Modularity Meets Inheritance

Gilad Bracha
Gary Lindstrom

UuUCS-91-017

Department of Computer Science
University of Utah
Salt Lake City, UT 84112 USA

October 13, 1991

Abstract

We “unbundle” several roles of classes in existing languages, by providing a suite of
operators independently controlling such effects as combination, modification, encapsulation,
name resolution, and sharing, all on the single notion of module.

All module operators are forms of inheritance. Thus, inheritance not only is not in
conflict with modularity in our system, but is its foundation.

This allows a previously unobtainable spectrum of features to be combined in a cohesive
manner, including multiple inheritance, mixins, encapsulation and strong typing.

We demonstrate our approach in a language (called Jigsaw, as in the tool, not the puzzle!).
Our language is modular in two senses: it manipulates modules, and it is highly modular in
its own conception, permitting various module combinators to be included, omitted, or newly
constructed in various realizations. We discuss two pragmatic avenues for the exploitation
of this approach:

1. Adding modules to languages without modularity constructs.

2. Embedding selected new modularity capabilities within existing object-oriented lan-
guages (which we are undertaking as a “proof of concept” in the case of Modula-3

[5]).1

'This research was sponsored by (i) the Defense Advanced Research Projects Agency (DOD), monitored
by the Department of the Navy, Office of the Chief of Naval Research, under Grant number N00014-91-J-
4046, and (ii) the National Science Foundation under Grant No. CCR89-20971. The opinions and conclusions
contained in this document are those of the authors and should not be interpreted as representing official
views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the
National Science Foundation, or the US Government.



