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Uncertainty Aware Forward and Inverse Kinematics for  
Tendon-Driven Continuum Robots via Mixture Density Networks
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Tendon-driven continuum robot kinematic models are frequently computationally expensive, inaccurate due to unmodeled effects, 
or both. In particular, unmodeled effects produce uncertainties that arise during the robot’s operation that lead to variability in the 
resulting geometry. We propose a novel solution to these issues through the development of a Gaussian mixture kinematic model. We 
train a mixture density network to output a Gaussian mixture model representation of the robot geometry given the current tendon 
displacements. This model computes a probability distribution that is more representative of the true distribution of geometries at a 
given configuration than a model that outputs a single geometry, while also reducing the computation time. We demonstrate uses of 
this model through both a trajectory optimization method that explicitly reasons about the workspace uncertainty to minimize the 
probability of collision and an inverse kinematics method that maximizes the likelihood of occupying a desired geometry.
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1. Introduction

Much work is being done currently to develop tendon- 
driven continuum robots for minimally-invasive sur-
gery [1–3]. However, applications of these robots are 
bottlenecked in part by an inability to accurately and 
efficiently compute their kinematics. Stochastic and 
unmodeled effects on the kinematics of tendon-driven 
continuum robots may lead to these robots being unsafe 
to use during surgical tasks as small deviations from 
the expected geometry could cause unwanted collisions 
with fragile structures within the body. Further, as the 

complexity of the kinematic models grow with the in-
troduction of these effects, so too does the required 
computation time. There is a need for a model that is 
capable of reasoning over these kinematic uncertainties 
while also minimizing the necessary computation time. 
We propose a novel approach to kinematic modeling for 
tendon-driven surgical manipulators through learned 
Gaussian mixture models, enabling direct estimation of 
learned kinematic uncertainty.

Current state-of-the-art physics-based models at-
tempt to explicitly model the different forces acting on 
the robot [4–8]. While in theory, these models should ac-
curately compute the geometry of the robot, they tend to 
either be too restrictive in their assumptions or compu-
tationally too slow for real-time surgical applications. As 
the complexity of the physics being modeled increases, 
these models increase in accuracy. However, they suffer 
in computation time and in the presence of additional 
unmodeled or stochastic effects. Data-driven approaches 
attempt to solve this problem by implicitly learning how 
to model the forces that impact the resulting robot geom-
etry [9, 10]. These approaches decrease the computation 
time; however, they do not currently possess the ability 
to handle the inherent uncertainties associated with the 
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robot’s kinematics. Any unmodeled effects on the kine-
matics lead to geometric uncertainties that impact the 
safe use of these robots. In this paper, we provide results 
that demonstrate how these unmodeled effects mani-
fest for tendon-driven continuum robots. The issues that 
arise from the current state-of-the-art models make using 
them in surgical applications potentially unsafe and/or 
too slow to perform real-time computations.

We present a solution to modeling the kinematics of 
tendon-driven continuum robots that can reason implic-
itly over modeling uncertainty. We train a mixture den-
sity network that outputs Gaussian mixture models of 
the robot’s geometry at a given configuration of tendon 
displacements. Contrary to standard kinematic models 
that explicitly output the robot’s geometry, our method 
enables reasoning over the probability that the robot will 
occupy different regions of its workspace. We compare 
the accuracy of our model across a range of different num-
bers of mixture components in the model outputs, and we 
demonstrate a decrease in computation time when com-
pared to a current state-of-the-art Cosserat rod model.

We apply our model to an optimization-based motion 
planner that explicitly minimizes the probability of colli-
sion with obstacles along a nominal trajectory. We perform 
Bayesian optimization with respect to the probability that 
the robot will collide with the environment. We estimate 
this probability by integrating the outputs of our model 
over the obstacles in the environment. We show that using 
our model enables a reduction in the probability of colli-
sion within a simulated chest cavity environment.

This paper extends our prior work [11]. In this exten-
sion we introduce a novel approach to inverse kinemat-
ics for tendon-driven continuum robots made possible 
by our method. Specifically, we recognize that symmetric 
to our ability to minimize the likelihood that the robot’s 
geometry would collide with obstacles is the ability to 
maximize the likelihood that the robot’s geometry will 

occupy a desired geometry, i.e. inverse kinematics. This 
approach is capable of reasoning over the full geometry 
of the robot and accounting for unmodeled and stochas-
tic effects on the robot during operation.

2. Related Work

2.1. Physics-based models

Tendon driven continuum robots are subject to many 
uncertainties, nonlinearities, and disturbances that neg-
atively impact modeling accuracy. Much work has been 
done to handle these issues through improvements to 
physics-based kinematic models. Constant Curvature 
(CC) is one such model that assumes the robot consists 
of a finite set of curved links where each link can be  
defined by a set of arc parameters [4]. This assumption 
greatly simplifies the kinematics of the robot at the cost 
of accuracy. Pseudo-rigid body models (PRBM) have 
also been used to model continuum robot kinematics by 
assuming the robot consists of a set of rigid links con-
nected by a torsional spring [5]. PRBM models provide 
higher accuracy than CC models at the cost of increased 
computation time.

As opposed to CC, Variable Curvature (VC) methods 
such as Cosserat rod models are used to more exactly 
represent the backbone structure of the robot [6]. The 
Cosserat rod model assumes the backbone to be a one-
dimensional rod and models the bending, stretching, 
twisting, and shearing forces applied to the robot. The 
result is a set of nonlinear ordinary differential equations 
for the kinematics and a set of nonlinear partial differ-
ential equations for the dynamics [7]. While VC models 
provide a more complete representation of continuum 
robot geometry than CC models, VC models are generally 
computationally more expensive. Recent work has pro-
vided significant computation time reductions for kine-
matic modeling and motion planning using the Cosserat 
rod model [8].

Rao et al., perform a comparison of the different 
physics-based models and provide a set of guidelines for 
determining which model to use based on the structure 
of the robot assuming parallel routed tendons [12]. They 
conclude that when the structure of the robot contains 
a small number of separator disks holding the tendons, 
PRBM provides the best accuracy with respect to its com-
putation time; however, as the number of disks increas-
es, it becomes more useful to use VC models.We compare 
our work in this paper to the state-of-the-art Cosserat rod 
model described in prior work [8].

Methods have also been proposed for utilizing work-
space density to solve the inverse kinematics problem 
[13, 14]. Our proposed inverse kinematics model is sim-
ilar to these methods in that we attempt to maximize the 

Fig. 1. A Mixture Density Network (MDN) is trained to produce 
a Gaussian mixture model representation of the robot’s geome-
try given the tendon displacements. The negative log-likelihood 
is computed between the MDN’s output and ground-truth point 
clouds collected from the physical robot. The MDN is then 
trained to minimize the negative log-likelihood.
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density of the robot in the target region of its workspace.  
However, we employ a learning-based method along with 
a gradient-based optimization technique to find prob-
abilistically optimal solutions to the inverse kinemat-
ics problem specifically for tendon-driven continuum  
robots.

Uncertainty and error estimation has also been the 
focus of much prior work [15–17]. While these approach-
es utilize model-based methods of uncertainty estima-
tion, our method uses a data-driven approach to learn 
these kinematic uncertainties/errors from observations.

2.2. Data-driven models

Data-driven models have also been proposed to model 
both the kinematics and dynamics for continuum  
manipulators. Nonlinear auto-regressive models with  
exogeneous inputs have been shown to perform well in 
predicting the end effector position for continuum robots 
[9]. While this model is able to implicitly learn how to 
model the forces on the robot, it does not reason over the 
uncertainties of continuum robots’ geometries.

Reinhart and Steil compare several data-driven and 
hybrid modeling approaches for the forward-kinematics 
of soft robots [10]. They concluded that a non-linear  
Extreme Learning Machine (ELM) achieved the best 
result for minimizing the error with respect to the end 
effector position.

Work has also been done to learn the full geometry for 
concentric tube robots as a parametric curve [18]. Their 
model is capable of achieving high accuracy for concen-
tric tube robots but does not allow for reasoning over 
the geometric uncertainties associated with continuum 
robots.

Others propose to use Gaussian Process Regression 
(GPR) for the forward kinematics of tendon-driven con-
tinuum robots [19]. They show a low position and ori-
entation error post-training; however, this method does 
not allow for reconstruction of the full robot geometry. 
Gaussian Mixture Regression (GMR) has also been used 
for the inverse kinematics [20]. They find that Gaussian 
mixtures do not perform as well as other methods for 
computing the inverse kinematics of tendon-driven con-
tinuum robots. By contrast, we find in this paper that 
Gaussian mixtures perform well with respect to forward 
kinematics for representing the full geometry of the robot.

The current state of data-driven approaches to for-
ward kinematic models primarily focuses on learn-
ing how to predict the position of the end effector of 
the robot while implicitly modeling the forces acting 
on the robot. The approach proposed in this paper ex-
tends these ideas to modeling the entire geometry of the 
robot as a Gaussian mixture model. Unlike prior work, 
this new model is capable of modeling the geometric 

uncertainties of tendon-driven continuum robots. In our 
experiments, we show that we are capable of explicitly 
reasoning over these geometric uncertainties to improve 
the safety of tendon-driven continuum robot operation.

Data-driven approaches have also been proposed 
to solve the problem of inverse kinematics [21–23]. 
Xu et al., analyze GMM and KNN Regression along with  
Extreme Learning Machines and show they are capable of 
achieving high performance with respect to end-effector 
accuracy [21]. Neural networks have also been shown to 
be capable of achieving high performance [22, 23]. How-
ever, these methods solely focus on achieving a desired 
end-effector pose. In our work, we present a method of 
performing inverse kinematics that reasons explicitly 
over the entire geometry of the robot.

3. Kinematic Modeling

We propose a novel learned, data-driven approach to 
modeling the kinematics for tendon-driven continuum 
robots. As opposed to standard kinematic models that di-
rectly compute the position and orientation of each joint 
axis of the robot, our model computes a Gaussian mixture 
model (GMM) representation of the robot’s geometry 
in the workspace. A GMM is a weighted combination of 
Gaussian probability distributions. The probability den-
sity function of a GMM for a random variable x is formu-
lated as 
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for n Gaussian components where w wi i
n

i≥ ==0 11 and Σ ,  
and µi, ∑i, and wi are the mean, covariance matrix, and 
weight for component i, respectively.

Given d = (d1, d2,…, dm), where dj is the displacement of 
tendon j, the model computes the GMM through a mixture 
density network (MDN). MDNs are a type of neural net-
work composed of an initial feedforward fully connected 
network followed by separate feedforward fully connect-
ed networks to compute the means, covariance matrices, 
and weights for each component of the GMM. Figure 2 
shows the architecture used to model the kinematics for 
the tendon-driven continuum surgical manipulator. For 
the purposes of modeling the workspace geometry of the 
robot, the MDN produces a three-dimensional GMM for 
each configuration of tendon displacements.

We note that the model computes the matrices Ui as 
opposed to the covariance matrices ∑i. Following the 
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derivation from prior work, Ui is used to reconstruct the 
precision matrix (inverse covariance matrix) for compo-
nent i [24].
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where Ūi is the upper triangular matrix of the Cholesky 
decomposition of the precision matrix for component 
i, and indices j; k are the row and column for the corre-
sponding matrix, respectively. Thus, we have
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This enables the outputs of the MDN to be uncon-
strained while maintaining that the covariance matrix 
for each component is positive-definite. The negative log-
likelihood function can also be efficiently computed using 
Ui which reduces the required training time. This results 
from the ability to compute the log of the square root of 
the determinant of the precision matrix as the sum of the 
diagonal elements of Ui [24]. Following from Eq. (3),
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Taking the square root gives
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We can then take the log to result in
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The MDN is trained to minimize the negative log-like-
lihood of ground-truth data collected from the robot. To 
gather the ground-truth distributions, we collect point 
clouds of the robot’s geometry at various configurations 
using two RealSense cameras on opposing sides of the 
robot. We chose configurations for the data set by discret-
izing the robot’s configuration space and collecting data 
for all configurations in this discretization. For each con-
figuration in the data set, we randomly sample multiple 
starting configurations of the robot, then move the robot 
along a linear interpolation in the configuration space 
between the starting and desired configuration. A point 
cloud is then collected once the robot has arrived at the 
desired configuration by placing a bounding box around 
the robot’s workspace and collecting only the points that 
exist in this space. The concatenated point clouds of the 
robot’s geometry having arrived at the same configura-
tion from all of the different starting configurations gives 
a distribution of potential geometries the robot can have 
at the desired configuration. Figure 3 shows an example 
of one robot point cloud at a given configuration in the 
training set. The right graph of Fig. 3 illustrates the vari-
ability that arises in the robot’s resulting geometry de-
spite being in the same configuration. The training and 
testing data sets contain 2,277, and 253 configurations, 
respectively.

Given the training set of point clouds X and corre-
sponding tendon displacement configurations Y, we pro-
duce the associated GMM for each configuration y ∈ Y 
using the MDN.
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where θ are the network weights of the MDN.
Using the computed GMMs, the negative log-likelihood 

of the training set point clouds is computed using the loss 
function derived in prior work [24].
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Fig. 2. An example mixture density network architecture that 
takes the list of tendon displacements d = (d1, d2,…, dn) as input 
and outputs µi, Ui, and wi independently for each component of 
the resulting Gaussian mixture model.
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The network parameters θ are optimized during train-
ing to minimize ℒ(θ). Figure 1 shows the training process 
for the MDN.

4. Analysis

We trained our model on a physical tendon-driven con-
tinuum robot with nine separator disks (see Fig. 1). The 
robot is 0.2 m in length and is controlled via three parallel 
routed tendons and one helical tendon. Each tendon can 
be displaced from –1 cm to 4 cm where negative values 
provide slack to the tendons while positive values apply 
tension to the tendons.

We trained 10 different versions of our model with 
the number of mixture components (Gaussians) ranging 
from one to 10. Figure 4 shows the negative log-likeli-
hood values on the test data set on models with differ-
ent numbers of mixture components. We aim to find 
the number of Gaussians that minimizes the negative 
log-likelihood while also avoiding mode collapse. Mode 
collapse occurs when the MDN begins to output one or 
multiple component mixture weights arbitrarily close to 
zero. This implies that the model could have been trained 
with fewer mixture components while still achieving the 
same loss. We find that five mixture components mini-
mize the negative log-likelihood the most while avoiding 
mode collapse.

We note that the optimal number of mixture compo-
nents is most likely robot specific. For different struc-
tures of the robot with different tendon routing patterns, 
it will be necessary to experimentally determine the 

appropriate number of mixture components for the GMM. 
We leverage the model with five components for the rest 
of the evaluation.

Figure 5 shows the model’s output at two different 
randomly sampled configurations of the robot compared 
with the ground-truth geometric distribution at those 
configurations. The points sampled from the GMM accu-
rately represent the expected geometry of the robot with 
a high density of points being sampled within the ground-
truth distribution and a low density of points being sam-
pled everywhere else.

We compare the computation time of the trained 
MDN with the Cosserat rod model presented in prior 

Fig. 3. An example robot point cloud in the training data set. (Left) One particular instance of the robot’s geometry at the given 
configuration after moving from one randomly sampled starting configuration. (Right) The concatenated distribution of all robot 
point clouds gathered during data collection illustrating the inherent uncertainty associated with the geometry of the robot at the 
given configuration.

Fig. 4. Loss function values at different numbers of mixture 
components on the test data set. The results suggest that 5 mix-
ture components are the minimum number of components nec-
essary to sufficiently minimize the negative log-likelihood.
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work [8]. Timing our model over 10,000 randomly sam-
pled configurations results in a mean computation time 
of 0.33 ms. The results in prior work show a mean com-
putation time of 0.39 ms for the Cosserat rod model [8]. 
We reduce the computation by 15% compared to the 
Cosserat rod model.

We note that while standard comparisons of different 
kinematic models for tendon-driven continuum robots 
directly compare the accuracy of each model with respect 
to the predicted endpoint, we cannot provide this com-
parison for our model. Because our model learns distri-
butions over geometries, there is no inherent notion of 
a predicted endpoint which poses a fundamental differ-
ence between the proposed model and standard kine-
matic models. Further, our IK formulation here requires 
as input the desired full robot geometry, rather than the 
traditional formulation only requiring end-effector or 
endpoint pose.

5. Planning with Gaussian Kinematics

One application for this kinematic model is safe motion 
planning. Using the learned kinematic model enables 
explicit reasoning over the probability of collision with 
obstacles as a result of the geometric uncertainty of the 
robot. Other motion planners that consider the proba-
bility of collision primarily consider the uncertainty as 
a result of motion and sensing uncertainty [25–27]. Our 
model enables an extension of these motion planners to 
reason explicitly over the geometric uncertainty asso-
ciated with the kinematics of tendon-driven continuum 
surgical manipulators. Here we present a motion planner 
that uses our learned kinematic model to explicitly min-
imize the probability of collision for a given nominal tra-
jectory of tendon displacements.

We first construct a nominal trajectory using the Prob-
abilistic Roadmap (PRM) [28] motion planning algorithm, 
a widely used algorithm in robotics and motion planning 
to find feasible paths for robots operating in complex en-
vironments. It does so by constructing a roadmap of the 
given environment via random sampling in the robot’s 
configuration space, enabling the robot to efficiently nav-
igate to a goal while avoiding obstacles. However, any 
planning algorithm could be used to generate a nominal 
trajectory of configurations. In the generation of the ini-
tial roadmap (and subsequently the nominal trajectory), 
we check for collisions by testing that the means of each 
component of the GMM are not in collision with the ob-
stacles in the environment. This condition enables us to 
later efficiently compute the probability of collision with 
the environment.

To improve the safety of the motion plan, we locally 
optimize the nominal trajectory itself with respect to 
the probability of collision as determined by our model. 
The probability of collision along the whole trajectory 
is minimized using Bayesian Optimization. To efficiently 
compute the probability of collision, we extend a method 
from prior work to reason over the probability of colli-
sion between a GMM and a given environment [29]. To do 
so, for each component in the predicted GMM, we trans-
form the environment’s geometry such that the mean of 
the mixture component is at the origin with a covariance 
matrix equal to the identity matrix. We translate the en-
vironment by the negative of the mean and multiply by 
the Cholesky decomposition of the precision matrix. The 
component distribution in the new environment is the 
unit sphere centered at the origin. The new environment 
is constructed via

	 E U E

i i i= −( ),µ � (8)

where E is the set of all vertices in a mesh representation 
of the environment and Êi is the set of all mesh vertices in 
the transformed environment for mixture component i.

Fig. 5. An example set of outputs from the mixture density 
network after training with five mixture components compared 
with the ground-truth geometric distribution. The red points 
are sampled from the Gaussian mixture model output from the 
mixture density network. The blue points are the points collect-
ed from the robot during data collection. The sampled points 
demonstrate how the learned Gaussian mixture model is capa-
ble of representing the full distribution of geometries as a result 
of the kinematic uncertainty.
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A locally convex region of free space is then defined 
over this transformed environment using the method 
presented in prior work [29] as a set of linear constraints 
aT

ij p ≤ bij, where aij, p ∈ ℝ3, bij ∈ ℝ, i is the mixture com-
ponent index, j is the constraint index, and p is a point 
in the robot’s workspace. A conservative estimate for the 
probability that a configuration x is not in free space Xf is 
computed by

	
p w bf i

j

K

ij
i

N i

( ) ( ( ))x /∈ ≤ −





==
∑∑X 1

11

cdf � (9)

for N mixture components and where Ki is the number 
of linear constraints for component i. The cdf function 
here refers to the cumulative distribution function for 
the standard normal Gaussian  [0, 1]. The probability 

of collision along a trajectory τ is estimated by taking the 
complement of the product of the probability that each 
state in the trajectory is not in collision.

	
p x pf f∃ ∈ /∈( )≤ − − /∈( )( )

∈
∏x x
x

τ
τ

: .X X1 1 � (10)

Using Bayesian Optimization [30], the upper bound 
on p(∃x ∈ τ : x ∉ Xf ) is iteratively minimized for the given 
nominal trajectory. During each iteration of the optimiza-
tion, we choose one intermediate configuration along the 
trajectory to optimize. New potential configurations are 
randomly sampled in a neighborhood about the chosen 
configuration. We evaluate each random sample using 
the probability of improvement acquisition function [31]. 
The probability of collision is then recomputed using the 
sample with the highest likelihood of reducing the prob-
ability of collision. If the sampled trajectory has a lower 
probability of collision than the previous best trajectory, 
the best trajectory is updated to the sample. This process 
is repeated for a predefined number of iterations with a 
predefined number of samples at each iteration.

We tested the motion planner in a simulated chest 
cavity mesh environment shown in Fig. 6. This environ-
ment is segmented from an CT scan of a patient under-
going treatment for pleural effusion. We assume that the 
robot has been fully inserted into the pleural space and is 
tasked with exploring different regions of the space. The 
nominal trajectory through the chest had a 15% chance 
of colliding after planning using the PRM. After 50 iter-
ations of optimization, the probability of collision had 
been reduced to under 7%. Figure 7 shows the change in 
probability of collision over the optimization iterations. 

Fig. 6. The simulated chest cavity mesh environment used 
during motion planning, segmented from a CT scan of a patient 
undergoing a procedure to treat pleural effusion. (Top) The ex-
terior of the volume. The red circle shows the insertion point for 
the robot. (Bottom) The interior of the volume. The red circle 
shows the insertion point for the robot. The blue points show a 
point cloud representation of the robot’s shape inside the chest 
cavity in its home position (zero displacement for all tendons). 
Using our method, we plan trajectories for the robot through 
this space that are locally optimal with respect to the probabil-
ity of collision.

Fig. 7.  Results from the optimization of a nominal trajectory 
in the simulated chest cavity mesh environment. We ran 50 iter-
ations of Bayesian Optimization with respect to the probability 
of collision. The nominal trajectory had approximately a 15% 
chance of collision prior to optimization. After optimization, the 
probability of collision had been reduced to under 7%.
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Using our learned kinematic model, we more than halved 
the probability of collision.

6. Inverse Kinematics

Our MDN kinematic model also lends itself to solving the 
problem of inverse kinematics for tendon-driven contin-
uum robots. In Sec. 5, we show a method of minimizing 
the likelihood  that the robot will collide with obstacles 
in a given environment. Conversely, we can maximize the 
likelihood that the robot will occupy a desired geometry. 
Formally, given a desired robot geometry defined by a set 
of points Gdes, we seek

	

arg min log( ( | )

,

d
pEx

d

x d∈ −( )[ ]Gdes

subject to C

θ � (11)

where d is the set of tendon displacements, Cd is the set 
of constraints defining the physical limitations of the 
tendons, and pθ(x|d) is computed using the GMM output 
from our mixture density network. We use sequential 
least squares programming to find d∗ that minimizes the 
negative log likelihood (i.e. maximizing the log likelihood) 
of occupying the desired geometry [32].

This allows for principled reasoning over the full  
geometry of the robot as opposed to standard inverse 
kinematic models which only reason over the pose of 
the end-effector [21–23]. Our approach also takes into 

Fig. 9.  Inverse kinematics results at varying quantiles of negative log likelihood across 253 test cases. The blue points represent 
the desired geometry of the robot while the red points represent the predicted geometries at the predicted configurations. We ob-
serve that in the worst cases, our method is minimally misaligned with the desired geometry while in all other cases the predicted 
geometry aligns extremely well with the desired geometry.

(a) (b) (c)

(d) (e) (f)

Fig. 8.  Negative log likelihood values for the predicted con-
figurations of our inverse kinematics method across 253 test 
cases. The results are highly consistent ranging from –11.0 to 
–12.4 with a majority of cases being below –12.0.
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account unmodeled and uncertain effects on the robot 
during operation.

We test our inverse kinematics method on our test 
dataset described in Sec. 3. For each point cloud collected 
from our physical robot, we compute the set of tendon 
displacements  d̂ that maximizes the likelihood of occupy-
ing the prescribed geometry. We then compare the pre
dicted geometry at  d̂ with the desired geometry. Figure 8 
shows the negative log likelihood values across the 253 
test cases. These results show that our method performs 
consistently regardless of the desired geometry. In Fig. 9,  
we visualize our results at various negative log likelihood 
quantiles to qualitatively analyze the performance of our 
method. We see that in the worst case, our method pro-
duces a geometry that is minimally misaligned with the 
goal while in the majority of cases we successfully find 
configurations that match the desired geometry.

7. Conclusion

We present a novel approach to the modeling of tendon-
driven continuum robot kinematics. Our method models 
the geometric uncertainties associated with the robot 
kinematics through a mixture density network trained 
to output Gaussian mixture models that accurately re-
flect the distribution over geometries. We find that our 
model accurately represents the ground-truth distribu-
tions over geometries and is computationally faster than 
a state-of-the-art Cosserat rod model. We demonstrate 
the capabilities of our model in the downstream task of 
motion planning. We plan nominal trajectories and use 
the trained mixture density network to explicitly mini-
mize the probability of collision using Bayesian Optimi-
zation. We then show another application of our model 
in the domain of inverse kinematics. We show that we are 
able to reason over the full desired geometry of the robot 
to find configurations that optimize the likelihood of oc-
cupying the desired geometry.

In the future, we intend to apply the model to other 
continuum robot types. We also intend to integrate the 
optimization into the sampling process of a motion 
planner that integrates sampling with optimization for 
motion planning beyond the optimization of nominal tra-
jectories, similar to as in prior work [33, 34] but with our 
uncertainty model and metric. We also plan to apply our 
inverse kinematics model into our motion planner for a 
system that holistically reasons over unmodeled and sto-
chastic effects during planning and operation, however, 
more work is needed to expand our model to explicitly 
encode predicted end-effector state which will be needed 
for many (but not all) traditional planning and IK formu-
lations. In conclusion, we believe that the GMM-based ki-
nematic model presented in this work has the potential 
to improve safe planning and control of tendon-driven 
continuum robots in medicine.

Acknowledgment

This material is based upon work supported in part by 
the National Science Foundation under Grant numbers 
2133027 and 2323096. Any opinions, findings, and con-
clusions or recommendations expressed in this material 
are those of the authors and do not necessarily reflect the 
views of the NSF.

ORCID

Jordan Thompson   https://orcid.org/0009-0009-0920-4177
Brian Y. Cho   https://orcid.org/0009-0008-4144-3074
Daniel S. Brown   https://orcid.org/0000-0002-9570-1832
Alan Kuntz   https://orcid.org/0000-0003-0017-3932

References

 1.	 F. Wang, H. Wang, J. Luo, X. Kang, H. Yu, H. Lu, Y. Dong and X. Jia, 
Fiora: A flexible tendon-driven continuum manipulator for laparo-
scopic surgery, IEEE Robot. Autom. Lett. 7(2) (2021) 1166–1173.

 2.	 T. Kato, I. Okumura, S.-E. Song, A. J. Golby and N. Hata, Tendon-
driven continuum robot for endoscopic surgery: Preclinical devel-
opment and validation of a tension propagation model, IEEE/ASME 
Trans. Mechatron. 20(5) (2014) 2252–2263.

 3.	 J. Burgner-Kahrs, D. C. Rucker and H. Choset, Continuum robots for 
medical applications: A survey, IEEE Trans. Robot. 31(6) (2015) 
1261–1280.

 4.	 R. J. Webster III and B. A. Jones, Design and kinematic modeling of 
constant curvature continuum robots: A review, Int. J. Robot. Res. 
29(13) (2010) 1661–1683.

 5.	 S. Huang, D. Meng, X. Wang, B. Liang and W. Lu, A 3d static modeling 
method and experimental verification of continuum robots based 
on pseudo-rigid body theory, IEEE/RSJ Int. Conf. Intelligent Robots 
and Systems (IROS), (2019), pp. 4672–4677.

 6.	 D. C. Rucker and R. J. Webster III, Statics and dynamics of contin-
uum robots with general tendon routing and external loading, IEEE 
Trans. Robot. 27(6) (2011) 1033–1044.

 7.	 S. Grazioso, G. Di Gironimo and B. Siciliano, A geometrically exact 
model for soft continuum robots: The finite element deformation 
space formulation, Soft Robot. 6(6) (2019) 790–811.

 8.	 M. Bentley, C. Rucker and A. Kuntz, Interactive-rate supervisory 
control for arbitrarily-routed multitendon robots via motion  
planning, IEEE Access 10 (2022) 80999–81019.

 9.	 A. Parvaresh and S. A. A. Moosavian, Dynamics and path tracking 
of continuum robotic arms using data-driven identification tools, 
Robotica 40(4) (2022) 1098–1124.

10.	 R. F. Reinhart and J. J. Steil, Hybrid mechanical and data-driven 
modeling improves inverse kinematic control of a soft robot,  
Procedia Technol. 26 (2016) 12–19.

11.	 J. Thompson, B. Y. Cho, D. S. Brown and A. Kuntz, Modeling kine-
matic uncertainty of tendon-driven continuum robots via mixture 
density networks, in 2024 Int. Symp. Medical Robotics (ISMR), 
(2024), pp. 1–7.

12.	 P. Rao, Q. Peyron, S. Lilge and J. Burgner-Kahrs, How to model 
tendon-driven continuum robots and benchmark modelling per-
formance, Front. Robot. AI 7 (2021) 630245.

13.	 I. Ebert-Uphoff and G. S. Chirikjian, Inverse kinematics of discretely 
actuated hyper-redundant manipulators using workspace densi-
ties, in Proc. IEEE Int. Conf. Robotics and Automation (IEEE, 1996), 
pp. 139–145.

J.
 M

ed
. R

ob
ot

. R
es

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
H

E
 U

N
IV

E
R

SI
T

Y
 O

F 
U

T
A

H
 o

n 
05

/2
1/

25
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

https://orcid.org/0009-0009-0920-4177
https://orcid.org/0009-0008-4144-3074
https://orcid.org/0000-0002-9570-1832
https://orcid.org/0000-0003-0017-3932


2nd Reading	 WSPC/300-JMRR	 2540002 ISSN: 2424-905X

2540002-10

J. Thompson et al.

14.	 J. Suthakorn and G. S. Chirikjian, A new inverse kinematics algo-
rithm for binary manipulators with many actuators, Adv. Robot. 
15(2) (2001) 225–244.

15.	 Y. Wang and G. S. Chirikjian, Workspace generation of hyper-
redundant manipulators as a diffusion process on se(n), IEEE 
Trans. Robot. Autom. 20(3) (2004) 399–408.

16.	 Y. Wang and G. S. Chirikjian, Nonparametric second-order theory of 
error propagation on motion groups, Int. J. Robot. Res. 27(11–12) 
(2008) 1258–1273.

17.	 S. Lilge, T. D. Barfoot and J. Burgner-Kahrs, Continuum robot state 
estimation using gaussian process regression on se(3), Int. J. Robot. 
Res. 41(13–14) (2022) 1099–1120.

18.	 A. Kuntz, A. Sethi, R. J. Webster and R. Alterovitz, Learning the 
complete shape of concentric tube robots, IEEE Trans. Med. Robot. 
Bionics 2(2) (2020) 140–147.

19.	 W. Shen, G. Yang, T. Zheng, Y. Wang, K. Yang and Z. Fang, An accuracy 
enhancement method for a cable-driven continuum robot with a   
flexible backbone, IEEE Access 8 (2020) 37474–37481.

20.	 J. Chen and H. Y. Lau, Learning the inverse kinematics of tendon-
driven soft manipulators with k-nearest neighbors regression and 
gaussian mixture regression, Int. Conf. Control, Automation and 
Robotics (ICCAR), (IEEE, 2016), pp. 103–107.

21.	 W. Xu, J. Chen, H. Y. Lau and H. Ren, Data-driven methods towards 
learning the highly nonlinear inverse kinematics of tendon-driven 
surgical manipulators, Int. J. Med. Robot. Comput. Assisted Surg. 
13(3) (2017) e1774.

22.	 M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri and C. Laschi, 
Neural network and jacobian method for solving the inverse statics 
of a cable-driven soft arm with nonconstant curvature, IEEE Trans. 
Robot. 31(4) (2015) 823–834.

23.	 S. Garg, S. Dudeja and V. Rastogi, Inverse kinematics of tendon driven 
continuum robots using invertible neural network, 2022 2nd Int. 
Conf. Computers and Automation (CompAuto), (2022), pp. 82–86.

24.	 J. Kruse, Technical report: Training mixture density networks with 
full covariance matrices, preprint (2020), arXiv:2003.05739.

25.	 J. Van Den Berg, P. Abbeel and K. Goldberg, Lqg-mp: Optimized path 
planning for robots with motion uncertainty and imperfect state 
information, Int. J. Robot. Res. 30(7) (2011) 895–913.

26.	 J. Van Den Berg, S. Patil and R. Alterovitz, Motion planning under 
uncertainty using iterative local optimization in belief space, Int. J. 
Robot. Res. 31(11) (2012) 1263–1278.

27.	 W. Sun, L. G. Torres, J. Van Den Berg and R. Alterovitz, Safe motion 
planning for imprecise robotic manipulators by minimizing prob-
ability of collision, Robotics Research: The 16th Int. Symp. ISRR, 
Springer (2016), pp. 685–701.

28.	 L. E. Kavraki, P. Svestka, J.-C. Latombe and M. H. Overmars, Proba-
bilistic roadmaps for path planning in high-dimensional configura-
tion spaces, IEEE Trans. Robot. Autom. 12(4) (1996) 566–580.

29.	 S. Patil, J. Van Den Berg and R. Alterovitz, Estimating probability of 
collision for safe motion planning under gaussian motion and sens-
ing uncertainty, IEEE Int. Conf. Robotics and Automation (ICRA), 
(2012), pp. 3238–3244.

30.	 M. Pelikan et al., Boa: The bayesian optimization algorithm, in 
Proc. Genetic and Evolutionary Computation Conf. (GECCO), Vol. 1 
(1999).

31.	 D. R. Jones, A taxonomy of global optimization methods based on 
response surfaces, J. Global Optim. 21 (2001) 345–383.

32.	 D. Kraft, A Software Package for Sequential Quadratic Program-
ming, Forschungsbericht-Deutsche Forschungs- und Versuchsan-
stalt fur Luft- und Raumfahrt (1988).

33.	 A. Kuntz, C. Bowen and R. Alterovitz, Fast anytime motion planning 
in point clouds by interleaving sampling and interior point optimi-
zation, Robot. Res. 10 (2020) 929–945.

34.	 A. Kuntz, M. Fu and R. Alterovitz, Planning high-quality motions for 
concentric tube robots in point clouds via parallel sampling and 
optimization, IEEE/RSJ Int. Conf. Intelligent Robots and Systems 
(IROS), (IEEE, 2019), pp. 2205–2212.

JORDAN THOMPSON received the B.A. degree in Com-
puter Science and Applied Mathematics from Augustana 
College, Rock Island, IL, USA, in 2018, and he is currently 
pursuing the Ph.D. degree in computing from the Univer-
sity of Utah, Salt Lake City, UT, USA. His research inter-
ests include uncertainty aware A.I. systems and surgical 
robotics.

BRIAN Y. CHO received the B.S. and M.S. degrees in elec-
tronic systems engineering from Hanyang University, 
Ansan, South Korea, in 2016 and 2018, respectively. He 
is currently working toward the Ph.D. degree in Kahlert 
School of Computing, University of Utah, Salt Lake City, 
UT, USA. His research interests include robot learning, 
surgical robot automation, and robotics in challenging 
environments.

DANIEL S. BROWN received his B.S. and M.S. degrees 
from Brigham Young University and his Ph.D. from the 
University of Texas at Austin in 2020. From 2020 to 2022 
he was a postdoctoral scholar at the University of Cali-
fornia, Berkely. He is currently an assistant professor in 

the Kahlert School of Computing and the Robotics Center 
at the University of Utah. His research focuses on robot 
learning, human-robot interaction, and AI safety and ro-
bustness with the goal of developing robots and other AI 
systems that can safely and efficiently interact with, learn 
from, teach, and empower human users.

ALAN KUNTZ received the B.S. degree (Hons.) from the 
University of New Mexico, Albuquerque, NM, USA, in 
2014, and the M.S. and Ph.D. degrees from the Universi-
ty of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 
in 2016 and 2019, respectively, all in computer science. 
He was a Postdoctoral Scholar at the Vanderbilt Institute 
for Surgery and Engineering and the Department of Me-
chanical Engineering at Vanderbilt University, Nashville, 
TN, USA. In 2020, he joined as a Faculty Member at the 
Robotics Center, Kahlert School of Computing, University 
of Utah, Salt Lake City, UT, USA, as an Assistant Professor. 
His research interests include healthcare applications of 
robotics, artificial intelligence, design optimization, and 
robot motion planning.

J.
 M

ed
. R

ob
ot

. R
es

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
H

E
 U

N
IV

E
R

SI
T

Y
 O

F 
U

T
A

H
 o

n 
05

/2
1/

25
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.


