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Steerable needles are capable of accurately targeting difficult-to-reach clinical sites in the body. By bending around sensitive
anatomical structures, steerable needles have the potential to reduce the invasiveness of many medical procedures. However, inserting
these needles with curved trajectories increases the risk of tissue damage due to perpendicular forces exerted on the surrounding
tissue by the needle’s shaft, potentially resulting in lateral shearing through tissue. Such forces can cause significant tissue damage,
negatively affecting patient outcomes. In this work, we derive a tissue and needle force model based on a Cosserat string formulation,
which describes the normal forces and frictional forces along the shaft as a function of the planned needle path, friction model and
parameters, and tip piercing force. We propose this new force model and associated cost function as a safer and more clinically
relevant metric than those currently used in motion planning for steerable needles. We fit and validate our model through physical
needle robot experiments in a gel phantom. We use this force model to define a bottleneck cost function for motion planning
and evaluate it against the commonly used path-length cost function in hundreds of randomly generated 3-D environments. Plans
generated with our force-based cost show a 62% reduction in the peak modeled tissue force with only a 0.07% increase in length
on average compared to using the path-length cost in planning. Additionally, we demonstrate planning with our force-based cost
function in a lung tumor biopsy scenario from a segmented computed tomography (CT) scan. By directly minimizing the modeled
needle-to-tissue force, our method may reduce patient risk and improve medical outcomes from steerable needle interventions.
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1. Introduction

Bevel-tip steerable needles provide minimally invasive ac-
cess to anatomical sites deep in the human body.1–4 These
needles leverage asymmetric tip forces to curve around
anatomical obstacles during needle insertion, enabling ac-
curate targeting of clinically relevant sites that are diffi-
cult or impossible to reach safely with traditional needles.
The design trend has been to maximize the needle’s curva-
ture capability to increase reachability to many areas of the
body in complex anatomy.5,6 However, with an increase in
curvature, the needle exerts more force on the surround-
ing tissue during deployment due to redirecting insertion
forces.2 With large tissue forces perpendicular to the nee-
dle (see Fig. 1) comes an increased potential of significant
tissue damage, such as tissue compression or a shearing

event,2 where the needle shaft cuts sideways through the
surrounding tissue, causing severe damage4 (see Fig. 2).

Minimum path length and maximum clearance are the
most commonly used cost functions in needle steering.7–10

These cost functions are mainly intended to encourage
planned motions that minimize some notion of tissue dam-
age by piercing through less total tissue (path-length cost)
or steering far from highly sensitive anatomical structures
(obstacle-clearance cost).

In this work we instead develop an efficient model de-
scribing the forces from the needle’s shaft on surrounding
tissue for a given path. In our model, the force exerted
by the needle on the surrounding tissue is a function of
the puncture force at the needle’s tip, the needle’s shape
through the tissue, and the friction between the needle’s
shaft and the surrounding tissue (see Fig. 1).
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Fig. 1. A tissue normal force profile for three example paths us-
ing our new needle-to-tissue force and friction model. Darker col-
ors indicate small forces and lighter colors indicate large forces.
The upper and lower paths have similar lengths and maximum
tissue forces. The middle path is 8.5% shorter but has 79%
higher maximum normal force despite the top and middle paths
having matching maximum curvatures. According to our model,
the middle path has a higher probability of causing tissue dam-
age than the other two paths.

(a) (b)

Fig. 2. An example of a needle (a) before and (b) after signif-
icant shearing through gelatin. Shearing is lateral slicing by the
needle shaft, caused by tissue fracturing due to excessive forces
from the needle’s shaft. In (b) we show a dotted line of the shape
prior to shearing, and a red region showing the sheared area.

We develop a motion-planning cost function based on
our force model. We assume that the magnitude of the tis-
sue normal force is correlated with the probability of tissue
damage, from tissue compression to shearing. We further
assume that no shearing occurs below an unknown mini-

mum force threshold. Thus, we incorporate the maximum
tissue force along the shaft as a cost function during mo-
tion planning, to effectively push down the force peak below
the minimum force threshold. This cost function, used in
a suitable motion-planning algorithm, enables us to plan
motions that reach clinically relevant targets while avoid-
ing sensitive anatomical structures and directly minimizing
the modeled normal force exerted upon the tissue by the
needle shaft during insertion.

We propose this new clinically relevant force model and
cost function as a replacement for currently used motion-
planning cost functions with steerable needles. Notably,
with this model, the tissue normal forces are dependent
on the entire needle trajectory and cannot be determined
locally in isolation. However, with a specified tip piercing
force, we can compute the tissue normal forces in a single
pass analytically, backward, starting at the needle’s tip. As
a key result, our model shows that neither path length nor
maximum curvature along a path can accurately serve as a
proxy metric for the tissue normal forces (see Fig. 1).

Our force-based cost function is an instance of a bottle-
neck cost, which has the full cost concentrated in a localized
piece of the trajectory. In our case, the full cost is local-
ized at the point of maximal tissue force. We demonstrate
the use of this force-based cost with a modified motion-
planning algorithm. This algorithm produces plans that
achieve better costs, as computation time allows.

We provide the following contributions:

(1) a simple and efficient needle-to-tissue force and
friction model;

(2) a new physically based and clinically relevant
motion-planning cost function for needle steer-
ing based on our proposed model, and a motion-
planning algorithm that leverages our force-based
bottleneck cost function;

(3) two strategies for fitting our model parameters to
experimental results without direct force measure-
ments between the needle and tissue.

Our motion-planning experiments show that, com-
pared to using the path-length cost, planning with our force
cost generates paths with a 62% decrease in maximal force
at the cost of only 0.07% higher path length on average.

2. Related Work

Due to their potential to reduce the invasiveness of many
types of therapeutic and biopsy-based procedures, steer-
able needles have been proposed for use in the kidneys,11

liver,11 prostate,12 brain,13 and lung.14 There exist many
needle actuation designs, including beveled,3 pre-bent,13,15

passive flexure,4,16 variable-length flexure,17 active flex-
ure,18,19 fracture-directed inner stylet,6 a programmable
bevel,20 and external magnetic actuation.21–23 See van de
Burg et al.5 for a review on steerable needle designs. Most
of these designs leverage an asymmetric tip, which causes
them to curve in tissue as they are inserted from their base
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outside of the tissue.4,5

Measuring and understanding the force interaction be-
tween the needle and tissue is important to minimizing tis-
sue damage. Instrumented needle tips have measured the
needle’s piercing force to better understand the tip’s in-
teraction with different types of tissue and tissue bound-
aries.24 Techniques have been used to decrease needle in-
sertion force with barbs,25 vibrations,25,26 bidirectional ro-
tation,26 and slower insertion speeds.27

Many have attempted to model the force interaction
between the needle shaft and surrounding tissue, modeling
insertion forces, tissue deformation, needle deflection, and
cutting forces.1,28,29 These works primarily focus on finite-
element simulations based on the full Cosserat-rod model
and tissue mechanics.30 Although these finite-element sim-
ulations are fast enough to enable real-time control of steer-
able needles, they are not efficient enough for motion plan-
ning since optimal motion planning searches the space of all
possible valid trajectories, minimizing a cost. Instead, our
force model is based on the Cosserat-string formulation,
which enables a simpler analytically tractable model that
can be incorporated into existing motion planners as the
cost function with the goal of minimizing the tissue damage
by the needle shaft, including compression and shearing.

Motion planning enables robots to plan trajectories
that avoid obstacles while moving from some start state to
a goal state. Sampling-based motion planning is a popular
paradigm that leverages random sampling of configurations
or controls to produce collision-free plans.31 These include
the Rapidly exploring Random Tree (RRT)32 and Prob-
abilistic Roadmap (PRM)33 methods which incrementally
construct a collision-free tree or graph.

Motion planning for steerable needles has been ap-
proached in a variety of ways. Pinzi et al.10 present the
Adaptive Hermite Fractal Tree algorithm, which leverages
optimized geometric Hermite curves34 combined with a
fractal tree. Fu et al.35 developed the Resolution-Complete
Search (RCS) algorithm, and the resolution-optimal exten-
sion RCS*,36 which provably finds the lowest-cost needle-
steering plan within the resolution of a discretized needle-
steering action space. Favaro et al.37 adapt the Batch In-
formed Trees (BIT*) algorithm38 combined with a path
smoothing method in order to plan motions for a pro-
grammable bevel-tip needle. Patil et al.7,39 built upon
RRT to develop the Reachability-Guided RRT (RG-RRT)
method for steerable needles. RG-RRT has been adapted
in other work to plan motions for a three-stage lung tumor
biopsy robot,8 and to plan in pulmonary cost maps gen-
erated from medical imaging.9 We build upon RG-RRT in
this work, with a change that enables us to produce plans
that achieve better costs, as computation time allows.

3. Method

We first derive our shaft-to-tissue force model, then we in-
corporate this force model as a bottleneck cost function in
a motion-planning context.

3.1. Shaft-to-Tissue Force Model

We derive a model for the forces exerted by a flexible nee-
dle shaft traveling on a planned path through tissue. We
model the needle as a Cosserat string,30 which assumes in-
finite flexibility, and incorporate a kinetic friction model to
derive tissue forces as a function of the needle’s planned
path through the tissue. This assumption becomes more
accurate as the bending stiffness of the needle decreases,
relative to the tissue modulus, a prominent design trend.4,6

3.1.1. Model Assumptions

As needles become thinner and more flexible, the forces
required to keep the needle bent in a static curved shape
become negligible. As the needle is pushed through tissue,
the piercing force Fp must be transmitted from an inser-
tion force Fins at the base of the needle along the shaft
to the needle’s tip. We assume that kinetic friction is the
dominant force along the shaft and comes from the com-
bination of compression from surrounding tissue and the
needle pushing against the tissue along curves. The friction
and normal forces are coupled in a way similar to the well-
known capstan equation.40 Therefore, we model the needle
inside the tissue as an ideal Cosserat string, which assumes
that (i) the flexural rigidity is negligible, and (ii) the inter-
nal force vector is always tangent to the needle’s path.30,41

Conventionally, a Cosserat string is assumed to only
carry tension force (since an ideal string will buckle un-
der any compressive force). However, we assume that com-
pressive force can be carried without buckling because the
surrounding tissue will constrain the needle and prevent
buckling, even for very low stiffness needles. The presented
model is otherwise identical to a classical Cosserat string.

3.1.2. Needle Equilibrium

In this model, the needle is characterized by its centerline
curve in space p(s) ∈ R3 as a function of the parameter
s ∈ [0, L], where s is the arc length along the needle path of
length L. The derivative of p(s) with respect to s, denoted
as ṗ(s), is a unit vector tangent to p(s) pointing toward
the robot’s tip.

Along the needle’s path, the tissue exerts a distributed
force on the needle shaft which can be decomposed into two
components, as seen in Fig. 3: one parallel to the needle,
ff (s) = −ff (s)ṗ(s), representing friction; and one perpen-
dicular to the needle, f⊥(s), representing the net normal
force from tissue. The force balance on a small needle sec-
tion of length ds is then

−n(s+ ds) + n(s) + f⊥(s)ds− ff (s)ṗ(s)ds = 0,

where n(s) is the internal force vector carried by the nee-
dle, parallel to the needle path toward the needle’s tip,
and representing the transfer of Fins to Fp. The inset in
Fig. 3 shows the n(s) vector is the force that the proximal
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Fig. 3. An example piecewise-circular arc path with parameter
endpoints si and curvatures κi. A small segment of length ds is
shown with forces. Position p(s), friction ff (s), tissue normal
force f⊥(s), internal needle force n(s), insertion force Fins, and
piercing force Fp are labeled.

material exerts on the distal material. Dividing by ds and
allowing ds→ 0, then

−ṅ(s) + f⊥(s)− ff (s)ṗ(s) = 0, (1)

where the dot represents the derivative with respect to s.
This is the conventional Cosserat-string equilibrium equa-
tion,30,41 with the distributed force separated into two or-
thogonal components. The assumption that the internal
force vector n(s) is aligned with the tangent vector ṗ(s)
implies that the needle cannot carry internal shear loads.
Thus

n(s) = n(s)ṗ(s)

ṅ(s) = ṅ(s)ṗ(s) + n(s)p̈(s),

where the scalar n(s) = ∥n(s)∥ represents the compressive
force carried by the needle shaft at s. Substituting these
into (1) and decomposing into the parallel and perpendic-
ular components, we get

ṅ(s) = −ff (s) (2)

f⊥(s) = n(s)p̈(s).

For any path-length parameterized curve p(s), the magni-
tude of p̈(s) is the curvature, κ(s), thus

f⊥(s) = κ(s)n(s), (3)

where f⊥(s) is the magnitude of f⊥(s).

3.1.3. Friction Model and Force Integration

To calculate n(s), the magnitude at one point must be
given. Typical points are either at the beginning (the in-
sertion force n(0) = Fins) or the end (the piercing force
n(L) = Fp) as depicted in Fig. 3. For a given needle path, we
consider a known piercing force magnitude, Fp. We assume
the magnitude of the needle’s insertion force, Fins, is suf-
ficiently large to overcome friction and provide the needed
piercing force, Fp, at the tip. However, it could be easily
adapted to a known insertion force magnitude, Fins, if that
is measured or controlled, thus using the model to predict
the current piercing force magnitude, Fp. In our evaluation,
we assume a constant insertion speed and piercing force Fp.

We assume a kinetic friction model for ff (s) of the
form

ff (s) = µ(s)
(
fc(s) + f⊥(s)

)
, (4)

where µ(s) is the conventional coefficient of kinetic fric-
tion, f⊥(s) is the needle shaft’s normal force on the tissue,
and fc(s) is the distributed compressive force of the sur-
rounding squeezing tissue; µ(s)fc(s) is the resulting nomi-
nal distributed frictional force that would be present even
for a straight needle path. Substituting this friction model
into (2), we arrive at the following first order linear differ-
ential equation

ṅ(s) = −µ(s)fc(s)− µ(s)κ(s)n(s). (5)

Solving this, subject to an initial or final condition, yields
the internal compression force in the needle, from which
the tissue normal force can be calculated via (3). In gen-
eral, fc(s) and µ(s) could vary along s as the needle passes
through heterogeneous tissues; Fp may vary for each in-
termediate needle shape through heterogeneous tissue or
tissue state. Additionally, µ(s) and Fp may depend on the
rotational velocity of the needle.26 We can numerically in-
tegrate (5) backward from the tip to the base starting with
n(L) = Fp, and substitute the solution into (3) to calculate
the tissue normal force distribution along the needle’s path.
Alternatively, we can also express the general solution for
n(s) as

n(s) = Ae−B(s) − e−B(s)

∫
µ(s)fc(s)e

B(s)ds

B(s) =

∫
µ(s)κ(s)ds,

where A is a constant of integration that can be determined
by applying the tip condition n(L) = Fp, and where, de-
pending on the nature of the functions fc(s), µ(s), and κ(s),
the integrals can either be evaluated analytically or numer-
ically.

If fc(s), µ(s), and κ(s) are piecewise constant—say
fc,i, µi, and κi on s ∈ (si−1, si) as in Fig. 3, and let ni(s) =
n(s) and f⊥,i(s) = f⊥(s) for the ith segment—then for s ∈
(si−1, si), and κi > 0, the solution reduces to

ni(s) = −
fc,i
κi

+

(
ni+1(si) +

fc,i
κi

)
eµiκi(si−s), (6)
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Fig. 4. Force heat maps along the needle path using this work’s
new tissue normal force model. Darker colors indicate small val-
ues, lighter colors indicate large values. (a) Internal compression
force n(s) carried by the needle from insertion to tip piercing
force. (b) Resulting magnitude of the normal force exerted from
the needle on the tissue f⊥(s) for the same path followed in (a).
(c) Two paths from start to goal of the same length and of the
same two straight segments and one arced segment. This demon-
strates that high curvature at the path’s beginning rather than
its end results in much higher tissue normal forces; in this case,
the lower-right’s max f⊥(s) is 74% higher than in the upper-left.

with (3) becoming

f⊥,i(s) = κin(s).

For zero-curvature sections, κi = 0, f⊥,i(s) = 0, and
ni(s) = ni+1(s) + µifc,i(si − s). This solution can be itera-
tively evaluated section by section, starting at si = L and
proceeding backward. Note that the n(s) solution is con-
tinuous across the entire needle trajectory, whereas f⊥(s) is
discontinuous due to possible curvature discontinuities at
each si, as illustrated in Fig. 4(a) and 4(b) respectively.

If we choose to ignore the effects of friction (by set-
ting µ(s) = 0), we get f⊥(s) = κ(s)Fp, which results in a
tissue normal force directly proportional to the curvature.
Thus, while it may be intuitive to assume the curvature
itself would be a good proxy for the probability of tissue
compression or shearing, our model predicts that assump-
tion is only true in the absence of shaft-to-tissue friction.
If we ignore the influence of f⊥(s) on friction (by removing
f⊥(s) from (4), assuming f⊥(s) ≪ fc(s)), we get a simple
linear internal force model for (5) with friction being in-
dependent of needle shape. If we consider the full friction
model, even for a small friction coefficient µi, the required
insertion force for a given piercing force grows exponentially
with the product of the friction coefficient, length, and cur-
vature. As the path gets longer, the internal needle force,
n(s), grows exponentially as seen in (5), thus predicting a
sharp increase in the tissue-damage probability.

3.1.4. Friction Models

In this work, we consider friction models that consist of
constant fc, µ, and Fp over the full needle shape.

The first friction model we consider ignores the relation
of the needle rotational velocity on friction behavior, and
uses the same fc, µ, and Fp for the full insertion trajectory.
We call this the single-parameter model in our evaluation.

Because of the observation that insertion force de-
creases with needle rotation,26 we consider a second fric-
tion model that utilizes separate µ and Fp parameters for
when the needle is rotating or non-rotating. We assume the
compressive tissue force fc is unaffected by needle rotation,
and therefore, this second friction model uses a single fc re-
gardless of the needle rotational velocity. We call this the
double-parameter model in our evaluation.

To clarify, when the needle is rotating, the needle tip
moves in a straight path. When the needle is non-rotating,
the needle tip moves in a constant curvature arc in the
direction of the bevel tip, specifically at the maximum cur-
vature κmax. To achieve curvature between 0 and κmax,
we employ duty cycling between rotating and non-rotating
states proportional to the desired percentage of κmax cur-
vature.13,42,43 Although rotating and non-rotating sections
dictate the needle tip’s path, when the needle is rotat-
ing, the rotating friction coefficient, µrot, applies to the en-
tire path; likewise for the non-rotating friction coefficient,
µnorot.

3.1.5. Model Fitting

Measuring the normal forces between the needle and tissue
is difficult due to the challenge of instrumenting such thin
tissue-embedded needles without interfering with the force
interaction. However, a key insight of our work is that the
model can be fit without such measurements. We present
two fitting methods. The first method fits based on the axial
insertion forces, which can be measured by instrumenting
the needle outside of the tissue. However, this is itself also
difficult as it is non-trivial to completely capture all forces
at the needle insertion site while rotating the needle and
constraining it from buckling in air. The second, and po-
tentially less burdensome method, is to fit the model using
a set of labeled shearing events.

When using measured insertion forces, Fins, one may
fit the model parameters using any non-linear least squares
solver, fitting on the error in Fins between measured val-
ues and the model’s prediction. Alternatively, if given an
average shearing force f̄shear, our model can predict the
depth of shearing by determining the earliest point during
path execution that exceeds f̄shear over a given trajectory.
This strategy is the basis of our second fitting method;
one may similarly fit the model parameters using any non-
linear least squares solver, fitting on the error between the
predicted and measured shearing depths.

For models fit against measured Fins, the average shear
force f̄shear can be viewed as an additional model parame-
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ter, and fit to labeled shearing depths. We use the dataset’s
sample mean of the model’s predicted maximal f⊥(s) over
the needle’s shapes at the labeled shearing depths.

Given that we use these fit models exclusively as cost
functions in motion-planning, the exact magnitude of pre-
dicted needle-tissue force need not be fully accurate. What
matters is the model’s ability to rank paths relative to
each other, with the goal of generating trajectories with
all f⊥(s) below the unknown minimum shearing threshold,
fthresh. To this end, we evaluate our models by comparing
the ranking they assign to paths against the true rank-
ing (from labeled shearing depths). Since path ranking is
scale-invariant, the f̄shear used in fitting against measured
shearing depths is functionally arbitrary.

We use the Trust Region Reflective algorithm44 for
non-linear least squares. We constrain all parameters to be
strictly positive to represent meaningful physical quanti-
ties. For the double-parameter model, we further constrain
Fp,rot ≤ Fp,norot and µrot ≤ µnorot to match the prior ob-
servation of lower insertion force during needle rotation.26

3.2. Motion Planning

We propose a motion-planning framework that enables
planning of needle trajectories with a lower risk of tissue
damage by minimizing the modeled normal forces being
applied by the needle to the tissue during insertion, thus
increasing the likelihood that f⊥(s) < fthresh for all s.

3.2.1. Bottleneck Cost

Let π be a needle trajectory parameterized by time, t ∈
[0, tf ], with tf representing the final time of trajectory π.
Let pt(s) be the needle’s centerline curve, as defined in Sec-
tion 3.1, at time t of trajectory π (denoted π(t)); likewise
let the t subscript refer to the associated function over the
needle shape at π(t). We define our force-based cost as the
maximal tissue normal force along any needle shape within
the trajectory,

CF (π) = max
t∈[0,tf ]

max
s∈[0,Lt]

f⊥,t(s),

with f⊥,t(s) determined by our force model above in (3).
This CF (π) cost function is an example of a bottleneck

cost, a concept that has been extensively studied in the
motion-planning community (see, e.g., from Solovey et al.45

and references within) with diverse applications such as
following manipulator and surgical trajectories.46,47

Formally, if c is a point-wise cost along a trajectory π,
then we can construct its associated bottleneck cost as

C(π) = max
t∈[0,tf ]

c(π(t)).

Our point-wise trajectory cost cF (also referred to as
the needle shape cost) is the maximal tissue normal force
along the needle shape at time t,

cF (π(t)) = max
s∈[0,Lt]

f⊥,t(s).

Algorithm 1 Bottleneck-Cost Planner

1: procedure Planner(ALG, q0, G, O, C, ε)
ALG : sampling-based motion planner
q0: start configuration G: goal configuration set
O: obstacle set C: cost function
ε: approximation parameter

2: cmax ←∞
3: while time allows do
4: π ← ALG(q0, G,O,C, cmax)
5: cmax ← C(π)/(1 + ε)
6: report π

We use the common follow-the-leader assumption: the nee-
dle shape at π(t) is equal to the needle tip trajectory from
0 to t; i.e., if t < t′ and s ∈ [0, Lt], then pt(s) = pt′(s).
In the case of constant model parameters during the tra-
jectory, the maximal shape cost is at the trajectory’s end,
π(tf ). However, in that case, our cost CF maximizes over
the needle shape and resembles a bottleneck cost.

One key property of bottleneck costs is that a trajec-
tory’s cost is the max of its subtrajectories’ costs, i.e., if
t1 < t2 < t3, then

C(π[t1, t3]) = max(C(π[t1, t2]), C(π[t2, t3]));

whereas accumulation-based costs are additive,

C(π[t1, t3]) = C(π[t1, t2]) + C(π[t2, t3]).

Existing optimizing motion planners either (i) re-
quire solving the two-point boundary value problem (see,
e.g.,45,48,49) or (ii) cannot use a bottleneck cost.

3.2.2. Approach

As we are not aware of any existing method to efficiently
solve the two-point boundary value problem for steerable
needles, we introduce a general simple-yet-effective frame-
work. Our approach, summarized in Alg. 1, takes as in-
put any sampling-based motion planner ALG that can effi-
ciently discard candidate paths below a given cost threshold
cmax during its search, such as discarding edges that cause
the path’s cost to exceed cmax.

a Our algorithm also requires
an approximation factor ε, which controls how aggressively
the cost threshold geometrically decreases after each suc-
cessive found candidate trajectory. For the first solution
to be unconstrained, we initialize cmax to infinity (Alg. 1
line 2). Once a solution is obtained, the maximal cost value
cmax is updated to be C(π)/(1+ε) (Alg. 1 line 5), where C
is the cost function and π is the solution returned by ALG
(Alg. 1 line 4).

If c∗ is the optimal cost (i.e., c∗ = infπ C(π)), then
no progress can be made if cmax < c∗, in which case, the

aThis is a very natural assumption; any planner that main-
tains paths using a configuration-space graph can typically be
adapted to discard candidate paths below a given cost threshold.
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previous plan would have cost c = (1 + ε)cmax < (1 + ε)c∗.
A large ε may reach this point sooner than a small ε, but
may ultimately find a final trajectory with higher cost.

3.2.3. Implementation

To apply this proposed framework to our needle-steering
domain, we use as ALG the RG-RRT algorithm39—a state-
of-the-art motion planner for needle steering. For our set-
ting we make two changes to RG-RRT: (i) instead of plan-
ning from the needle-insertion site to the target in the body,
we perform a backward search and plan from the target in
the body to a specified insertion site, and (ii) if an edge un-
der consideration would exceed the provided cost threshold
cmax, then we mark it as invalid.

The backward search is due to our choice of assuming
a known constant piercing force Fp, and the model thus
solving for the forces backward, as in (6). Because of the
follow-the-leader assumption we only need to consider the
final needle shape. If we have a piecewise-constant Fp, we
would need to calculate the maximal force over all sub-
shapes where the tip is at a piercing force discontinuity.
This computation could be done as a single backward pass
over the final shape, accounting for each individual sub-
shape ending at piercing force discontinuity boundaries.

For constant piercing force Fp, we only need to consider
the final shape when computing f⊥(s), which depends on κi

and n(s) in (3). This is because a path extension can only
increase f⊥(s), since κi is a constant, but n(s) grows expo-
nentially. To compute f⊥(s) along a single needle shape, we
start at the tip where n(L) = Fp, compute n(s) backward
one segment at a time using (6), and use (3) to compute
f⊥(s). We store the internal needle force n(s) as part of
the motion-planning state, which, combined with planning
from the goal toward the start, enables fast computation
of f⊥(s) for each added segment. Each segment is checked
against the maximum-allowed cost when added and pruned
if that cost is exceeded (see cmax in Alg. 1 line 4). The re-
sulting found plan from the goal to the start is then re-
versed to create a planned trajectory. Planning the path
as if it were reversed in direction enables efficient and ac-
curate computation of the maximum normal forces during
forward insertion.

When considering the double-parameter model, our
motion planner keeps track of two separate n(s) values as
it propagates from the needle tip to the base. A segment is
considered rotating in our implementation if κ ≤ 0.9κmax

and is non-rotating if 0.1κmax ≤ κ; for 0.1 ≤ κ
κmax

≤ 0.9,
the segment acts as both due to duty cycling.

4. Experiments

We first validate our force model’s ability to rank candidate
paths through physical experiments. We then use one set of
fit parameters to compare the effectiveness of planning for
needle steering with our force-based cost function (the force

(b)

Aluminum Rod Nitinol Needle Bevel Tip

Force
Sensor

Force
Sensor

Rotary
Motor

Linear
Motor

Linear
Platform

(c)

5mm0

(a)

Bevel Tip

Collapsable Sheath

Fig. 5. The (a) needle bevel tip, (b) full needle, and (c) robot
design for our physical experiments.

planner) compared to using the path-length cost (the length
planner). We perform planning in 400 randomly generated
environments. We compare the plans from the force and
length planners by their path lengths and maximal tissue
forces. Finally, we demonstrate the use of our force planner
within a simulated lung biopsy scenario, planning through
a segmented lung CT.

4.1. Physical Experiment

Our needle, shown in Fig. 5(b), consists of a nitinol tube
with a large bevel tip (see Fig. 5(a)). The thin 165mm
flexible nitinol tube section has a 0.37mm outer diameter
(OD) and a 0.24mm inner diameter (ID). The 5mm bevel
tip is 1.22mm OD, 1.02mm ID, filled with cyanoacrylate,
and beveled to approximately 45°. For stability and extra
length to account for the collapsed sheath, the thin nitinol
tube is affixed to a 107mm aluminum rod.

The robot, shown in Fig. 5(c), uses two Nema 17 step-
per motors, one for linear actuation, and the other to rotate
the needle. A two-segment collapsible sheath prevents the
needle from buckling in air.27 The sheath and rotary motor
are affixed to 1 kg 1-D strain-gauge force sensors. We add
both force signals to measure the needle’s axial force.

Our phantom is 10% Knox gelatin and 90% water, by
weight. Above the gelatin, a camera records insertions for
later labeling of curvature and shearing (see Fig. 2).

We insert the needle at 5mm/s in open-loop control.
The needle’s rotational velocity alternates between 0 and
2 rev/s. We achieve variable curvature using duty cycling.42
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4.1.1. Results

We gathered 35 individual runs on a wide variety of con-
trolled paths. Each path is 150mm, but we stop insertion
when we observe shearing. All paths start with a straight
segment (i.e., the needle rotating) from between 10mm to
100mm. Of the 35 paths, 19 of them contained at least
one duty-cycled segment from 70 to 95%. Before beginning
a run, the needle is inserted 1 to 2mm manually and ad-
justed until the force sensor readings are nearly at zero.

To perform a fit and generate predictions from our
model, we require the path curvature at each point. On
13 paths, we labeled the change in orientation ∆θ from
video footage and controlled insertion length ∆s, which
results in κ = ∆θ/∆s. We estimated an average κmax =
0.020mm−1 and standard deviation 0.003mm−1 (turning
radius of 50mm). We use κmax = 0.02mm−1 in all fitting
and planning in this paper.

For brevity, we refer to the single- and double-
parameter models fit from measured Fins as Force-Single
and Force-Double, respectively. We likewise define
Shear-Single and Shear-Double as the models fit from la-
beled shearing depths. When fitting against shear depth, we
use a constant f̄shear = 17.6mN/mm, calculated from the
mean between many average thresholds from fits against
insertion force. We chose this value to enable the two fit
models to scale similarly.As the ranking is scale-invariant,
this value has no impact on the models’ path rankings.

To evaluate each model’s ability to rank paths, we or-
der the paths by shearing depth, comparing manually la-
beled shearing depths against the model predictions. The
Kendall’s τ correlation is a statistical measure of the sim-
ilarity of two ordered sets, commonly used in informa-
tion retrieval and recommender systems.50 We use the
similarity-weighted Kendall τ distance,50 a generalization
of Kendall’s τ weighted by element distances,

KD =
∑
i<j

Dijσij ,

where σij is one if elements i and j are out of order and
Dij is their distance; i.e., the absolute difference between
the actual shear depths. The Kendall correlation coefficient
is obtained from the Kendall distance by normalizing, in-
verting, and scaling to be between -1 and 1,

τD = 2− KD∑
i<j

Dij

.

To obtain a p-value, we use the law of large numbers and a
null hypothesis of random ordering. Using this similarity-
weighted Kendall τD, we can measure the quality of path
rankings such that misranked paths result in a metric dis-
tance proportional to the difference between their measured
shearing depths.

To determine the effect of the model fitting dataset size
on the ranking capability of our four models, we compare
the obtained τD for various fitting dataset sizes in Fig. 6.
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Fig. 6. Fitting data size versus similarity Kendall τ correlation
coefficient. For each fitting data size, d, we created ten random
samplings and performed fits. We show the median τD with a
solid line between upper and lower quartiles in the shaded re-
gions. A perfect ordering is correlation 1 and a random ordering
in expectation is correlation 0.

For each dataset size, d, we made ten samplings of d runs
for fitting, with the remainder kept as a hold-out dataset.
All 35 runs are used in calculating τD. The Force-Single,
Force-Double, Shear-Single, and Shear-Double models con-
verge to a median τD of 0.87, 0.89, 0.91, and 0.92, re-
spectively; with p-values between 1.5× 10−7 to 5.8× 10−7.
The Force-Single, Force-Double, and Shear-Single appear
to converge after a dataset size of 2, 10, and 18, respec-
tively. The Shear-Double model shows higher variability,
but roughly converges at a dataset size of 20. The Fins-fit
models converge much sooner, primarily due to the large
number of force samples (approximately 100 to 300 sam-
ples per run), compared to a single shearing-depth sample
per run. But the shear-depth-fit models perform better in
ranking, primarily because the ranking is also performed
on shearing depth. We also see the double-parameter mod-
els can fit better than single-parameter models but require
more data. However, we show that all fit models provide
similar discriminatory abilities, some of which require sig-
nificantly fewer experimental runs to fit well.

For the remainder of the paper, we use fits from one
of the random datasets of size 12 discussed previously.
The fit model parameters are seen in Table 1. We note
that the parameters vary quite heavily between the mod-
els. The Shear-Single and Shear-Double models are only
expected to accurately predict shearing depth, not spe-
cific force values; therefore, their fit parameters may ex-
hibit large variance. The primary difference between Shear
and Force model parameters is the predicted friction coef-
ficient, with the force-fit models predicting very small fric-
tion and the shear-fit models predicting very high friction.
Of note, the 10 different fits of 12 runs varied widely in
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Table 1. Fit parameters and τD correlation against 12 runs for our two models and two fitting strategies.

Model
Fp,rot

(mN)

Fp,norot

(mN) µrot µnorot

µrotfc
(mN/mm)

µnorotfc
(mN/mm)

f̄shear
(mN/mm) τD p-value

Force-Single 122.0 122.0 0.0371 0.0371 9.48 9.48 13.2 0.87 5.9× 10−7

Force-Double 123.5 123.5 0.000258 0.000276 9.27 9.98 13.1 0.89 3.6× 10−7

Shear-Single 438.5 438.5 0.287 0.287 4.99 4.99 17.6 0.90 2.3× 10−7

Shear-Double 82.8 171.4 0.232 0.248 11.07 11.83 17.6 0.94 0.7× 10−7
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Fig. 7. Qualitative correlation visualization of measured shear
depth versus predicted shear depth for various fits. The model
parameters are fit from the same set of 12 randomly selected
runs, shown in light green, with the remaining 23 runs shown
in blue. A perfect model would have all points on the y = x
diagonal dotted line.

fit parameters, but their ability to accurately rank paths
was not drastically impacted. For example, the µrot pa-
rameter had a median fit (with lower and upper quartiles
specified with “Q:”) of 0.019 (Q: 0.0001 to 0.13), 0.0003
(Q: 0.0001 to 0.12), 0.30 (Q: 0.04 to 0.61), and 0.33 (Q:
0.30 to 0.36) for Force-Single, Force-Double, Shear-Single,
and Shear-Double, respectively, yet their τD correlations
were 0.871 (Q: 0.870 to 0.888), 0.889 (Q: 0.876 to 0.896),
0.905 (Q: 0.902 to 0.908), and 0.920 (Q: 0.907 to 0.927),
respectively over all 35 runs.

In Fig. 7, we demonstrate the correlation between mea-
sured and predicted shear depths of our four fit models. For
a motion-planning cost function, it is more important that
the correlation points are ordered (i.e., increasing) rather
than lying along the diagonal y = x. For all four models,
we qualitatively see a strong correlation between measured
and predicted shear depths.

To demonstrate the fit quality and visualize our
model’s predicted forces, we display measured forces com-
pared against predictions from the fit Force-Single and
Force-Double models in Fig. 8(a) and Fig. 9(a) (for one

run from the fit dataset and the hold-out set, respectively).
The double-parameter model is able to account for jumps
in the insertion force when the needle changes its rotational
velocity. However, the errors (middle plot), predicted tissue
force profiles (Fig. 8(b) and Fig. 9(b)), and predicted shear-
ing depths (vertical lines in plots) of both models are very
similar. Although the force fit is worse against the hold-out
run than the in-fit run, the final predicted shearing depth
is better in this particular hold-out example.

We briefly compare the predicted and measured inser-
tion forces. The root mean square error (RMSE) of inser-
tion force until shearing was 62mN, 61mN, 193mN, and
166mN for Force-Single, Force-Double, Shear-Single, and
Shear-Double, respectively. These models show poor accu-
racy for insertion force. This is likely due to our assumption
of negligible bending stiffness. However, these models can
accurately rank paths, which can be leveraged as a useful
motion-planning cost.

4.2. Motion-Planning Evaluation

As our method is the first to consider maximal tissue
normal force, we evaluate our motion planning algorithm
(Alg. 1) with our force-based cost function (using the
Shear-Double model parameters from Table 1) versus the
popular path-length cost. We refer to the planners that
minimize path length and our force cost as the length plan-
ner and force planner, respectively.

We set a timeout of 100 s and an approximation factor
ε = 0.0001. We implement random restarts if no solution
is found after 10,000 RG-RRT iterations (i.e., number of
sampled needle tip positions), increasing this limit by 5%
each time we perform a random restart. On each run, both
planners are provided the same random seed, ensuring their
first solutions are identical before path optimization begins.

As shown in Fig. 10, we task the planner with finding
a path in 3-D from the start to the goal, where the planner
must avoid spherical obstacles. We evaluate the length and
force planners in 400 environments with randomly gener-
ated spherical obstacles, using a needle of 1mm OD and a
minimum clearance of 1mm. The start position and goal
pose are identical and fixed for all environments. We gen-
erate the spherical obstacles with the radius sampled uni-
formly from 2 to 10mm and the center sampled uniformly
from the workspace. Spheres are rejected if they contain
the start or goal positions. We generate these environments
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Fig. 8. Modeled and measured Fins of a run used in fitting, and the models’ predicted tissue force along the path. (a) Plot of
(top) measured and modeled Fins, (middle) modeling error in Fins, and (bottom) needle rotational velocity. The plot ends at the
measured shearing, and the predicted shearing is indicated with vertical lines. The upward jumps in insertion force happen when
the needle stops spinning, as seen in the rotational velocity subplot. (b) and (c) Intermediate needle shapes and modeled tissue
force from Force-Single and Force-Double, respectively.

with at least four spheres, then continue adding spheres
while the trivial motion-planning solution is collision-free.
The trivial solution is a single constant-curvature path be-
tween the start and goal.

4.2.1. Results

Our planner successfully found a plan in 331 of the 400
randomly generated environments. Since our environment
generation does not ensure the existence of a solution, we
discard from our analysis the 69 environments with no suc-
cessful motion plans.

One example environment is demonstrated in Fig. 10.

The initial path found by both planners (Fig. 10(a)) is sub-
optimal in both path-length and force costs. The subse-
quent paths found by the length planner (Fig. 10(b)) and
the force planner (Fig. 10(c)) show a similarly obtained
path length (difference of 0.2%), but the length planner’s
path shows significantly more curving near the start (see
Fig. 10(d)), which results in 5.7 times higher force cost than
the force planner’s force cost.

As further evidence that the length cost function does
not adequately minimize forces, the length planner’s re-
turned force costs after 100 s are 1.6± 1.9 times larger than
those from the force planner (i.e., a force ratio of 2.6± 1.9).
In Fig. 11, the quantile plot in the upper-left shows that at
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Fig. 9. Modeled and measured Fins from a hold-out run, and the models’ predicted tissue force along the path. This plot is
structured the same as Fig. 8, but shows a path not used in the fit. In this example, the predicted insertion forces from this
particular fit do not fit the exponential behavior shown in the measured insertion force. Despite this insertion force mismatch,
the predicted shearing depth for the Force-Double has nearly identical error percentage compared to Fig. 8 (10%), and for the
Force-Single, the error percentage is much better (12% versus 4%).

around 10 s, over 90% of the returned paths have a larger
force than those returned from the force planner. The top-
right density plot in Fig. 11 additionally shows a large
spread of force cost ratios after 100 s of planning and shows
many plans that exhibit up to ten times the force cost than
the force planner.

We also compare the path lengths over time for each
of the planners. Notably, the force planner produces paths
of comparable length to the length planner, but does so
indirectly (see (6)) while significantly improving the tissue
forces of the paths. Fig. 11 shows the length planner per-
forms slightly better than the force planner in path length.

The length cost ratio between the force-planner and length-
planner is on average 1.0007 with standard deviation 0.0065
(p-value of 0.03 against the null hypothesis of 1.0 mean).
This difference is imperceptible and well within the stan-
dard deviation of path lengths from the length planner
(1.0%). This shows that optimizing for tissue forces enables
found paths with drastically less force on surrounding tis-
sue without measurably sacrificing in path length.

It is an intuitive result that a planner optimizing for
tissue normal forces would produce plans that have lower
tissue normal forces than one that was not. However we
present this analysis to demonstrate that path length is
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Fig. 10. Generated collision-free trajectories in a randomly
generated 3-D environment with spherical obstacles. We com-
pare paths generated by two cost functions: path-length cost and
our method’s force-based cost. (a) Initial solution by both plan-
ners before optimization. (b) and (c) Converged solutions from
using the path-length and our force-based costs, respectively.
Based on an average shearing threshold f̄shear = 17.6mN/mm
(from which this model was fit), the maximum modeled tissue
forces for (a), (b), and (c), respectively, are 2.7, 1.1, and 0.2
times the threshold f̄shear. (d) 3× zoomed-in view of both so-
lutions at the start; the path from (b) is below and (c) is above,
with much more curvature on path (b). The length difference
between (b) and (c) is less than 0.2%, but the force cost from
(b) is 5.7 times larger than the force cost from (c).

not a sufficient proxy metric for tissue normal forces, even
though path length has an impact on tissue normal forces
as shown in (6). The intuition for this is shown in Fig. 4(c).
Trajectories that are identical both in length and maximum
curvature can have dramatically different maximum tissue
normal forces. This highlights the need for considering the
tissue normal forces explicitly during motion-planning.

4.3. Anatomical Environment

We next demonstrate initial feasibility of using the motion-
planning method that considers tissue normal forces with a
clinically relevant task in an anatomical environment. We
task the motion planner with planning a path for a needle
from a patient’s chest wall to a target deep in the lung, as
in percutaneous lung tumor biopsy. We utilize a CT scan
from the 2017 lung CT segmentation challenge51,52 in the
cancer imaging archive.53 Using the segmentation method
of Fu et al.9 we segment the large vasculature and bronchial
trees in the lung. These are used as obstacles for the motion
planner that must be avoided.

We ran the force and length planners on this problem
100 times with a timeout of 100 seconds each. We show in
Fig. 12 one example plan from our force planner; demon-
strating its ability to find a path from the start to the goal
while avoiding the obstacles and doing so while minimiz-
ing tissue normal forces. The length planner’s force cost
was (4± 23)% larger than the force planner’s force cost,
yet the force planner’s length cost was only (0.02± 0.49)%
larger than the length planner’s length cost.

5. Conclusion

This work provides the following contributions: (i) a simple
and efficient Cosserat-string-based needle-to-tissue force
and friction model, (ii) a clinically motivated and compu-
tationally efficient motion-planning cost function for nee-
dle steering based on our needle-to-tissue force and friction
model, and a motion-planning algorithm that leverages our
force-based cost function, and (iii) two effective strategies
for fitting our force model parameters with easily obtained
insertion force measurements or labeled shearing events,
depending on whichever is easier to obtain. Minimizing the
tissue normal forces during needle steering has the poten-
tial to significantly reduce the risk of critical tissue damage
events, thus improving patient outcomes.

In this work, we utilized a homogeneous gel phantom
to validate and fit our force model. In future work, we in-
tend to utilize real heterogeneous tissues involved in clinical
procedures to evaluate our method’s efficacy in real clini-
cal settings. Shearing events utilized in the model fitting
process would then need to be measured in ex vivo tissue
using medical imaging, such as fluoroscopy.

This work’s analysis does not yet consider the stochas-
ticity in needle control54 and in damage outcome. We in-
tend to investigate the use of our cost function in stochastic
risk metrics for risk-based planning under uncertainty.55
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curves around the lung’s bronchial tubes while minimizing tissue
normal forces.
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