IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.24, NO.12, DECEMBER 2018

3225

Time Interval Ray Tracing for Motion Blur

Konstantin Shkurko™, Cem Yuksel ', Daniel Kopta

, lan Mallett™, and Erik Brunvand™, Member, IEEE

Abstract—We introduce a new motion blur computation method for ray tracing that provides an analytical approximation of motion
blurred visibility per ray. Rather than relying on timestamped rays and Monte Carlo sampling to resolve the motion blur, we associate a
time interval with rays and directly evaluate when and where each ray intersects with animated object faces. Based on our
simplifications, the volume swept by each animated face is represented using a triangulation of the surface of this volume. Thus, we can
resolve motion blur through ray intersections with stationary triangles, and we can use any standard ray tracing acceleration structure
without modifications to account for the time dimension. Rays are intersected with these triangles to analytically determine the time
interval and positions of the intersections with the moving objects. Furthermore, we explain an adaptive strategy to efficiently shade the
intersection intervals. As a result, we can produce noise-free motion blur for both primary and secondary rays. We also provide a
general framework for emulating various camera shutter mechanisms and an artistic modification that amplifies the visibility of moving

objects for emphasizing the motion in videos or static images.

Index Terms—Motion blur, ray tracing, sampling

1 INTRODUCTION

MOTION blur plays a vital role in realistic simulation of
the camera image capturing process as well as in pro-
duction of smooth and natural appearance of motion. Fur-
thermore, it is a powerful artistic tool for expressing motion
in both videos and static images.

In the context of ray tracing for high-quality rendering,
motion blur has been typically handled using Monte Carlo
sampling by attaching a random timestamp to each ray
sample [1]. This approach adds an extra dimension to the
sampling process and often reduces the effectiveness of
adaptive sampling techniques commonly used for anti-
aliasing. Furthermore each ray must intersect the scene
geometry at its timestamp, which requires on-the-fly recon-
struction of the scene geometry on a per-ray basis. This is
cumbersome, particularly for deforming objects, and
requires specialized acceleration structures, which are often
inefficient at handling large motion with deformations.
Moreover, like any Monte Carlo integration, increasing the
number of samples reduces the noise, but never completely
eliminates it.

In this paper, we propose time interval ray tracing, provid-
ing an analytical approximation for computing motion-
blurred visibility. Our approach is based on a simplification
of the concept of intersecting rays with the volumes swept
by moving triangles [2]. We invoke four simplifying
assumptions that allow us to efficiently evaluate the spatio-
temporal intersections of a given ray with a time interval (as

o The authors are with the School of Computing, University of Utah, Salt Lake
City, UT 84112.
E-mail: {kshkurko, dkopta, imallett, elb}@cs.utah.edu, cem@cemyuksel.com.

Manuscript received 11 July 2017; revised 23 Oct. 2017, accepted 7 Nov. 2017.
Date of publication 20 Nov. 2017, date of current version 26 Oct. 2018.
(Corresponding author: Konstantin Shkurko.)

Recommended for acceptance by X. Tong.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TVCG.2017.2775241

opposed to a single timestamp) using traditional ray inter-
section tests with stationary triangles. Hence, we can use any
ray tracing acceleration structure without modification to han-
dle dynamic geometry. As a result, we can produce noise-
free motion blur for both primary and secondary rays
(including those for shadows, reflections, and global illumi-
nation) using only a single ray sample. The technical contri-
butions in this paper are:

e Simplifications that permit efficient intersections of a
ray with moving geometry using only stationary
triangles,

e An adaptive subdivision strategy to efficiently shade
the intersection intervals of rays,

e A general framework to emulate various camera
shutter mechanisms, and

e An artistic modification to amplify the visibility of
motion-blurred objects.

Our results show that we can produce noise-free motion
blur (Fig. 1) very effectively and that our approach outper-
forms time-sampling strategies, especially in scenes with
considerable motion.

2 BACKGROUND

In a camera, a sensor (film or electronic) integrates incident
light over both space and time. A shutter controls the amount
of light that reaches the sensor by modulating how long the
sensor is exposed to light (exposure). Mechanical shutters,
which are present in all analog and some high-end digital
cameras, block light with a moving panel or with moving
blades. Electrical “shutters” vary the time over which the
sensor accumulates charge: a global shutter reads out the
entire image at the same time while a rolling shutter reads
scanlines sequentially. Relative motion between the camera
and an object produces the photographic effect called motion
blur as a result of the object being visible to different areas of
the sensor over time. Since a shutter modulates the sensor’s

1077-2626 © 2017 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5828-737X
https://orcid.org/0000-0002-5828-737X
https://orcid.org/0000-0002-5828-737X
https://orcid.org/0000-0002-5828-737X
https://orcid.org/0000-0002-5828-737X
https://orcid.org/0000-0002-0122-4159
https://orcid.org/0000-0002-0122-4159
https://orcid.org/0000-0002-0122-4159
https://orcid.org/0000-0002-0122-4159
https://orcid.org/0000-0002-0122-4159
https://orcid.org/0000-0002-9809-1937
https://orcid.org/0000-0002-9809-1937
https://orcid.org/0000-0002-9809-1937
https://orcid.org/0000-0002-9809-1937
https://orcid.org/0000-0002-9809-1937
https://orcid.org/0000-0002-2505-3649
https://orcid.org/0000-0002-2505-3649
https://orcid.org/0000-0002-2505-3649
https://orcid.org/0000-0002-2505-3649
https://orcid.org/0000-0002-2505-3649
https://orcid.org/0000-0001-8881-927X
https://orcid.org/0000-0001-8881-927X
https://orcid.org/0000-0001-8881-927X
https://orcid.org/0000-0001-8881-927X
https://orcid.org/0000-0001-8881-927X
mailto:
mailto:

3226

e

Stratified Sampling, 9.1 sec

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24,

__-‘ __.-‘

Time Interval Ray Tracing (Ours), 9.1 sec

NO. 12, DECEMBER 2018

Reference, 7.3 min

Fig. 1. A deforming slinky falling down a staircase generates complex interaction between blurred visibility and shadows. Our time interval ray tracing
method produces noise-free motion blur in time similar to stratified sampling.

exposure to light, its construction, type of motion, and speed
affect the appearance of motion blur.

Methods simulating motion blur in computer graphics
typically model continuous motion and deformation of
objects by a series of snapshots in time, referred to as key-
frames. Each keyframe stores all information necessary to
reconstruct the object at its timestamp. Methods can be clas-
sified broadly into image-space and object-space techni-
ques, which we summarize briefly. For a more complete
treatment we refer the reader to a report on the state-of-the-
art by Navarro et al. [3].

Image-space techniques post-process rendered images
with motion information, most commonly using per-pixel
motion vectors [5], [6], [7], [8]. These algorithms are efficient
to compute (especially on GPUs), and find wide use in real-
time applications. Unfortunately, because they operate on
rendered images, they are both inaccurate and unable to
produce motion blur for secondary effects such as shadows
and reflections.

Alternatively, object-space methods use object motion
directly for more accurate simulation of motion blur, but ata
greater expense due to maintaining and sampling the
dynamic scene varying over time. Objects undergoing rigid
motion can be handled simply by applying a transformation
computed analytically at a particular time instant. Deforma-
tions, on the other hand, are represented by either time-
dependent paths or transformations per face. Accelerating
queries for mesh faces requires modifying existing accelera-
tion structures to handle a notion of time. Object-space meth-
ods can be classified based on the underlying rendering
algorithms they use: rasterization or distribution ray tracing.

Rasterization-based methods determine visibility by ras-
terizing the volume swept by a moving triangle [2]. These
methods generally separate shading from visibility; there-
fore, they typically cannot account for illumination changes
or secondary effects such as shadows, reflections, and
refractions. Current stochastic techniques first rasterize
bounding volumes of moving triangles and then evaluate
whether they intersect pixel samples via ray tracing [9] or
form time-dependent edge equations per-triangle [10],
[11], [12] that can be extended to handle curved motion [13].

Storing all spatio-temporal intersections for each pixel is an
important problem with rasterization and a simple compres-
sion technique has been proposed that combines neighbor-
ing intersection intervals [11]. Image-space line samples [14]
can be used to compute spatio-temporal anti-aliasing and
even approximate motion-blurred ambient occlusion [15]. A
recent GPU algorithm uses micropolygons with an analytical
visibility computation for offline rendering with motion
blur [16]. Researchers have proposed augmenting graphics
hardware for higher-dimensional rasterization that could
seamlessly handle motion and defocus blur for primary
rays [17].

Distribution ray tracing randomly selects a timestamp for
each primary ray [1]. This can require a large number of
samples to generate low-noise images. Furthermore, it
needs on-the-fly reconstruction of the scene’s entire geome-
try for each timestamped ray. Glassner [18] proposed modi-
fying existing acceleration structures to account for time
dependencies of geometry and nodes. Modifications have
been applied to grids [19], k-d trees [20], [21], and bounding
volume hierarchies [22], [23], [24], [25], [26].

Motion blur computation can be improved by various
non-uniform sampling and reconstruction strategies. Sam-
ples can be distributed over multiple dimensions by using a
k-d tree to reduce error estimates and then fed into an aniso-
tropic reconstruction filter [27]. Other methods apply aniso-
tropic reconstruction filters to high-dimensional lightfield
samples [28], [29], [30], [31]. Reconstructing images from a
wavelet basis can be incorporated to reduce variance [32].
Fourier domain analysis allows sampling both image and
time domains adaptively before applying shear filters to
reconstruct the motion-blurred image [33]. Covariance
matrices storing 5D frequency information can guide this
process [34]. Furthermore, it is possible to reconstruct the
motion-blurred image using compressed sensing analysis on
a sparse set of image samples [35]. Recently, Sun et al. [36]
proposed a blue-noise sampling strategy that extends line-
segment sampling [14] to incorporate motion blur.

Researchers have also proposed non-photorealistic ren-
dering techniques for motion blur. Schmid et al. [37] built
on prior ideas [2], [38] to generate motion traces. Jones and

SHKURKO ET AL.: TIME INTERVAL RAY TRACING FOR MOTION BLUR

\ Face Side

‘\Edge\

Face

Face

Edge Edge
\ J
t, “)<Edge/4 t,
(a)

Fig. 2. A face of a moving object (a) forming a prism, and (b) triangulated
sides traced by edges forming the prism surface.

Keyser [39] proposed a method that generates additional
geometry to visualize the motion silhouette.

3 SIMPLIFYING ASSUMPTIONS

Our time interval ray tracing approach for computing
motion blur is based on intersecting rays with the volume
swept by a dynamic triangular face (Fig. 2a). We refer to
this volume as a prism. In general, this intersection can be
arbitrarily complex depending on the complexity of the
motion, but virtually all motion blur computation methods
rely on some basic assumptions. The traditional assump-
tions that are commonly used are the following;:

Assumption 1. Ray origins and directions remain con-
stant in time and space. This assumption is satisfied by primary
rays in camera space and secondary rays generated on objects
static in camera space. Secondary rays Qenerated on dynamic
objects, however, do not satisfy this assumption; hence, we treat
them differently.

Assumption 2. Each dynamic vertex has a linear motion
between keyframes. This is a common assumption employed in
almost all motion blur computation methods. Additional key-
frames can be introduced to reduce the discretization error associ-
ated with faces that undergo rotation or non-linear deformation.

To formulate an our motion blur solution, we introduce
two new assumptions that sufficiently simplify the problem:

Assumption 3. The intersection (hit) point of a ray with a
dynamic triangular face moves linearly over the face surface.
Similar to Assumption 2, this assumption is satisfied for linear
motion involving translation and scale. Rotations and arbitrary
deformations, however, can produce a non-linear intersection move-
ment over the face. However, introducing additional keyframes
reduces the discretization error. This assumption allows us to sig-
nificantly simplify the intersection computation. If the movement
of the intersection point is linear, we only need to compute the inter-
section of a ray with the surface of the prism, instead of computing
the coordinates of the intersection through the prism volume. The
entry point indicates where and when the ray begins intersecting
with the face, and the exit point indicates where and when the inter-
section ends. Based on this assumption, all intersection points in-
between these two points can be calculated using linear interpola-
tion. Since the interpolation is done per-face, the interpolated inter-
section path approaches the ideal path as the resolution of the
dynamic object increases.

Assumption 4 (Optional). The bilinear patch generated
by dynamic edges between two keyframes can be approxi-
mated using two triangles. This is analogous to the triangula-
tion of surfaces for rendering and it allows us to approximate the
prism surfaces using only stationary triangles (Fig. 2b). Similar
to Assumptions 2 and 3, this one is perfectly satisfied for motion
involving translation and scale. Using higher resolution

3227
A
£1A B / J
Cr————e - - — - - - — - - - - ———— ———o
©
Ee_ ¢
C \
D H
F
t, t t, t t t t, time

Fig. 3. An example space-time hit record shown as a depth-time graph.
The hit interval A-J corresponds to a static face, which is occluded by
the three dynamic faces with hit intervals C-D, D-F, and E-H. The hit
interval E-H is partially occluded by D-F. The points C, D, E, F, and H cor-
respond to ray intersection points with three prism surfaces.

triangulations (with more keyframes) increases the accuracy of the
ray intersection with the prism sides. Note that this assumption
can be eliminated by simply storing the prism sides as bilinear
patches and computing intersections without triangulation [40].
Therefore, this assumption is optional, but it greatly simplifies the
implementation of our method by handling all intersections as tri-
angles without introducing a noticeable difference in practice.

4 TIME INTERVAL RAY TRACING

Our approach associates each camera ray with a time inter-
val [to, t1], where t, is the time the shutter opens and ¢; is
the time it closes. Hit tests with static faces are handled in
the traditional way. To find the intersection with a dynamic
face, rays intersect the surface triangles making up the face’s
prism. The hit points with a prism indicate where and when
the ray begins and ends intersecting with the corresponding
dynamic face. Note that the hit interval with a dynamic face
does not necessarily cover a ray’s entire time interval.
Hence, a ray can intersect with multiple dynamic faces
within its time interval. These intersections are stored in a
space-time hit record and then shaded to compute the accu-
mulated color of the ray within its interval.

The space-time hit record keeps a list of hit intervals for
static and dynamic faces that intersect the ray. Fig. 3 shows
the depth-time graph of an example space-time hit record,
where depth represents the distance of the hit point to the
ray origin (similar to [11]). Each hit interval spans the time
between when the ray begins and when it ends intersecting
the corresponding face. There can be at most a single static
face in the hit record that spans the entire time interval of
the ray, but this static hit interval can be occluded by any
number of dynamic hit intervals corresponding to dynamic
faces. The end points of the dynamic hit intervals are deter-
mined by the ray intersections with the prism surfaces. All
hit data between these end points are interpolated linearly
based on Assumption 3. If all faces are opaque, the hit
record keeps a disjoint set of hit intervals, such that no inter-
vals overlap in time. At any time within a ray’s space-time
hit record, the individual hit interval closest to the ray origin
occludes the others. If there are semi-transparent faces,
however, hit intervals may overlap.

4.1 Shading Hit Intervals
To compute the accumulated radiance of a ray within its time
interval, we must integrate the space-time hit record over

3228

time by shading each hit interval. Prior methods using distri-
bution ray tracing blindly compute this integral using Monte
Carlo sampling by tracing multiple rays, each of which
would find a single random hit point within the space-time
hit record. In our case, however, the space-time hit record is
already populated with all intersections of the ray within the
entire time interval before we begin shading. Therefore, we
can leverage this information to strategically pick the points
that will be shaded to minimize the number of shading oper-
ations necessary to approximate this integral.

For static hit intervals a single shading call is sufficient.
Secondary rays generated while shading a static hit interval
(such as shadow, reflection, or global illumination rays) are
assigned the time interval of the static hit interval. This
way, we can easily compute motion-blurred secondary
effects on static objects.

On the other hand, a dynamic hit interval cannot be
shaded with a single shading call, as the hit information
(including the hit point, texture coordinates, and surface nor-
mal) can change within the interval. Moreover, we cannot
assign time intervals for the secondary rays generated on
dynamic objects, because the hit location can change over
time, which violates Assumption 1. Therefore, we must shade
the hit interval by shading instantaneous points in time.

Shading a hit interval essentially integrates over a 1D path
on a face where the ray intersects it. We employ an adaptive
shading strategy to minimize the number of shading opera-
tions, while dedicating enough shading operations to
approximate this integral. We begin by shading both end
points of the hit interval. Let ¢4 and ¢ be the two end point
times of a hit interval A-B and F'(q, t) be the shading function
that returns a radiance value L, where q is the hit information
used during shading (such as the surface normal and texture
coordinates). After we compute Ly = F(q,,t4) and Lp =
F(qp,tp), we decide whether to subdivide the interval based
onAL =Lz —L,and Aq = q; — q4. If AL and Aq are below
user-defined error tolerances, we approximate the value of
the integral as At(L4 + Lp)/2, where At =tp — t4, which
corresponds to linearly changing radiance L from A to B.
Otherwise, we split the hit interval into two halves at time
tc = (ta +tp)/2. In this case, we rely on Assumption 3 to
compute q at tc using linear interpolation of q 4 and q;. To
limit the level of subdivision, we stop splitting intervals
when At is below a user-defined threshold At,,;,,. To achieve
a minimum level of subdivision, we split intervals with At
above a user-defined threshold At,,,,. For all test results pre-
sented in this paper, we used only a radiance difference
threshold AL,,;,; we did not take the variation in shading
parameters Aq into account for subdivision decisions.

In general, the intersection point of a ray with a dynamic
object moves over that object’s surface with respect to time.
Therefore, when the intersection point leaves a face of the
object, it typically moves onto a neighboring face. As a result,
two neighboring hit intervals often have a common end
point (such as the point D in Fig. 3). To avoid shading the
same point on the object surface multiple times, we can cache
the values of L at the end points shared by neighboring inter-
vals. To reduce the number of shading operations further,
we can combine multiple connected hit intervals and begin
our adaptive subdivision by shading the two end points of
the joint set of hit intervals (such as points C'and F'in Fig. 3).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.24, NO.12, DECEMBER 2018

4.2 Shutter Simulation

A mechanical camera shutter takes some time to open and
close. To account for this when computing the accumulated
radiance of a ray, we use a shutter response function S that
indicates the percentage of incident radiance allowed to
pass through the shutter at any given time. Hence, the radi-
ance that reaches the sensor can be computed as

t
L(x o) = / S(x,) Li(x, 1) dt, M
to

where L;(x, t) is the incoming radiance that arrives at time ¢
through point x on the image plane. Note that S can also be
used to emulate time-varying exposure and time-dependent
film/sensor response to light.

When shading hit intervals for static objects, we can
move the shutter function into the shading equation. Since
the hit point information for a static hit interval remains
constant, we can apply the shutter function to the incoming
illumination during shading. Thus, the rendering equation
can be written as

L@utont) = [Liufoito,t)f(0n0,) (@ n)do;, @)
Q
with
t
L“(a)“ f()7 tl) = / S(X, t)LL (Cl)i7 t)dt, (3)
20

where L, is the reflected radiance, L;; is the incoming radi-
ance factoring the shutter function S, € is the hemisphere,
fs is the surface BRDF with incoming w; and outgoing w,
directions, and n is the surface normal. This formulation
assumes that for static faces the BRDF is static as well. Note
that L; in Equation (3) might be coming from yet another
static hit interval. In that case, we can compute L;, similarly
as in Equation (2) by applying S to the incoming light.

This leads to a very simple rule: the shutter function is
applied while computing the incoming radiance of any time
interval. When shading a particular timestamp (used for
shading dynamic hit intervals), we do not consider the shut-
ter function. Instead, we apply the shutter function to each
dynamic interval outside of the shading call using
Equation (1).

4.3 Amplified Motion Blur

As an object moves faster, motion blur stretches and the
object becomes less visible. Sometimes, it is desirable to
exaggerate the visibility of an object’s motion for artistic
purposes, such as creating motion trails. In our system, we
can amplify the motion blur by selectively boosting visibil-
ity of dynamic intervals. A ray’s accumulated radiance can
be written as a weighted sum over the radiances of the
dynamic and static intervals Lg, and L, using

L(Xa th tl) = adynLdyn(Xa th tl) + astathtat (X7 t07 tl)) (4)

where o4y, and o, are the fractions of the shutter interval
occluded by dynamic and static intervals, respectively. We
amplify the visibility of the dynamic objects using a user-
defined parameter y € (0, c0), defining instead a modified
visibility as oy, = (ctgyn)'’”. This formulation ensures that

SHKURKO ET AL.: TIME INTERVAL RAY TRACING FOR MOTION BLUR

Ay € [0,1] for agy, € [0,1] regardless of the chosen y value.
Since this increases the total visibility of the ray, we must
scale the visibility of the static objects accordingly, using
Ay = (1 = ag,,) /(1 — @gyn). Note that y = 1 disables ampli-
fication, y > 1 amplifies visibility, and values y € (0,1)
weaken visibility. Note that such adjustments are also auto-
matically applied to secondary effects (such as shadows,
reflections, occlusion, and global illumination) caused by
dynamic objects.

5 IMPLEMENTATION DETAILS

The rendering algorithm is very similar to traditional ray
tracing. Rays with timestamps traverse a BVH to find the
closest hit before shading it. Interval rays traverse a BVH
with prism triangles (Fig. 2). During traversal, each ray
builds a space-time hit record (Fig. 3). Then, each hit inter-
val is shaded using adaptive subdivision. Hit intervals of
static objects generate secondary rays with intervals. Hit
intervals of dynamic objects are shaded at specific time
points, producing secondary rays with timestamps.

While the underlying theory of our motion blur approxi-
mation is conceptually simple, an efficient implementation
requires a number of non-trivial modifications to a ray-
tracing-based renderer. In this section, we explain the
details of these modifications.

The input to our rendering system is a collection of trian-
gular meshes that include the positions of all dynamic verti-
ces for all keyframes. In a typical renderer, the mesh data
includes a list of faces, each with three vertex indices. Our
method also generates a list of edges, each with two vertex
indices and up to two face indices. Note that the prism of a
face has eight triangles (Fig. 2b): two of them correspond to
the face at times t, and ¢, (face triangles), and a pair of trian-
gles per edge form the sides of the prism (edge triangles). The
edge list allows neighboring faces to share edge triangles so
they are not duplicated and the prism triangulations are con-
sistent across neighboring faces. All of these triangles are
placed into an ordinary acceleration structure for ray tracing.

The acceleration data structure merely keeps a list of tri-
angle indices. We use one bit of the triangle index to indi-
cate whether it is a face or an edge triangle. If the hit
triangle is a face triangle, the second bit determines whether
it is the face at the beginning or end of the keyframe. If the
hit triangle is an edge triangle, the second bit determines
which one of the two triangles that approximate the bilinear
patch is hit. The remaining bits keep the corresponding face
or edge index. Thus, given a triangle index, we can deter-
mine the vertex positions of the triangle using either the
face or the edge list. Note that the vertex positions of all
these triangles can be gathered directly from the input mesh
data using these triangle indices. There is no need to explic-
itly store the vertex indices of each triangle.

During ray traversal, we keep a list of hit points as a ray
intersects triangles. Each intersection with a face triangle is
recorded as a single hit point associated with the face index.
When the ray intersects an edge triangle, however, we must
treat it differently. If the edge is in-between two faces (i.e.,
the edge structure stores two face indices), it means that the
ray exits one prism and enters another. Therefore, we record
up to two hit points: one for each of the two faces sharing
the corresponding edge. We group the hit points using their

3229

face indices. For each pair of hit points with the same face
index, we generate a hit interval and place it in the space-
time hit record. Note that a ray can intersect with the same
prism at multiple different intervals. Therefore, if there are
more than two hit points associated with the same face,
they are grouped in pairs ordered by the closest hit times,
so that we can produce the correct set of intervals. Note that
grouping by ray depth instead can result in incorrect recon-
struction of the intervals in some cases.

When a ray hits a face triangle, the hit point can be found
using the barycentric coordinates of the intersection, and
the hit time of the intersection is merely the time of the face
(either t; or t;). On the other hand, when a ray hits an edge
triangle, we cannot simply rely on the barycentric coordi-
nates. This is because the barycentric coordinates on a single
triangle may not be enough to approximate the bilinear
coordinates of the hit point on the corresponding bilinear
patch for the moving edge. Instead, we compute the hit
point and time using all four vertices that define the bilinear
patch. Let 7 and j be the two vertex indices of the edge with
vertex positions v}, and v, at time), and v| and v; at time
t1. The hit position p on the bilinear patch defined by these
vertices can be written using the bilinear mapping as

p=(1- u)((l —)V} +vv%) +u((1 — V)V, +vv{))

where © and v are the bilinear coordinates, which corre-
spond to time and position along a moving edge, respec-
tively. Solving for u and v reveals the barycentric
coordinates of the hit point on the dynamic face A\ =
[v,1 =, O]T and the time of the hit t; = to + (t1 — to)u.
Equation (5) defines three equations for two unknowns, so a
closed-form solution can be found by using two of the three
dimensions. However, depending on the motion and the
chosen two dimensions, the solution can be numerically
unstable. Pathological cases exist when the edge direction
or the motion is perpendicular to both dimensions. Further-
more, since we are approximating the bilinear patch using
two triangles, the intersection point on the edge triangle
may not reside exactly on the bilinear patch. As a solution,
in our implementation we approximate v and v using mean
value coordinates [41] v}, w(, w}, and w] that correspond to
vi, v, vi, and v} respectively, such that

ur (W) +w))/(w) + w) + wi + w]) and (6)

v (w4 wl)) (wh + wl) + w4). 0

To bound the error in approximating bilinear patches as
two triangles, one must consider both possible triangulations
of the bilinear patch. No matter the shape, the bilinear patch
is contained within the volume defined by these triangula-
tions. The maximal error between either triangulation and
the bilinear patch occurs at time (¢y + ¢1)/2 and evaluates to

emaT:HV\(})_VB"‘V{_VLlH/Q (8)

When we insert a hit interval into the space-time hit
record, we rely on depth values for occlusion culling. An
inserted interval may overlap temporally with an existing
interval. When the entire time interval of the ray is covered
by a set of intervals in the space-time hit record, we use the

3230

maximum depth value in the hit record for early termina-
tion during ray traversal.

Our prism structure can also be used to trace rays with
timestamps. In that case, it is possible that the ray origin can
be inside one or more prisms, resulting in an odd number of
hit points. By sending another ray in the opposite direction to
find the other hit point, we can generate an interval for those
prisms. Finally, we check if this interval overlaps with the
ray’s timestamp. Note that when tracing rays with time-
stamps, the space-time hit record keeps only a single hit point.

Finally, when using complex shutter functions that do
not depend on the position of the sample on the image plane
x, we can build lookup tables to efficiently integrate
dynamic hit intervals using Equation (1). Let L4 = L;(x,¢4)
and Lp = L;(x,tp) be the incoming radiance for a shaded
interval A-B between times ¢4 and ¢ . The effective radiance
incorporating the shutter function

I (B t—ta
(X,tA,tB)— S(t) LA+(LB_LA)tB—tA dt, (9)
ta

can be written as

(tBLA — tALB)AS/ + (LB — LA)AS//

L(X, tA7 tB) - tB — tA 5 (10)
where
122
AS = S'(tg) — S'(ta) = / Syt and (1)
ta
ip
AS" = §"(t) — S"(t4) = / 1S(t)dt . (12)
ta

Equation (10) can be computed quickly for any shutter func-
tion using lookup tables for S’(t) and S”(¢). For relatively sim-
ple shutter functions, the integrals in Equations (11) and (12)
can be evaluated directly from a closed-form expression.

6 RESULTS

We tested our implementation of time interval ray tracing
using a simple multi-threaded non-packetized CPU ray
tracer. The performance results are from a computer with an
Intel Core i7-5820K processor with 32 GB RAM. Our imple-
mentation relies on two flavors of BVH to accelerate ray tra-
versal. Rays with time intervals traverse through a regular
BVH built with prism triangles for each dynamic object and
pairs of keyframes separately, using a top-down greedy
builder based on SAH cost [24]. Rays with time-stamps rely
on an interpolating BVH [23], where each node keeps track
of one bounding box for the beginning and one for the end of
the motion, and are intersected with the bounds interpolated
at the timestamp. Motion blur is not amplified unless other-
wise specified (i.e., y = 1; see Section 4.3).

For anti-aliasing, we use adaptive subdivision sampling,
similar to a popular anti-aliasing sampler within the V-Ray
rendering software [42]. This anti-aliasing method strategi-
cally distributes primary ray samples to high-frequency
areas of the image and, for some scenes, produces high-
quality anti-aliasing with less than a single sample per-pixel
on average. Our implementation uses no texture filtering;
therefore, our anti-aliasing method over-samples areas with

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.24, NO.12, DECEMBER 2018

texture discontinuities, introducing some performance pen-
alty for our method in our tests.

Figs. 4 and 5 show the scenes we used for performance
and quality comparisons. As expected, our time interval ray
tracing method produces noise-free visibility. Moreover,
due to our adaptive shading strategy, we eliminate noise in
shading as well. Thus, with our method even a single sample
per pixel fully resolves the motion blur with no noise. To
resolve anti-aliasing with our method, extra samples per-
pixel can be allocated completely independently of time.
Therefore, parts of the images that correspond to fast motion
can be resolved using relatively few samples per pixel. While
adaptive anti-aliasing may reduce the total number of pri-
mary rays, the render time does not necessarily scale propor-
tionally. This is because primary ray samples placed near
image discontinuities to resolve anti-aliasing can be more
expensive to compute than others, since they typically visit
more BVH nodes and test more triangles.

In comparison, stratified sampling produces a substantial
amount of noise in time approximately equal to our anti-
aliased rendering results. This noise is visible in both pri-
mary visibility and secondary effects like shadows. The ref-
erence images are generated using a large number of
samples at a substantial computation cost, and they mostly
(but not fully, especially for large motion) resolve the noise.

The performance numbers in Figs. 4 and 5 provide the
necessary information for comparing the cost of time inter-
val ray tracing to time sampling. Comparing performance
in millions of rays per second (MRPS), we can see that our
ray traversal is several times more expensive for most
scenes (3x on average, excluding the Dragon-Sponza scene
at 17x). On average, our time interval ray tracing method
uses 4.8 x more ray-box and 1.9x more ray-triangle intersec-
tion tests than stratified sampling for all scenes but Dragon-
Sponza, which uses 28x and 2.8 x more respectively. There
are a number of factors that increase the cost of a ray sample
with our method. First, the increase in triangle count and
the BVH size has a relatively minor impact. More impor-
tantly, rays with timestamps merely find the first hit, but
our rays with time intervals find multiple hits and shade as
many intervals as necessary to resolve the motion (all shad-
ing computation is included in the cost of each ray).

One important observation is that our method with adap-
tive anti-aliasing substantially reduces the total number of
shading calls. Our method can fully resolve motion blur using
only a fraction of the shader calls in most scenes, as compared
to stratified sampling with equal render time, which fails to
resolve motion blur. In fact, producing acceptably low-noise
motion blur with stratified sampling requires 2 to 3 orders of
magnitude more shading calls in most of our tests (except for
the Dragon-Sponza scene, which requires only one order of
magnitude more). Note that in our tests we used very simple
shaders with low computation cost. However, in an actual
production scene with expensive shaders, the shading cost
can often dominate the render time [43]. Therefore, we would
expect that time interval ray tracing would provide a more
significant savings in render times for scenes with much
more expensive shaders typically used in production.

We also compare our time interval ray tracing method to
random parameter filtering [30], an image-space reconstruc-
tion technique that can produce smooth motion blur from

SHKURKO ETAL.: TIME INTERVAL RAY TRACING FOR MOTION BLUR

Helicopter

Clothball

Slinky

Time Interval Ray Tracing (Ours)

anti-aliased

71K static & 5.8K dynamic faces

9 keyframes

240K prism triangles
1920 x 1080 resolution
ALpin = 0.05

Atpmin = 0.04

Atmae =1

100K dynamic faces

4 keyframes

1.5M prism triangles
1920 x 1080 resolution

ALpin = 0.05
Atpin = 0.02
Atmaz = 0.1

Render Time
MRPS

Total Rays

Tri Tests/Ray
Box Tests/Ray
Shading Calls

Render Time
MRPS

Total Rays

Tri Tests/Ray
Box Tests/Ray
Shading Calls

40K dynamic faces

2 keyframes

197K prism triangles
1440 x 1080 resolution
ALmin = 0.05

Atmin = 0.003

Atmaz = 0.2

Render Time
MRPS

Total Rays

Tri Tests/Ray
Box Tests/Ray
Shading Calls

3231

1 spp

1 spp
1.25 sec

4.83
6.04M
5.6
45.2
0.82M

1 spp
1.2 sec

6.93
8.2M
2.0
274
2.1M

1 spp
0.46 sec
6.82
3.1M
4.1
22.8
1.eM

Stratified Sampling

12 spp
14.6 sec

4.96
72.5M
5.6
452
9.8M

7 spp
8.1 sec

7.05
57.2M
2.0
27.4
14.5M

21 spp
9.13 sec

7.16
65.3M
41
22.8
32.7M

equal-time

reference

1K spp
20.1 min
5.01
6.04B
5.6
45.2
819.9M

7.3 min
7.14
3.1B

4.1
22.8
1.56B

Time Interval Ray Tracing

1 spp

1 spp
4.98 sec

3.27
16.3M
3.0 +11.6
2254249
3.4M

1 spp
14.1 sec

3.59
50.7M
2.0+35
38.6 +12.0
17.3M

1 spp
3.10 sec

1.97
6.1M
5.6 +18.8
28.2 4-28.4
4.5M

anti-aliased

avg. 0.48 spp
14.25 sec
2.70
38.4M
2.7 + 145
20.5 + 35.7
8.2M

avg. 0.15 spp
8.1 sec
3.20
26M
1.9 +4.9
3714 15.5
9.4M

avg. 0.86 spp
9.14 sec
2.08
19.1M
82+ 13.2
43.2 +21.1
16.2M

Fig. 4. Comparison of our time interval ray tracing method to time sampling with interpolating BVHs using Monte-Carlo sampling stratified in time. The
number of intersection tests Tri Tests/Ray and Box Tests/Ray are provided as the sum of the values for time sample rays and interval rays. MRPS

stands for millions of rays per second.

a noisy input sample set. RPF relies on the statistical depen-
dency between random input parameters and rendered out-
put to apply an image-space, cross-bilateral filter to remove
noise. Fig. 6 shows the comparison images for the Slinky

scene. We use stratified sampling with 20 spp as the input
for RPF. Although RPF is effective in determining the loca-
tion of the motion blur and filtering out the noise, it causes
over-blur and fails to reproduce the reference image

3232

Horse

Dragon-Sponza

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.24, NO.12, DECEMBER 2018

Time Interval Ray Tracing (Ours)

anti-aliased

17K dynamic faces

2 keyframes Render Time
84K prism triangles MRPS
1920 x 1080 resolution Total Rays
ALpin = 0.05 Tri Tests/Ray
Atpin = 0.05 Box Tests/Ray
Atmaz = 0.1 Shading Calls

6M dynamic faces

2 keyframes Render Time
31M prism triangles MRPS
1440 x 1080 resolution Total Rays
ALpin = 0.05 Tri Tests/Ray
Atin = 0.002 Box Tests/Ray
Atmaz = 0.2 Shading Calls

1 spp
0.51 sec
3.04
1.6M
3.83
102.60
1.5M

Stratified Sampling

4.8 sec

13.8
66.4M
0.87
9.58
16.6M

3.14
42M
3.83

102.61
41.0M

equal-time

27 spp
13.4 sec

reference

1 spp
7.35 sec

2.65
19.5M
2.32 4 15.04
21.66 + 18.34
5.8M

512 spp

1 spp
4.2 min 9.05 sec
3.16 0.172
796.3M 1.eM
3.83 0 + 108.58
102.61 0+ 284.13
778.9M 44.8M

Time Interval Ray Tracing

anti-aliased

avg. 0.08 spp
4.17 sec
2.64
11.0M
2.66 + 14.42
25.58 + 15.67
3.4M

avg. 1 14 spp
13.6 sec
0.177
2.4M
0+ 108.13
0+ 296.77
77.9M

Fig. 5. Comparison of our time interval ray tracing method to time sampling with interpolating BVHs using Monte-Carlo sampling stratified in time. The
Dragon-Sponza scene features moving camera and pre-computed illumination stored in textures. The number of intersection tests Tri Tests/Ray and
Box Tests/Ray are provided as the sum of the values for time sample rays and interval rays. MRPS stands for millions of rays per second.

perfectly. Note that image-space filtering methods like RPF
can also be used with our method for filtering various types
of Monte Carlo sampling noise, though our method does

not produce any noise due to motion blur.

The render time of our method not only depends on the
scene but also the motion. Fig. 7 shows the change in render
time with increasing camera motion. As can be seen, slow

motion is computed efficiently, but as the motion gets faster,

Time Interval Ray Tracing (Ours)
anti-aliased

__.-‘

Ours Stratified Sampling
avg. 0.86 spp 1K spp 20 spp
9.14 sec 7.3 min 9.48 sec

RPF
20 spp
13 min

Fig. 6. Comparison of our time interval ray tracing to stratified sampling, including reconstruction via random parameter filtering (RPF) [30]. RPF uses
the 20 spp stratified sampling image as input, and reconstruction takes 13 min.

SHKURKO ET AL.: TIME INTERVAL RAY TRACING FOR MOTION BLUR

50 ~

o
(9]
40 ,73 - 2 keyframes
E - 3 keyframes
30 'y — 4 keyframes
'8
20 12
10 A
0 Camera Motion (distance per frame)
0 3 6 9 12 15

Fig. 7. Render times for different camera motions with different numbers
of keyframes for the Dragon-Sponza scene.

and thereby the edge triangles get elongated, the efficiency
of the BVH structure declines (and more shading computa-
tions are introduced). It is interesting to note that when
more intermediate keyframes are introduced (with identical
overall motion), even though the triangle count substan-
tially increases, the render times can be shorter for fast
motion. This shows that a BVH structure with splits [44] can
produce a more efficient acceleration structure and would
be particularly beneficial for our method.

Considering a dynamic object with F' triangles and F
edges represented using two keyframes, computing motion

3233

blur with time sampling produces 2F triangles. In our
approach, we generate 2F' + 2E triangles, which is 5F trian-
gles for closed objects. Even though these extra triangles are
not stored, their indices are placed into the acceleration
structure and they are intersected against rays. Therefore,
the build time and the size of the acceleration data structure
scale roughly linearly (about 2.5x as compared to interpo-
lating BVHs).

We demonstrate the effect of various shutter functions in
Fig. 8. Notice that the shutter function also affects secondary
effects such as shadows. Our method can handle any shut-
ter function without any apparent performance penalty,
including numerically challenging ones, such as the sharp
peak that produces results similar to the photography trick
“second-curtain flash.”

This shutter function is also featured in Fig. 9, show-
ing the effect of amplified motion blur. Notice that the
trail behind the car is substantially more visible with
amplified motion blur. Fig. 10 shows another amplified
motion blur example but using the instant shutter func-
tion with the slinky animation. In this case, the shadows
cast by the slinky become substantially darker with
amplified motion blur, including the self-shadowing of
moving parts.

(a) Rolling shutter, up (b) Instant

T

(g) Sharp peak

(f) Rolling shutter, down

(c) Linear

(h) Wide linear

(d) Sinusoid (e) Truncated Gaussian

(i) Wide sinusoid (j) Oscillating

Fig. 8. This scene applies various shutter functions to a teapot moving left-to-right. Insets show the outline of each shutter function. Subfigures (a)
and (f) show the effect of a rolling shutter. Subfigures (b)-(d), (h) and (i) show typical shutters used in computer graphics. More artistically-driven
shutters can generate wildly varying effects, from (g) a sharp peak to (j) oscillating shutters.

Fig. 9. Amplified motion blur: (top) no amplification with y = 1 and (bottom) amplification with y = 2. The images were rendered using the sharp peak

shutter function in Fig. 8g.

3234

Fig. 10. Amplified motion blur: (left) no amplification with y =1 and
(right) amplification with y = 3.

A challenging case for our method is shown in Fig. 11,
including half a million prisms with highly elongated trian-
gles stretched half-way across the image. Therefore, the BVH
without splits provides an extremely poor space partitioning
for our method. On the other hand, this is a trivial case for
interpolating BVHs, since the motion is a mere translation of
the entire object. Therefore, stratified sampling can render
this scene with 1,500 spp within the same two minutes it
takes to render using our method, but resolving the noise in
the trail requires more than an order of magnitude more rays.

Indeed, resolving the noise due to motion blur with time
sampling is highly challenging for high-dynamic-range
(HDR) rendering. Fig. 12 shows an example where a thrown
lightsaber is moving across the image. This example
requires an extremely large number of samples to resolve
motion blur using time sampling. In comparison, our
method quickly produces noise-free results.

Since our method is based on ray tracing, it can be used
directly with distribution ray tracing frameworks to com-
pute indirect illumination or ambient occlusion. Fig. 13
shows an example with ambient occlusion and glossy reflec-
tions where random ray samples generated during shading
are traced using time intervals. This way, the resulting sec-
ondary effects include motion as well. The visible noise in
this image comes from Monte Carlo sampling of ambient
occlusion and glossy reflections.

7 DISCUSSION

The idea of intersecting rays with volumetric prisms has
been explored in prior research, primarily in the context of

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.24, NO.12, DECEMBER 2018

Stratified 55 spp (6.6 sec)

Stratified 10K spp (20 min)

Fig. 12. A lightsaber that moves across the image while rotating around
its center of mass. It is frozen in the air in the last quarter of the time inter-
val. There are 128 keyframes and the images include an image-space
bloom effect as a post-process, producing the glow around the lightsaber.

rasterization. Intersections with prisms also appear in other
contexts, such as computing caustic volumes using beam-
tracing [45], [46], [47]. Our main contribution in this work is
a framework to avoid costly volumetric intersections and
allow efficient motion blur computation using intersections
with merely stationary triangles stored in an ordinary accel-
eration structure without modifications to account for time.
The main advantage of time interval ray tracing is that it
eliminates sampling along time, thereby reducing the

Fig. 11. A space ship coming out of warp speed, including half a million highly elongated prisms stretched half-way across the image. Model from

Ricky “MadMan1701A” Wallace (www.madshipyard.com).

www.madshipyard.com

SHKURKO ETAL.: TIME INTERVAL RAY TRACING FOR MOTION BLUR

Fig. 13. Moving billiard balls rendered using our method with motion-
blurred ambient occlusion and glossy reflections.

dimensionality of rendering. This is particularly useful for
adaptive under-sampling methods used for anti-aliasing.
While such anti-aliasing approaches are very effective at
reducing the total number of primary rays without sacrific-
ing image quality, they are only useful if each primary ray
sample returns a converged result. Therefore, they cannot
be paired with time-sampled motion blur.

On the other hand, if the rendering method already gen-
erates a large number of rays per pixel (such as depth of
field sampling or traditional path tracing), simply assigning
timestamps to each ray and changing the acceleration struc-
ture accordingly can be good enough to resolve motion blur
with low noise. However, time interval ray tracing can still
be favorable for efficient path tracing implementations that
minimize the number of primary rays, but introduce addi-
tional secondary rays (to avoid excessive shader calls). Fur-
thermore, time interval ray tracing is ideal for rendering
algorithms that aim to completely resolve each computed
sample, such as irradiance caching [48].

Like any sampling method that uses adaptive subdivi-
sion, our shading approach can miss changes within an
interval when the end points are similar. Fig. 14 shows a
worst-case scenario for our method. In this scene, the mirror
on the left is stationary, so the reflections are properly
resolved using reflection rays with time intervals. The mir-
ror on the right, however, is moving along its plane, such
that the reflections appear stationary in camera-space. Since
the mirror on the right is a dynamic object, the reflections
are handled using rays with timestamps. Thus, the motion
blur in this reflection is not computed with time interval ray

3235

Triangles 2 keyframes 3 keyframes 10 keyframes
[0]
[&]
5 (
L == \ . .
o

/

% 4 .\ \

Fig. 15. A triangle rotating clockwise and moving into the page shows a
possible worst-case scenario for triangulating prism sides: (top) refer-
ence using time sampling, (middle) time interval ray tracing using bilinear
patches to avoid the triangulation in Assumption 4, and (bottom) time
interval ray tracing using triangulated bilinear patches based on
Assumption 4. In this case, the error in triangulating the prism sides
introduces incorrect visibility with our method due to Assumption 4. This
problem is mitigated by introducing additional keyframes, which is
already necessary to properly resolve the motion.

Triangulated Prism Bilinear Patch

tracing, but with adaptive shading only. As a result, when
both reflection rays originating at the two endpoints of the
hit interval miss the moving teapot or its shadow, the hit
interval is not subdivided and the motion is missed (circled
areas in Fig. 14-left). Yet, such exceptional cases can be eas-
ily resolved by subdividing all intervals that are longer than
a user-defined threshold, regardless of the differences
between the end points, as shown in Fig. 14-right.

Our assumptions allow us to aggressively simplify the
motion blur computation, but they do not impose additional
restrictions on the types of motion that can be represented
properly. Similar to virtually all motion blur algorithms,
handling non-linear motion and rotation requires additional
keyframes. If an insufficient number of keyframes is pro-
vided, the surface of the triangulated prism (Fig. 2b) can
substantially deviate from the actual prism (Fig. 2a) and
lead to incorrect intervals. To demonstrate this, we prepared
an extreme example, where a triangle is both substantially
rotated and translated, shown in Fig. 15. Notice that in this

Fig. 14. A moving teapot reflecting in two mirrors: the left one is stationary and the right one is moving downward. The moving mirror provides a diffi-
cult case for our method because the reflection is stationary in camera-space but must be resolved by adaptive shading using discrete timestamps
(left). Enforcing subdivision for hit intervals that are longer than a user-defined threshold At,,,., fixes the artifacts (right).

3236
Motion Time Sampling Ours with Ours with
Geometry Reference Bilinear Patches Triangles
. - -

a

AP M)

Fig. 16. A selection of frames from the stress test, where a single triangle
undergoes different transformations, each over the duration of a single
frame. The Motion Geometry column shows the triangle keyframes,
where the black triangle indicates the color and the position of the trian-
gle at the start of the motion, and the colored triangle indicates the end
of the motion. The Time Sampling Reference column shows the image
when using stratified sampling. The last two columns show the results of
our method using bilinear patches and triangulated prisms. Using the
bilinear patches produces results virtually identical to the reference.
While triangulation provides reasonable results for majority of the tested
motions, in the extreme cases shown here it can deviate from the
reference.

example our triangulated prism produces incorrect visibil-
ity with few keyframes, as compared to the reference gener-
ated using time sampling. This is because the triangulation
of the bilinear patches forming the sides of the prism does
not have enough resolution to properly approximate the
shapes of the bilinear patches.

As a solution, we can compute the intersections with the
prism by directly using the bilinear patches [40], which pro-
duces results identical to the reference, as it completely elimi-
nates our Assumption 4. In Fig. 16, we show more examples
from our stress test with extremely deformed prisms, which
are uncommon in typical scenes. Notice that using bilinear
patches, our method produces results virtually identical to
the stratified sampling reference. Triangulation (using
Assumption 4) fails to match the outcome of the reference
images, but the inaccuracies it produces would be extremely
difficult to notice in a scene even if such an extreme deforma-
tion exits. Regardless, none of these methods (including the
stratified sampling reference) can handle such extreme
deformations correctly without introducing more keyframes
to properly represent rotational motion, which would also
eliminate the extreme deformation of the prisms.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.24, NO.12, DECEMBER 2018

In practice, however, such extreme motions are unlikely
to take place within a single frame of an animation. When
the deformation of the bilinear patch is not as extreme, our
triangulation provides a good approximation, as evident
in our test results including numerous faces that go
through non-linear motion (the slinky, helicopter, cloth-
ball, and horse scenes). To evaluate the effect of triangula-
tion (Assumption 4) we use mean structural similarity
(MSSIM) [49] that provides a localized perceptual error
metric. Generally, MSSIM values above 0.97 — 0.99 indi-
cate images that are visually indistinguishable. In our
tests, we found that the MSSIM values comparing results
with and without Assumption 4 for every example in
Figs. 4 and 5 are above 0.999. This indicates that triangula-
tion is indeed an acceptable assumption in practice.

An application of our method that would like to handle
extreme motion, as in Fig. 15, can use either higher-resolution
triangulations or ray intersections directly with the bilinear
patches. Although excluded from our implementation, it is
also possible to automatically detect the triangulation error
(Equation (8)) and use higher-resolution triangulation or
bilinear patches only for some edges in the scene, eliminating
any potential error due to Assumption 4.

On the other hand, we found no evidence that any visible
artifacts are linked to our Assumption 3, which allows cal-
culating the hit point data by interpolating the two end
points of an interval. In fact, the error introduced by this
assumption is correlated to the resolution of the moving
object, and the related triangulation error exists for all ren-
dering algorithms that use triangles.

Our time interval ray tracing method can produce
motion blur due to camera motion by treating all objects as
dynamic, since they are dynamic in camera-space (as in
Fig. 5, Dragon-Sponza). However, when it comes to ani-
mated lights, our method must also rely on time sampling
to compute blur in shadows and shading from these lights.
Similarly, we cannot handle blur due to the changes of the
internal camera parameters (such as field of view) without
sampling them.

8 CONCLUSION

We have introduced an efficient method for ray tracing
using time intervals to produce noise-free motion blur
for both primary and secondary rays. Most significantly,
our simplifying assumptions reduce the problem of
motion blur computation to ray intersections with sta-
tionary triangles, which permits using any traditional
acceleration structure without modifications to account
for the notion of time. We have also described an adap-
tive shading strategy for shading dynamic hit intervals,
a mathematical framework for incorporating any shutter
function, and a simple modification for amplifying the
visibility of dynamic objects for artistic purposes. By sep-
arating the time dimension from sampling, we have
shown that our method can effectively use adaptive
under-sampling for anti-aliasing. Our time interval ray
tracing approach can produce high-quality images with
minimal primary rays and a reduced number of shading
calls for a variety of animations, including objects under-
going rapid deformations.

SHKURKO ET AL.: TIME INTERVAL RAY TRACING FOR MOTION BLUR

ACKNOWLEDGMENT

This material is supported in part by the National Science
Foundation under Grant No. 1409129. Thiago Ize and Peter
Shirley provided helpful feedback. Cem Yuksel provided
Slinky, Clothball, and Lightsaber scenes, and combined
Sponza atrium by Marko Dabrovic with the Stanford
Dragon for the Dragon-Sponza scene. We also thank the
anonymous reviewers for their time and helpful feedback.

REFERENCES

[1]

[2]

[3]
[4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

[21]

R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,”
in Proc. Annu. Conf. Comput. Graph. Interactive Techn., 1984,
pp- 165-174.

C. W. Grant, “Integrated analytic spatial and temporal anti-alias-
ing for polyhedra in 4-space,” SIGGRAPH Comput. Graph., vol. 19,
no. 3, pp. 79-84, Jul. 1985.

F. Navarro, F. J. Sern, and D. Gutierrez, “Motion blur rendering:
State of the art,” Comput. Graph. Forum, vol. 30, no. 1, pp. 3-26, 2011.
K. Sung, A. Pearce, and C. Wang, “Spatial-temporal antialiasing,”
IEEE Trans. Vis. Comput. Graph., vol. 8, no. 2, pp. 144-153,
Apr. 2002.

M. Potmesil and I. Chakravarty, “Modeling motion blur in com-
puter-generated images,” SIGGRAPH Comput. Graph., vol. 17,
no. 3, pp. 389-399, Jul. 1983.

M. McGuire, P. Hennessy, M. Bukowski, and B. Osman, “A recon-
struction filter for plausible motion blur,” in Proc. Symp. Interactive
3D Graph. Games, 2012, pp. 135-142.

J.-P. Guertin, M. McGuire, and D. Nowrouzezahrai, “A fast and
stable feature-aware motion blur filter,” in Proc. Conf. High Per-
form. Graph., Jun. 2014, pp. 51-60.

J.-P. Guertin and D. Nowrouzezahrai, “High Performance Non-
linear Motion Blur,” in Proc. Eurographics Symp. Rendering - Exp.
Ideas Implementations, LaSalle, QC, Canada: The Eurographics
Association, 2015.

M. McGuire, E. Enderton, P. Shirley, and D. Luebke, “Real-time
stochastic rasterization on conventional GPU architectures,” in
Proc. Conf. High Perform. Graph., 2010, pp. 173-182.

T. Akenine-M oller, J. Munkberg, and J. Hasselgren, “Stochastic
rasterization using time-continuous triangles,” in Proc. Symp.
Graph. Hardware, 2007, pp. 7-16.

C. J. Gribel, M. Doggett, and T. Akenine-Moller, “Analytical
motion blur rasterization with compression,” in Proc. Conf. High
Perform. Graph., 2010, pp. 163-172.

J. Munkberg, P. Clarberg, J. Hasselgren, R. Toth, M. Sugihara, and
T. Akenine-Moller, “Hierarchical stochastic motion blur raster-
ization,” in Proc. Conf. High Perform. Graph., 2011, pp. 107-118.

C.]J. Gribel, J]. Munkberg, J. Hasselgren, and T. Akenine-Moller,
“Theory and analysis of higher-order motion blur rasterization,”
in Proc. Conf. High Perforamnce Graph., 2013, pp. 7-15.

T. R. Jones and R. N. Perry, “ Antialiasing with line samples,” in
Rendering Techniques. Berlin, Germany: Springer Vienna, 2000,
pp. 197-205.

C. J. Gribel, R. Barringer, and T. Akenine-Moller, “High-quality
spatio-temporal rendering using semi-analytical visibility,” ACM
Trans. Graph., vol. 30, no. 4, Jul. 2011, Art. no. 54.

X. Huang, Q. Hou, Z. Ren, and K. Zhou, “Scalable programmable
motion effects on GPUs,” Comput. Graph. Forum, vol. 31, no. 7,
pp. 22592266, 2012.

J. Nilsson, et al., “Design and novel uses of higher-dimensional
rasterization,” in Proc. High-Perform. Graph., 2012, pp. 1-11.

A. Glassner, “Spacetime ray tracing for animation,” IEEE Comput.
Graph. Appl., vol. 8, no. 2, pp. 6070, Mar. 1988.

I. Wald, T. Ize, A. Kensler, A. Knoll, and S. Parker, “Ray tracing
animated scenes using coherent grid traversal,” in Proc. ACM 28th
Annu. Conf. Comput. Graph. Interactive Techn., 2006, vol. 25,
pp- 485-493.

J. Gunther, H. Friedrich, I. Wald, H.-P. Seidel, and P. Slusallek,
“Ray tracing animated scenes using motion decomposition,” Com-
put. Graph. Forum, vol. 25, no. 3, pp. 517-525, Sep. 2006.

P. Djeu, W. Hunt, R. Wang, I. Elhassan, G. Stoll, and W. R. Mark,
“Razor: An architecture for dynamic multiresolution ray tracing,”
Department of Computer Sciences, The University of Texas at
Austin, Austin, TX, USA, Tech. Rep. TR-07-52, Jan. 2007.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

3237

C. Lauterbach, S.-E. Yoon, D. Tuft, and D. Manocha, “RT-
DEFORM: Interactive ray tracing of dynamic scenes using BVHs,”
in Proc. IEEE Symp. Interactive Ray Tracing, 2006, pp. 39-45.

P. H. Christensen, J. Fong, D. M. Laur, and D. Batali, “Ray tracing
for the movie ‘Cars’,” in Proc. IEEE Symp. Interactive Ray Tracing,
Sep. 2006, pp. 1-6.

I. Wald, S. Boulos, and P. Shirley, “Ray tracing deformable scenes
using dynamic bounding volume hierarchies,” ACM Trans.
Graph., vol. 26, no. 1, 2007, Art. no. 6.

Q. Hou, H. Qin, W. Li, B. Guo, and K. Zhou, “Micropolygon ray
tracing with defocus and motion blur,” in Proc. ACM Annu. Conf.
Comput. Graph. Interactive Techn., 2010, pp. 64:1-64:10.

L. Grunschlof3, M. Stich, S. Nawaz, and A. Keller, “MSBVH: An
efficient acceleration data structure for ray traced motion blur,” in
Proc. ACM SIGGRAPH Symp. High Perform. Graph., 2011, pp. 65-70.
T. Hachisuka, et al., “Multidimensional adaptive sampling and
reconstruction for ray tracing,” in Proc. ACM Annu. Conf. Comput.
Graph. Interactive Techn., 2008, pp. 33:1-33:10.

J. Lehtinen, T. Aila, J. Chen, S. Laine, and F. Durand, “Temporal light
field reconstruction for rendering distribution effects,” in Proc. ACM
Annu. Conf. Comput. Graph. Interactive Techn., 2011, pp. 55:1-55:12.

J. Lehtinen, T. Aila, S. Laine, and F. Durand, “Reconstructing the
indirect light field for global illumination,” ACM Trans. Graph.,
vol. 31, no. 4, pp. 51:1-51:10, 2012.

P. Sen and S. Darabi, “On filtering the noise from the random
parameters in Monte Carlo rendering,” ACM Trans. Graph.,
vol. 31, no. 3, pp. 18:1-18:15, Jun. 2012.

J. Munkberg, K. Vaidyanathan, J. Hasselgren, P. Clarberg, and
T. Akenine-Mller, “Layered reconstruction for defocus and
motion blur,” Comput. Graph. Forum, vol. 33, no. 4, pp. 81-92, 2014.
R.S. Overbeck, C. Donner, and R. Ramamoorthi, “Adaptive wave-
let rendering,” in Proc. ACM Annu. Conf. Comput. Graph. Interactive
Techn., 2009, pp. 140:1-140:12.

K. Egan, Y.-T. Tseng, N. Holzschuch, F. Durand, and R. Ramamoorthi,
“Frequency analysis and sheared reconstruction for rendering motion
blur,” in Proc. 28th Annu. Conf. Comput. Graph. Interactive Techn.,
2009, pp. 93.

L. Belcour, C. Soler, K. Subr, N. Holzschuch, and F. Durand, “5D
covariance tracing for efficient defocus and motion blur,” ACM
Trans. Graph., vol. 32, no. 3, pp. 31:1-31:18, Jul. 2013.

P. Sen and S. Darabi, “Compressive estimation for signal integra-
tion in rendering,” Comput. Graph. Forum, vol. 29, no. 4, pp. 1355-
363, 2010.

X. Sun, et al., “Line segment sampling with blue-noise proper-
ties,” ACM Trans. Graph., vol. 32, no. 4, pp. 127:1-127:14, Jul. 2013.
J.Schmid, R. W. Sumner, H. Bowles, and M. Gross, “Programmable
motion effects,” in Proc. ACM Annu. Conf. Comput. Graph. Interactive
Techn., 2010, pp. 57:1-57:9.

J. Korein and N. Badler, “Temporal anti-aliasing in computer gen-
erated animation,” SIGGRAPH Comput. Graph., vol. 17, no. 3,
pp- 377-388, Jul. 1983.

N. Jones and J. Keyser, “Real-time geometric motion blur for a
deforming polygonal mesh,” in Proc. Conf. Comput. Graph. Int.,
2005, pp. 14-18.

S. Ramsey, K. Potter, and C. Hansen, “Ray bilinear patch inter-
sections,” J. Graph. Tools, vol. 9, no. 3, pp. 41-47, 2004.

M. S. Floater, “Mean value coordinates,” Comput. Aided Geometric
Des., vol. 20, no. 1, pp. 19-27, 2003.

Chaos Group, “V-ray documentation: Image sampler & anti-
aliasing,” 2015. [Online]. Available: http://docs.chaosgroup.
com/pages/viewpage.action?pageld=7897184

C. Eisenacher, G. Nichols, A. Selle, and B. Burley, “Sorted
deferred shading for production path tracing,” Comput. Graph.
Forum, vol. 32, no. 4, pp. 125-132, 2013.

M. Stich, H. Friedrich, and A. Dietrich, “Spatial splits in bounding
volume hierarchies,” in Proc. Conf. High Perform. Graph., 2009,
pp- 7-13.

M. Watt, “Light-water interaction using backward beam tracing,”
in Proc. 17th Annu. Conf. Comput. Graph. Interactive Techn., 1990,
pp- 377-385.

M. Ernst, T. Akenine-M oller, and H. W. Jensen, “Interactive ren-
dering of caustics using interpolated warped volumes,” in Proc.
Conf. Graph. Interface, 2005, pp. 87-96.

G. Liktor and C. Dachsbacher, “Real-time volume caustics with
adaptive beam tracing,” in Proc. Symp. Interactive 3D Graph. Games,
2011, pp. 47-54.

http://docs.chaosgroup.com/pages/viewpage.action?pageId=7897184
http://docs.chaosgroup.com/pages/viewpage.action?pageId=7897184

3238 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.24, NO.12, DECEMBER 2018

[48] G.]. Ward, F. M. Rubinstein, and R. D. Clear, “A ray tracing solu-
tion for diffuse interreflection,” in Proc. ACM Annu. Conf. Comput.
Graph. Interactive Techn., 1988, pp. 85-92.

[49] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,”
IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

Konstantin Shkurko received the BA degree in
mathematics and physics and the MS degree
in computer graphics from Cornell University, in
2007 and 2010, respectively. He is currently work-
ing toward the PhD degree in computer graphics
from the School of Computing, the University of
Utah. His research focuses mainly on ray tracing
hardware, but also includes acceleration struc-
tures, rendering algorithms, and scientific
visualization.

Cem Yuksel receiving the PhD degree in com-
puter science from Texas A&M University, in
2010. He is a faculty member in the School of
Computing, the University of Utah. Previously, he
was a postdoctoral fellow with the Cornell Univer-
sity. His research interests include the computer
graphics and related fields, including physically-
based simulations, rendering techniques, global
illumination, sampling, GPU algorithms, graphics
hardware, knitted structures, and hair modeling,
animation, and rendering.

Daniel Kopta received the PhD degree in
researching ray-traced computer graphics and
GPU architecture from the University of Utah, in
2016. Since then, he has worked as a senior
OptiX engineer with NVIDIA, developing the
OptiX GPU ray tracing framework. He is currently
a faculty member in the School of Computing, the
University of Utah.

lan Mallett received the BS degrees in computer
science and pure mathematics from the Univer-
sity of New Mexico, in 2014. He is currently work-
ing toward the PhD degree in computer graphics
from the School of Computing, University of Utah.
His research focuses on rendering algorithms
and light transport, with excursions to ray tracing
hardware.

Erik Brunvand Received the PhD degree from
Carnegie Mellon University, in 1990. Since then
he has been a faculty member in the School of
Computing, the University of Utah where his inter-
ests include the design of application-specific
computers, graphics processors, physical com-
puting, asynchronous systems, VLSI integrated
circuit design, and arts/technology collaboration
and integration in both research and education.
He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

