addition to the ordinary judgement that a value has



some type. This solution is more verbose. Also, our solution is more natural, since modules
do denote a different type of value (generators) than objects (which denote records).

Another reason for keeping modules and instances distinct is that the decision to make
module instances first class values (as in “Class-based” languages [32]) need not imply that
modules themselves are first class values. If modules are identified with instances, the two
decisions cannot be separated. We do not want the use of our approach to constrain language
designers in this way. Subsection 5.1 discusses a language design where neither modules nor
instances are values; subsection 5.2 refers to a language where instances are values, but
modules are not; in Jigsaw, both modules and their instances are first class values (the
fourth option, making modules values while instances are not, is self-contradictory).

The semantics of instantiation are as described in section 2. Instantiating a module is
modeled by taking the fixpoint of the module’s generator.

4.3 Combining Modules

Two modules may be combined using the merge operation. The result is a new module,
in which all names declared in either of the inputs are declared. Name conflicts are not
permitted, and result in a static error. Note that the merge operator does not provide any
mechanism for resolving such conflicts. Other operators are used for this purpose. This is
one example of how definitions are simplified in our approach.

The merge operator, ||,, is defined below. It takes two generators as parameters and
produces a new generator as a result. Note that self reference in the two generators is shared
in the resulting generator.

o= Ag1-Ag2.As.g1(3) ||, g2(s)

||, is commutative and associative. The merge operator is discussed further in the context
of sharing (subsection 4.6).

4.4 Modification

One module may be modified by another. This is an asymmetric operation, in which one
module overrides the other. This is supported by the override operation: M1 override M2.
The override operator takes two modules and combines them. If an attribute is defined by
both modules, then the type of the attribute in M2 must be a subtype of its type in M1. In
that case, the value from M2 will appear in the result. Override is defined as:

—4= Ag1.Ag2.25.91(8) —, ga(3)

«—, 1s associative and idempotent, but not commutative. «, may also be derived from
the combination of merge and restrict (defined below).
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4.5 Name Conflict Resolution

Name conflicts can be resolved in several ways. One can explicitly choose one of the con-
flicting attributes in preference to all others. This eliminates the conflict, but requires that
all modules share a common version of the attribute. This may not always be desired. Fur-
thermore, the types of the conflicting attributes may be incompatible, in which case such
sharing is impossible. Sharing is discussed in the following subsection.

An alternative is to eliminate the conflict by renaming. This is always possible, and all
attributes remain available. The one drawback is that in a structure-based type system,
attribute names are meaningful for subtyping, and renaming may adversely effect polymor-
phism.

The renaming operator changes the name of a single attribute.

M rename ato b

The effect is equivalent to a textual replacement of all occurrences of the attribute name

a in M, by the name b. Attribute a must be declared by M, and b neither declared nor
defined.

[a « b, = Ag.As.g(s «—, {a=s.,b})[a — b],
if g defines a, else
[a « bl, = Ag.As.g(s «—, {a = s..b})

In the underlying record calculus, rename is derived from restrict and merge. Composing
the generator versions of restrict and merge in this manner is not possible, due to the presence
of self-reference. The type rule for rename must ensure that the attribute is renamed in the
type of the result.

4.6 Sharing

When modules are merged in Jigsaw, multiple definitions of an attribute give rise to errors.
In contrast, multiple declarations of an attribute are shared, and are perfectly legal.

Consider the expression
91 |y g2 where g1 = As.{a = s.b+ 2}, g5 = As.{b =5}

The generator g; represents an abstract class, with an attribute b that is declared but
not locally defined. Attribute b is defined in ¢;. The application of ||, will not cause
difficulties, even though both operands have a b attribute. This reflects the intuition that
while definitions must be unique, declarations may be duplicated. Of course, thisis only valid
as long as the declaration agrees with the definition. The definition must have a type that is
a subtype of the declaration. Similarly, two declarations may clash, as long as they have a
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subtype in common. Existing object oriented languages that recognize the notion of “pure
virtual” do not make this distinction, and treat identically all name clashes between classes
being combined. In contrast, in Jigsaw, declarations can help specify sharing constraints
among modules, at the granularity of attributes.

Sharing is facilitated by the restrict operator. The effect of a restrict operation is to
eliminate the definition of an attribute, but retain its declaration. Unlike records, it is not
generally possible to completely remove an attribute from a module, because the module may
contain internal references to the attribute. Restrict creates an abstract class, by making an
attribute “pure virtual”. Therefore, abstract classes may be created “after the fact”. The
attribute being restricted must be defined by the argument module.

The restrict operation is defined below, and is associative.

\ga = Ag.As.g(s)\,a

When several modules are combined via merge, sharing of conflicting attributes may be
specified by restricting all but one. This supports conflict resolution via explicit specification.

Project is a dual of restrict. Rather than specifying which attribute to remove, we specify
which attributes to retain. A module, M, and a list of attributes, A, are the inputs to
the project operation. Project requires that all names in A be defined by M. The semantic
definition for project is

Ty A= Ag.As.g(s)m, A

4.7 Restricting Modifications

The freeze operator accepts an attribute name, a, and a module as parameters, and produces
a new module in which all references to a are statically bound.

Some languages support this using the notion of non-virtual attributes (static binding).
Static binding can be achieved by simply not referencing an attribute through self. However,
this does not allow for changing the status of a virtual attribute to non-virtual (e.g. as in
Beta [17]). In addition, it complicates the model, since not all attributes are referenced in
the same way - there are two kinds, declared differently. In our model, it is preferable to
have only virtual attributes declared, and perform the change by means of an operator on
generators. The attribute being frozen must be defined.

freeze a = Xg.Y (A fAs.g(s —, {a = f(s).,a}))
This definition deserves some discussion. The result is a generator, the fixpoint of a

generator generating function, ¢ = Af..... The generator Y(q) agrees with ¢, with the
exception of its self reference to attribute a. Regardless of the value of s, all references to s.a
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within the methods of Y'(¢) are bound to f(s).,a = Y(q)(s).,a. When the fixpoint is taken
again, all references to s..a will be equal to Y (Y (¢)).,a =Y (g).,a.

Freeze has a dual operation, freeze_ all_except, that freezes all features of a module M,
except those specified in the list A. The attributes listed in A must be defined by M.

freeze_all_except A = Xg.Y (AfArs.g(s —, f(s) «, (s7,A)))

Overriding s with f(s), rather than just {a = f(s).,a}, means that all defined attributes
are being frozen. We then override again, with sm, A, guaranteeing that the attributes in A
will indeed get there values from s, and therefore still be subject to redefinition.

4.8 Attribute Visibility

Visibility control is implemented by means of the operations hide and show. M hide a elimi-
nates a from the interface of M. The attribute ¢ must be defined by M.

hide a = Ag.As.(freeze a)(g)(s)\ra

The hide operation involves freezing the attribute, so that all references to it will not be
influenced by subsequent changes to self. In addition, the attribute must be removed from
the result, and the type rule for hide must remove @ from the type of the module.

Conversely, M show A hides everything except the specified attributes. All attributes
listed in A must be defined by M.

show A = Ag.As.(freeze_all_except A)(g)(s)m, A

The duality between show and hide is apparent in the use of 7, instead of \,, and in the
use of freeze all_except instead of freeze.

4.9 Access to Overridden Definitions

Access to overridden definitions is supported through the use of the copy-as operator. M
copy a as b creates a copy of the ¢ method, under the name 6. The a method can now be
overridden, while the old implementation remains available under the name 6. M must not
declare an attribute b, but must define a.

Consider Figure 4, which also demonstrates the use of mixins. The intent here is that
the BorderMixin module modifies the Window module by adding a border, to be displayed
around the window. This requires a new display routine, which first displays the window’s
body, and then surrounds it with a border. BorderMixin declares an unimplemented routine
display-body, which is invoked within the display routine. Before overriding Window with
BorderMixin, Window’s display routine is copied as display-body.

12



BorderMixin = module
{ borderWidth = 5; borderColor = red;
display = function(dontCare: Unit)
{
displayBorder();
displayBody();
}
displayBorder = function(dontCare: Unit) { ... }
displayBody : Unit — Unit;
}

Window = module
{ x=0,y=0;
display = function(dontCare: Unit) { ... }

}

BorderWindow = Window copy display as displayBody « BorderMixin;

Figure 4: Using a Mixin

Note that renaming display to display-body in Window would be inappropriate. When
display was modified by BorderMixin, references to display within Window would not be mod-
ified. Defining a display-body routine that called display and adding that to Window would
yield an infinite recursion once the modification by BorderMixin was performed.

The definition is straightforward

copy a as b= Ag.As.let super = g(s) in super ||, {b = super.,a}

5 Application and Implementation

In view of the difficulty of introducing new languages into widespread use, it is extremely
valuable to be able to incorporate new linguistic developments in an evolutionary manner.
Adding operators like those defined in this paper to existing languages is therefore an at-
tractive possibility.

We discuss two options for achieving that goal. First, it is possible to add modules to a
language that does not have them. Second, our framework can be applied to object oriented
languages, to enhance their expressive power.

5.1 Adding Modules to Existing Languages

Many languages do not have adequate modularity constructs. These include widely used
programming languages (e.g., C [16], Pascal [13]), as well as countless special-purpose and
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“little-languages” [2, Column 9], where the effort of designing specific mechanisms for mod-
ularity is difficult to justify, but which could still benefit from such mechanisms.

The simple notions of module and interface defined above are largely language indepen-
dent. This is because we specify neither the value set used in definitions, nor the form of
the types used in declarations. One requirement is that the language being “modularized”
support recursion, since modules are mutually recursive scopes. For imperative languages,
the operator definitions must be modified, but their essential character remains the same.*

Suppose we wish to define and manipulate modules consisting of statements in some
programming language, L. The definitions in modules will bind names to denotable values
of L. For example, if L = (' the denotable values will include C' functions and variables.
Declarations and module interfaces will bind names to L types (in fact, since modules may
be nested, definitions may also bind names to modules, and declarations may bind names to
interfaces). Again using C as our example, the typing rules for module operators will rely
on (' type equivalence as the subtyping relation < mentioned above.

The resulting language is not object-oriented, since it does not support first class ob-
jects. Nevertheless, it employs inheritance. Inheritance supports module interconnection by
combining self reference among modules, and, of course, allows existing code to be extended

and modified.

A wide range of languages can be extended as described here. Many of these languages are
dynamically typed. This restricts the degree of static interface checking possible. However,
any language that is extended with Jigsaw style modules gains substantial benefits from
encapsulation, separate compilation (for compiled languages), modifiability and the ability
to define partially specified modules analogous to abstract classes.

5.2 Extending an Object-Oriented Language

We are currently implementing an upwardly compatible extension of Modula-3 [5], incorpo-
rating most of the operators described in this paper. In this extension, the operators are
applied not to the modules of Modula-3 but to its classes (known as object types).”

Naturally, the full flexibility of Jigsaw is not supported. Still, the resulting language
supports strong typing, multiple inheritance and mixins in a modular manner.

The implementation is efficient enough to fit into a practical programming language like
Modula-3. Modula-3 restricts subtyping by making it dependent on the order in which
attributes are specified, and on the boundaries between constituent object types. These
restrictions, coupled with the fact that our modules never have any free variables, lead
to an implementation based upon a straightforward extension of standard dispatch table
techniques. FEach object type is represented by a dispatch table, and operations such as
merge and override involve concatenation of dispatch tables. The tables include both pointers

“Imperative versions of these operators have been defined in [3].
5 An early, less ambitious version of this work appeared in [4].
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to code for method execution, and offsets within objects. Offsets are necessary because
under multiple inheritance, instances of subclasses do not necessarily share a common prefix
with instances of parent classes. The main subtlety lies in manipulating these offsets, since
previously published schemes [18, 28, 10] cannot be used in the presence of mixins. The
details of the implementation are beyond the scope of this paper, and are discussed in [3].

6 Related Work

6.1 Generator Operations

Many of the operators presented here were first proposed by Cook in [9]. There, a general
mechanism for deriving generator operations from record operations was described. How-
ever, the operators defined by Cook were used to illustrate the principle of manipulating
self-reference by means of generators. In modeling language constructs, more elaborate op-
erators were used. In particular, it was necessary to introduce parametric abstractions called
wrappers. These were later elevated to explicit language constructs called mixins in [4], and,
independently, in [12].

The novelty here is in providing a comprehensive suite of operations, and making them
explicit linguistic constructs. In addition, the uniform use of generators to model all def-
initional structures is new. The operator suite also includes new operations (namely hide,
show, freeze, freeze-except and copy-as).

6.2 Mixins

This work grew out of an earlier study of mixin-based inheritance [4]. Some of the limitations
of mixin based inheritance have been addressed here. These include the absence of fine-grain
sharing, of renaming facilities and of a symmetric merge operation.

Until now, mixins have been modeled as parametric abstractions called wrappers. Cook
used an operator combining a generator and a wrapper in his compositional semantics of
inheritance [9]. This operator was also used by Hense [12]. In [4], the override operation
was defined as a binary operation on wrappers, enabling composition of mixins. The main
purpose of wrappers was to allow access to overridden definitions. The required functionality
can be achieved using explicit operator for this purpose. This allows the use of generators
instead of wrappers, simplifying definitions. This reflects our strategy of simplifying the
structure and pushing more functionality into the operator set.

6.3 Mitchell

Mitchell, in [24], presented an extension to the ML module system that is in some ways
similar to our work. Mitchell also chose to incorporate inheritance into a module language, an
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extension of the ML module system [20]. Some similar operations are supported, embedded
in a more conventional syntax. Underlying both systems are denotational models involving
the manipulation of self reference, and typing based on bounded quantification. There are
many differences, however.

Central to this paper is the notion that inheritance itself can be used as a modular-
ity mechanism. Inheritance is an essential part of the module language, “gluing” modules
together by merging self-reference. Such a formulation of inheritance must preserve encap-
sulation. This contrasts with Mitchell’s view of inheritance as “a mechanism for using one
declaration in writing another” [sic]. Even though inheritance is part of the module system,
it is not essential to it. Instead, the ML notions of structures and functors are used to
define and interconnect modules. Some of the inheritance constructs defined in [24] violate
encapsulation (wviz. copy except, copy only). These constructs inherently require knowledge
of the internal structure of the “parent” module.

A consequence of the semantics of copy except, copy only is that separate compilation is
compromised. A parent module must always be compiled before its use, and any change
to it requires recompilation of its heir modules [21]. We support inheriting from separately
compiled modules without restriction.

Our approach has the benefits of simplicity and modularity. It does not rely upon de-
pendent sums or products, or on multiple universes of types. It is explicitly formulated
as an abstract data type for manipulating modules, where all functionality is supported
by operators. Making the structure explicit makes it easier to apply the framework to a
broad spectrum of languages. Language designers may easily add or modify operations as
necessary. An expression based language also allows users to compose operations more freely.

6 Mixins cannot be expressed in

Our framework supports abstract classes and mixins.
the framework of [24], and there is no explicit support for abstract classes (though the
traditional device of giving dummy definitions for pure virtual methods is always available,

with its concomitant disadvantages).

On the other hand, Mitchell’s approach supports modules implementing abstract data
types. This allows for combining traditional algebraic (or higher order) data types with
object-oriented formulations. Our model supports only the pure object oriented approach.
We would like to extend our framework with an analogous set of operators for abstract data
types. However, we face technical difficulties related to the typing of existential data types.

A related issue is our use of structural subtyping, in contrast to “name-based” subtyping
in [24]. Both forms are useful; currently, we focus on structural subtyping, which is more
appropriate between different modules or programs [6].

Finally, unlike [24], we give semantic definitions of all operations.

Abstract classes are mentioned in [24], but only as substitutes for interfaces.
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7 Conclusion

We have presented a collection of operations on modules, that supports a uniquely wide range
of object oriented programming techniques, including frameworks, multiple inheritance and
mixins, as well as separate compilation, all in a type safe and encapsulated manner. The op-
erations are based on a uniform representation of modules as generators. This representation,
together with the operations, define modules as an abstract data type.

Module operations are based on the novel notion that inheritance is productively viewed
as a mechanism for modular program composition. As such, inheritance is independent of
the notion of first-class instances, with which it is usually associated.

The operations can be incorporated into a variety of languages, are semantically well
defined, and efficiently implementable.

The operations define a module manipulation language that is applicative and expression-
oriented, rather than statement oriented. For such a language, realistic programming fea-
tures can be effectively modeled using simple semantic constructs, such as generators. The
language is itself modular, allowing for easier extension, modification and experimentation.
Finally, we believe such a language is also easier to learn, use and reason about.
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