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Abstract—The ability to construct concise scene represen-
tations from sensor input is central to the field of robotics.
This paper addresses the problem of robustly creating a 3D
representation of a tabletop scene from a segmented RGB-
D image. These representations are then critical for a range
of downstream manipulation tasks. Many previous attempts to
tackle this problem do not capture accurate uncertainty, which is
required to subsequently produce safe motion plans. In this paper,
we cast the representation of 3D tabletop scenes as a multi-class
classification problem. To tackle this, we introduce V-PRISM, a
framework and method for robustly creating probabilistic 3D
segmentation maps of tabletop scenes. Our maps contain both
occupancy estimates, segmentation information, and principled
uncertainty measures. We evaluate the robustness of our method
in (1) procedurally generated scenes using open-source object
datasets, and (2) real-world tabletop data collected from a depth
camera. Our experiments show that our approach outperforms
alternative continuous reconstruction approaches that do not
explicitly reason about objects in a multi-class formulation.

I. INTRODUCTION

As robots continue to be deployed in the world, there is
an ongoing need for methods that allow them to safely and
robustly operate in unknown, noisy scenes. Many such scenes
contain objects that robots must delicately move around or
interact with to complete their assigned tasks. The planning
techniques for such tasks often require an accurate 3D map of
the objects within the scene. These are often unseen objects
with unknown geometry that are only partially observed.

The safe operation of robots necessitates not only accu-
racy but also introspection and uncertainty-awareness. These
notions of uncertainty about the geometry of the scene can
then be incorporated into downstream motion planning solvers
for added robustness and safety. However, many learning
algorithms typically used in robot learning, such as neural
networks, lack the ability to reason about uncertainty and
confidently predict incorrect labels [1], [2]. In this work, we
take a Bayesian learning approach which captures uncertainty
in a principled manner.

We propose V-PRISM: Volumetric, Probabilistic, and
Robust Instance Segmentation Maps⋆. V-PRISM is a frame-
work for building differentiable segmentation and occupancy
maps of tabletop scenes that contain multiple unseen objects.
Importantly, our method results in maps with a principled
and understandable uncertainty metric. To construct these
maps, we rely on depth measurements with corresponding
instance segmentations. Such instance segmentations can be
easily obtained for real-world scenes using pre-existing models
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Figure 1: Our method takes a segmented (top left) point cloud ob-
servation (top right) and builds a continuous probabilistic map. This
map can be used to reconstruct the scene (bottom left) or measure
uncertainty about the scene (bottom right). The heat map shows
uncertainty in a 2D slice parallel with the table plane. Uncertainty is
high in occluded areas.

such as those proposed in [3]–[5]. We take inspiration from
Bayesian Hilbert Maps (BHMs) [6] and transform points
into an embedding induced by a set of chosen hinge points
in order to perform Bayesian updates to our map. These
updates are made in a variational manner with an expectation
maximization (EM) algorithm. In order to effectively learn the
geometry of the scene, we propose a negative sampling method
for encoding depth sensor information in object-centric scenes.
The learned map can be used to reconstruct the objects in the
scene as well as measure the uncertainty about the geometry
in different areas of the scene. This is pictured in Figure 1.

We evaluate our method in simulation and the real world.
The simulation scenes are constructed using objects from
existing mesh datasets and placing them in a random con-
figuration within a simulator similar to [7]. We run extensive
experiments and report measurements of two commonly used
metrics: intersection over union (IoU) and Chamfer distance of
reconstructed meshes. Qualitative reconstructions and uncer-
tainty estimates are computed on real world scenes of objects
belonging to unknown classes to demonstrate robustness to
noise associated with real-world cameras.

Concretely, our technical contributions include:
• The formulation of 3D scene reconstruction as a multi-
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class mapping problem
• A principled Bayesian framework to learn continuous

maps for tabletop scene representation
• An object-centric sampling method that enables accurate

and efficient reconstructions
Our paper is organized as follows. In Section II, an overview

of related research is provided. In Section III, we review
the basics of BHMs and formulate the problem our method
aims to solve. Following this, Section IV provides a high
level overview of our proposed method. The math behind our
EM algorithm and Bayesian model are discussed Section V.
We propose a novel negative sampling method in Section VI
specifically for object-centric mapping. In Section VII We
justify our decisions through quantitative and qualitative ex-
periments. We also give qualitative examples of how our
method provides desireable uncertainty measurements. This
is followed by brief conclusion in Section VIII.

II. RELATED WORKS

3D Mapping. Constructing a 3D map of an environment has
been a common problem in the field of robotic perception.
Voxel based approaches such as Truncated Signed Distance
Functions [8] and OctoMaps [9] are a common approach
to the problem. Hilbert Maps [10], and their extension to
Bayesian Hilbert Maps [6] are both methods for mapping
3D environments. Recently, learning based approaches such
as [11] have grown in popularity. While these works serve as
inspiration to our work, mapping a surrounding environment
is a different problem than the one we approach in this paper.

Multiple View Synthesis. One common way of reconstruct-
ing the geometry of an object or scene is to combine multiple
camera views and observations into a 3D representation. One
such technique is 3D-R2N2 [12], which creates a voxelized
representation of objects using a recurrent neural network.
More recently, Neural Radiance Fields [13] and variants such
as Plenoxels [14] learn an implicit density field using multiple
views without depth information. Another learning based
method for reconstructing scenes with multiple objects from
multiple views is introduced in [15], where a voxel encoder-
decoder network is used. 3D Gaussian Splatting has also
been used to reconstruct density fields from multiple images
[16]. While there has been a lot of interesting work around
recovering 3D geometry by synthesizing multiple views, this
work is directed at the harder problem of recovering 3D
geometry using only a single view.

Reconstructing Single Objects. Many methods have been
proposed to reconstruct single objects. In [17], superquadrics
are fit to the observed points to generate an objects geometry.
Another method for recovering object geometry is Gaussian
Process Implicit Surfaces [18] which implicitly reconstructs
objects using a handful of surface points and their corre-
sponding normals specifically for the robotic task of grasping.
More recently, deep learning has been utilized to predict the
geometry of objects from a single view. One deep learning
approach is proposed in [19], where a single image is used
as input to a neural network that predicts object geometry.

DeepSDF [20] and PointSDF [21] are both learning based
approaches that predict a signed distance function given a
point cloud. Occupancy Networks [22] also take a single point
cloud or image as input, but instead predict an occupancy
function that maps each point in space to a probability of being
occupied. Other work, such as [23] utilizes different modes of
input like tactile measurements. The GenRe algorithm aims to
predict the geometry of specifically unknown object classes
as proposed in [24], where the authors explain that trying
to generalize to unseen classes is much more difficult than
traditional reconstruction. Occlusion is also a problem for
many single-object reconstruction methods, as they generally
assume that no other objects are present to partially obstruct
an object.

Reconstructing Multiple Objects. Some methods have
been proposed that attempt to reconstruct scenes containing
multiple objects with some occlusion. 3DP3 [25] is a method
specifically for multi object scenes that assumes known object
classes and uses probabilistic programming to reconstruct the
scene. In [26], silhouettes are used to refine the voxelized
predicted geometry of objects under occlusion. Another re-
construction technique proposed recently is ARM [7], where
scenes are encoded as voxels and a loss function is used
that includes terms for connectivity and stability in order
to increase generalizability. In contrast to our method, these
approaches either assume known object classes or do not
accurately measure the uncertainty over the scene.

III. PRELIMINARIES

A. Sigmoid Bayesian Hilbert Maps

Hilbert Maps. Introduced in [10], Hilbert Maps are a
method for continuous occupancy mapping of a robotic en-
vironment. A map m : Rd → [0, 1] is built from a feature
transform ϕ(x) and a set of n′ point observations {xi}i∈[n′]

from a sensor at position o. The observed point cloud is
labeled with yi = 1 and unoccupied negative samples drawn
on the line segments between each xi and o are labeled with
yi = 0. The observed points, sampled points, and labels form
the data {(xi, yi)}i∈[n]. Gradient descent is used to find the
optimal weights for a map of the form

m(x) = σ(w⊤ϕ(x)) = (1 + exp(−w⊤ϕ(x)))−1,

where σ : R → (0, 1) is the sigmoid function. This is equiv-
alent to performing logistic regression over the transformed
points {(ϕ(xi), yi)}i∈[n].

Usually, the feature transform ϕ is constructed from a kernel
function k and a set of hinge points h1, ...,hm ∈ R3. Usually,
these hinge points are chosen to be an evenly spaced 3D grid
of points. The feature transform is then given by:

ϕ(x) =


k(x,h1)
k(x,h2)

...
k(x,hm)

1

 . (1)

Bayesian Extension. Hilbert Maps were extended to the
Bayesian setting in [6]. Instead of an individual weight vec-



Figure 2: Running a separate sigmoid model per object can cause un-
wanted intersections between the reconstructions (circled). Our multi-
class formulation uses a softmax model that avoids this problem.

tor, the weight is treated as a normally distributed random
variable, w ∼ P (w). Variational Bayesian logistic regression
as described in [27] is then performed over data D =
{(ϕ(xi), yi)}i∈[n] in order to obtain the approximate posterior
distribution:

P̂ (w|D) ∝ Q(D|w; ξ)P (w) ≈ P (D|w)P (w),

where the variational parameter ξ is introduced. The method
relies on an EM algorithm that alternates between calculating
the posterior P̂ (w|D) = N (µ̂, Σ̂) from an approximate
likelihood function and obtaining a better likelihood approx-
imation. The specific approximation used for the likelihood
takes the form of a normal distribution, and ensures that
the approximated likelihood is conjugate to a normal prior
P (w) = N (µ̄, Σ̄).

Once the posterior weight distribution is obtained, the map
m is defined by the expectation:

m(x) = Ew[σ(w⊤ϕ(x))].

Because there is not an analytic solution for this expectation,
approximations are used. The most common approximation is

Ew[σ(w⊤ϕ(x))] ≈ σ

 Ew[w⊤ϕ(x)]√
1 + π

8 Var(w⊤ϕ(x))

 , (2)

which is easily obtained for any w following a normal
distribution.

Extensions of BHMs include Bayesian treatment of kernel
parameters and hinge point placement [28], fusing two BHMs
[29], and mapping environments with moving actors [30].

B. Problem Formulation

Instead of predicting an occupancy map for each object, we
phrase our problem as a multi-class mapping problem. This en-
sures that each point in space can only be occupied by a single
object. Without this constraint, reconstructions of objects can
intersect each other as shown in Figure 2. Formally, we receive
observations {(xi, yi)}i∈[n] where xi ∈ Rd corresponds to an
observed point with segmented class yi ∈ [c]. We assume
yi = 1 denotes xi being segmented to no specific object
and is part of the background or table. We also assume that
these observations came from a camera with a known location
o ∈ Rd. The goal is to build a map function m : Rd → [0, 1]c

such that m(x) corresponds to the probability distribution over
classes that the point x could belong to.

We would like our map to satisfy that m(xi) ≈ eyi
for all i,

where eyi is the one hot encoding of yi. We can infer that for

any xi, because the camera ray started at o and terminated
at xi, all points in between are unoccupied. We would like
our map to reflect this realization. This forms the basis for the
negative sampling performed in [6]. We will also assume that
objects in the scene are resting on or above a planar surface.
While this generally means a table, our method is agnostic to
the type of surface.

IV. METHOD OVERVIEW

Our method builds a map m(x) from segmented camera
depth observations of a multi-object scene through two main
steps. A high level overview is displayed in Figure 3. First,
negative sampling is performed as described in Section VI,
where additional points are added to the observed ones in
order to form a new labelled point cloud. During this step,
the RANSAC [31] algorithm is run in order to recover the
surface plane the objects are resting on. The points are also
subsampled in order to increase efficiency. We then generate
a set of hinge points that are used to construct a feature
transform according to Equation (1). This transform, combined
with our sampled points creates a set of augmented data.

Once we have our tranformed data, we perform Bayesian
multi-class regression over the data with an expectation maxi-
mization (EM) algorithm. The specific technique makes use
of mathematical ideas from [32]. The full EM algorithm
and model are explored in Section V. Efficiently evaluating
m(x) for query x values is also covered in Section V, where
we make use of an approximation proposed in [33]. The
segmentation map produced maps each point in 3D space
to a distribution over c classes, where one class denotes not
belonging to an object and the other c− 1 classes denote the
segmented objects observed.

Once we have our map, we can use it to evaluate how likely
different points are to be in occupied by different objects. This
is useful in many motion planning algorithms in order to mini-
mize unwanted collisions. We can also reconstruct the meshes
of each object by running the marching cubes algorithm [34].
These meshes can be used to create a signed distance function,
simulate physics, or to visualize the scene. Our map also
encodes principled uncertainty about the geometry of the scene
which can be used for active inference.

V. SOFTMAX EM ALGORITHM

A. Training

To create a Bayesian multi-class map, we consider using
a weight matrix W ∈ Rc×m where each row is normally
distributed, giving the following likelihood function:

P (y = k|W,x) = softmax(Wϕ(x))k,

where the softmax function is defined as

softmax(Wϕ(x))k =
exp(Wϕ(x)k)∑c
i=1 exp(Wϕ(x)i)

.

Because a conjugate prior for the softmax likelihood doesn’t
exist, we must use variational inference to find a posterior
Gaussian distribution. In our case, we will maximize a lower



Figure 3: Overview of our method, V-PRISM. We take a segmented point cloud and output a probabilistic segmentation map over 3D space
that can be used for both object reconstruction and principled uncertainty. Our method first generates negative samples and hinge points,
then uses these to create an augmented dataset. Then the probabilistic map is constructed by running an EM algorithm over this dataset.

bound on the likelihood. A useful inequality for this is given
in [32], and is stated in the following theorem:

Theorem 1: From [32]. Let z ∈ Rc, α ∈ R, and ξ ∈ Rc
+.

Then the following inequality holds:

ln

c∑
k=0

exp(zk) ≤ α+

c∑
k=0

zk − α− ξk
2

+λ(ξk)((zk − α)2 − ξ2k) + ln(1 + exp(ξk)),

where λ(ξk) = ((1 + exp(−ξk))−1 − (1/2))/2ξk.
Applying Theorem 1 to z = Wϕ(x), we can bound the

likelihood by introducing the two variational parameters α and
ξ with the inequality,

lnP (y = k|W,x) ≥ lnQ(y = k|W,x;α, ξ).

We can maximize this lower bound and use it as an approxi-
mation to the true likelihood by solving the following:

argmax
α,ξ

EW [lnQ(y = yi|xi,W;α, ξ)] .

This can be analytically solved for Wk ∼ N (µk,Σk), yielding
the following optimal values found in [32]:

αi =
1
2 (

c
2 − 1) +

∑c
k=1 λ(ξk)µ

⊤
k ϕ(xi)∑c

k=1 λ(ξk)
, (3)

ξ2i,k = ϕ(xi)
⊤Σkϕ(xi)+(µ⊤

k ϕ(xi))
2+α2

i−2αiµ
⊤
k ϕ(xi). (4)

Due to the inequality used, P (y = k|W,x;α, ξ) is normally
distributed for any α, ξ and will be conjugate to our prior
weight distribution. Thus, we can compute the closed-form ap-
proximate posterior mean µ̂ and covariance Σ̂ from multiply-
ing P (y = k|W,x;α, ξ)P (W) where P (Wk) = N (µ̄k, Σ̄k).
The update equations mirror those found in [32] and are as
follows:

Σ̂−1
k = Σ̄−1 + 2

n∑
i=1

λ(ξi,k)ϕ(xi)ϕ(xi)
⊤ (5)

µ̂k = Σ̂k

[
Σ̄−1

k µ̄k +

n∑
i=1

(
yi,k −

1

2
+ 2αiλ(ξi,k)

)
ϕ(xi)

]
.

(6)
We can use Equation (3), Equation (4), Equation (5), and

Equation (6) to create an EM algorithm to iterate between

Algorithm 1 V-PRISM
Input:
Observed, segmented points o = {(xi, yi)}i∈[n′]

Prior means {µ̄k}k∈[c] and covariances {Σ̄k}k∈[c]

1: D ← NEGATIVESAMPLE(o)
2: ϕ← HINGEPOINTTRANSFORM(o)
3: ξi,k ← 1 for i ∈ [m], k ∈ [c]
4: αi ← 0 for i ∈ [m]
5: for p iterations do
6: Σ̂−1 ← Σ̄−1 + 2

∑
i |λ(ξi)|ϕ(xi)ϕ(xi)

⊤

7: µ̂k ← Σ̂
(
Σ̄−1µ̄+

∑
i(yi −

1
2 + 2αiλ(ξi,k))ϕ(xi)

)
8: αi ← UPDATEALPHA(ξi,xi, µ̂, Σ̂) with Equation (3)
9: ξi,k ← UPDATEXI(αi,xi, µ̂, Σ̂) with Equation (4)

10: end for
11: return µ̂, Σ̂

calculating our posterior distribution and optimizing our vari-
ational parameters. This is shown in Algorithm 1.

B. Inference

In order to make predictions about new points we need to
evaluate the following expectation:

P̂ (y = k|x) = EW [softmax(Wϕ(x))]k . (7)

There is not a closed form solution to this expectation, so we
must approximate it. While we could use sampling to esti-
mate the expectation, we instead use a more computationally
efficient approximation.

As described in [33], we can write the softmax in terms of
the sum of sigmoidal terms with the following equality:

softmax(a)k =
1

2− c+
∑

i̸=k σ(ak − ai)−1
,

where c is the number of classes. This is then used as
motivation for the approximating the expectation with

EW [softmax(Wϕ(x))]k ≈
1

2− c+
∑

i ̸=k E[σ(z̃i)]−1
,

with z̃i = [Wϕ(x)]k − [Wϕ(x)]i. When combined with the
sigmoidal approximation in Equation (2), this becomes an
easily computable approximation to Equation (7).



VI. OBJECT-CENTRIC NEGATIVE SAMPLING

Similar to many mapping methods, V-PRISM requires nega-
tively sampling points along depth camera rays. The traditional
negative sampling used, mentioned in Section III-A, is meant
for mapping environments where the robot is in an enclosed
space and each camera ray is detecting a wall or sufficiently
large object. This sampling performs poorly when the goal
is to map a relatively small object resting on a tabletop or
other surface. To fully utilize the tabletop structure within the
environment, we propose a new negative sampling method
designed for object-centric mapping. Our sampling method
rests on two main realizations:

1) Along the ray, negative samples are most useful when
near known objects.

2) Points below a surface plane cannot be occupied by
objects resting entirely on or above that surface.

We assume we have a segmented point cloud of the scene
{(xi, yi)}i∈[n′] where each yi corresponds to the segmentation
label of the respective xi. We also assume a known position
of the camera o. Our sampling method begins by finding the
center of the smallest axis-aligned bounding box that contains
all of the segmented points for each individual object in the
scene. We denote these centers with ok. We then perform
stratified uniform sampling along each ray, only keeping points
that are within robj distance from at least one ok. Sampled
points within the desired radius of a center are labeled as
unoccupied and added to the collection of points for the
algorithm.

Next, we run RANSAC [31] on the observed point cloud to
recover the table plane. Once we have the plane, we uniformly
randomly sample points within robj from each object center
and keep any such points that fall below the plane. These
points are labelled as unoccupied and added to our collection.

Finally, we perform grid subsampling as described in [35]
with each label in parallel in order to reduce the number of
points our algorithm is fed. In practice, we choose different
resolutions to subsample empty points and points on object
surfaces. This can dramatically increase the efficiency of our
method by removing redundant points. The entire negative
sampling process is shown in Figure 4.

The resulting points are then transformed to construct our
set of augmented data. The transform used is induced by a
set of hinge points according to Equation (1). In practice, we
choose a set of hinge points consisting of a fixed grid around

Figure 4: Overview of our sampling method. 1. We perform stratified
sampling along camera rays within robj of the object. 2. Points are
sampled below the table within robj of the object. 3. Grid subsampling
is performed.

the scene as well as a fixed number of random points sampled
from the surface points of each object.

VII. EXPERIMENTS

We perform experiments aimed to answer the following
questions: 1. Does our method result in accurate reconstruc-
tions? 2. Does our sampling method improve map quality for
object-centric mapping? 3. Is our method robust to unknown,
noisy scenes? 4. Does our map accurately capture uncertainty
about the scene geometry? We test 1 and 2 in Section VII-B,
3 in Section VII-C, and 4 in Section VII-D. We implement
V-PRISM in PyTorch and run our algorithm on an NVIDIA
GeForce RTX 2070 GPU.

A. Baselines and Metrics

Baselines: We compare our method to two different base-
lines. The first is a voxel-based heuristic that labels observed
unoccupied voxels as unoccupied, observed occupied voxels
as their corresponding segmentation id, and unobserved voxels
with the same label as the nearest observed voxel. To prevent
incorrect predictions below the table plane, we also run
RANSAC during our baseline and label all voxels under the
plane as unoccupied. We refer to this approach as the Voxel
baseline. The second baseline is a learning-based approach
using a state of the art neural network architecture for contin-
uous object reconstructions in robotics. We take the PointSDF
architecture from [21] and replace the final activation with a
sigmoid function to predict occupancy probabilities. We train
this model on a dataset of scenes similar to those discussed
in Section VII-B. The scenes are composed of a subset of the
ShapeNet [36] dataset. Training it on these scenes instead of
the original dataset PointSDF was trained on allows it to better
function under occlusion and different scales. We refer to this
baseline as PointSDF.

Metrics: We use two main metrics for comparison: inter-
section over union (IoU) and Chamfer distance. IoU is
calculated by evaluating points in a fixed grid around each
object. Chamfer distance is calculated by first reconstructing
the predicted mesh by running the marching cubes algorithm
[34] on a level set of P̂ (y = 1|x) = τ for a chosen τ of
the prediction function. Then, points are sampled from both
the predicted mesh and ground truth mesh and the Chamfer
distance is calculated between these two point clouds.

B. Generated Scenes from Benchmark Object Datasets

In this section, we evaluate our method against the two
baseline methods on procedurally generated scenes, from large
object datasets. We generate a scene by randomly picking a
mesh and placing it at a random pose within predefined bounds
with a random scale. We draw meshes from the ShapeNet
[36], YCB [37], and Objaverse [38] datasets. We generate 100
scenes for each dataset with up to 10 objects in each scene.
Objects are placed relatively close together in order to ensure
significant occlusion in the scenes. Once the poses have been
selected, we simulate physics for a fixed period of time to
ensure objects can come to rest.



Principled ShapeNet Scenes YCB Scenes Objaverse Scenes
Method Continuous Uncertainty IoU ↑ Chamfer (m) ↓ IoU ↑ Chamfer (m) ↓ IoU ↑ Chamfer (m) ↓
Voxel N N 0.198 0.014 0.324 0.018 0.336 0.024

PointSDF [21] Y N 0.360 0.010 0.460 0.015 0.347 0.025
V-PRISM (ours) Y Y 0.309 0.011 0.500 0.012 0.464 0.018

Table I: Quantitative experiments comparing our method to two baseline methods on procedurally generated scenes from benchmark datasets.

ShapeNet Scenes YCB Scenes Objaverse Scenes
Method IoU ↑ Chamfer (m) ↓ IoU ↑ Chamfer (m) ↓ IoU ↑ Chamfer (m) ↓

V-PRISM w/ BHM Sampling 0.156 0.031 0.313 0.030 0.326 0.035
V-PRISM (ours) 0.309 0.011 0.500 0.012 0.464 0.018

V-PRISM w/o Under the Table 0.291 0.019 0.500 0.014 0.439 0.024
V-PRISM w/o Stratified Sampling 0.145 0.024 0.294 0.023 0.291 0.029

Table II: Ablation experiments on our negative sampling method.

Our first experiment on simulated scenes compares our
method with the two baselines. Similar to [22], we use a
level set other than τ = 0.5 for constructing the mesh
with the neural network. We found τ = 0.3 to provide the
best reconstructions for our version of PointSDF. For other
methods, we use τ = 0.5. We report the IoU and Chamfer
distance in Table I. PointSDF outperforms other methods on
the ShapeNet scenes, where the meshes are drawn from the
same mesh dataset that it was trained on. On other datasets, our
method outperforms PointSDF. This aligns with other work
demonstrating that neural networks perform worse the further
from the training distribution you get. Because our method
has no reliance on a training distribution, it shows consistency
across all datasets. Both our method and PointSDF consis-
tently outperform the voxel baseline on most datasets and
metrics. The only exception is Chamfer distance on Objaverse
scenes, where the voxel baseline outperforms PointSDF. The
performance of our method relative to our baselines indicate
that our method results in accurate reconstructions

Our second experiment on simulated scenes ablates our
negative sampling method. We observe the effect of removing
sampling under the table plane and removing the stratified
sampling along the ray. In order to remove the stratified
sampling, we replace it with taking discrete, fixed steps
along each ray instead. We also compare against the original
BHM sampling method explained in [6], where there negative
samples are drawn randomly along the whole ray instead of
near objects. This is labeled as BHM Sampling. The IoU
and Chamfer distance are reported in Table II. Our negative
sampling method outperforms alternatives on each dataset and
metric. This implies that our proposed sampling method does
improve reconstruction quality compared to the others.

The hyperparameters used for the simulated experiments are
shown in Table III. These were kept constant across all pro-
cedurally generated datasets and corresponding experiments.

C. Real World Scenes

We evaluate our method by qualitatively comparing recon-
structions on real world scenes. We use a Intel RealSense
D415C camera to obtain point clouds of tabletop scenes. In
order to get accurate segmentations of the scene, we use
the Segment Anything Model (SAM) [3]. We compute on

Figure 5: Qualitative comparison of uncertainty. Top row: the
observed point cloud with a green plane corresponding to the 2D slice
where the heat maps were calculated. We compare a non-probabilistic
variant of V-PRISM trained with gradient descent (middle row) and
our method (bottom row). In the heat maps, the bottom is closer
to the camera and the top is farther from the camera. Lighter areas
correspond to more uncertainty. Our method predicts high uncertainty
in occluded areas of the scene.

Hyperparameters Value Hyperparameters Value
(Learning) (Sampling) (cm)

kernel type Gaussian grid length 5.0
kernel γ 1000 sampling robj 25.0

surface hinge pts. 32 subsample res. (objects) 1.0
iterations 3 subsample res. (empty) 1.5

Table III: Hyperparameters for experiments on procedurally gener-
ated scenes.

five scenes consisting of multiple objects. We compare our
method to PointSDF. The qualitative comparison can be seen
in Figure 6. Because these scenes are significantly more
noisy than simulated scenes, PointSDF struggles to coherently
reconstruct the scene. In contrast, our method is capable of
producing quality reconstructions even with very noisy input
point clouds. This suggests that our method is capable of
bridging the sim to real gap and is robust to unknown, noisy
scenes.

D. Principled Uncertainty

To show how our model captures uncertainty about the
scene, we need a way to quantify uncertainty. We use the



Figure 6: Qualitative comparisons with PointSDF reconstructions. First row: RGB images. Second row: the segmented point cloud used as
input. Third row: PointSDF reconstructions. Last row: V-PRISM’s (our method) reconstructions. V-PRISM results in quality reconstructions
on noisy scenes.

entropy of our map at each point in space as a measurement
of uncertainty:

Hm(x) = −
c∑

k=1

P̂ (y = c|x) ln P̂ (y = c|x).

This is maximized when the model predicts a uniform distri-
bution over classes and minimized when the model predicts a
single class with a probability of 1.

We compare our method with an alternate non-Bayesian
version of our method, where we train a single weight vector
with stochastic gradient descent (SGD) instead of the EM
algorithm, to minimize the negative log-likelihood of our
augmented data.

To visualize this uncertainty, we calculate this uncertainty
over a 2D slice from each of our 5 real world scenes. The
heat maps for each slice can be seen in Figure 5. Qualita-
tively, we can see that our method obtains high uncertainty
values in occluded sections of the scene. This contrasts to
the non-probabilistic model that does not accurately capture

uncertainty about occluded regions. The heat maps showing
occlusion-aware uncertainty suggest our model captures prin-
cipled and accurate uncertainty measures.

VIII. CONCLUSION AND FUTURE WORK

Principled uncertainty is necessary for the safety of many
robotics tasks. We proposed a framework for robustly con-
structing multi-class 3D maps of tabletop scenes named V-
PRISM. Our method works by iterating an EM algorithm on
augmented data to produce a volumetric Bayesian segmenta-
tion map. To fully incorporate the information from received
depth measurements of a tabletop scene, we proposed a novel
negative sampling technique. The resulting map was shown to
have desirable properties including quality reconstructions and
accurate uncertainty measures through both quantitative ex-
periments in simulation and qualitative experiments with real-
world, noisy scenes. Future directions of this work include:
(1) using our method’s uncertainty to inform active learning;
(2) extending V-PRISM to represent dynamic tabletop scenes.
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