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Abstract
We propose two hardware mechanisms to decrease energy consumption on massively parallel graphics processors for ray
tracing. First, we use a streaming data model and configure part of the L2 cache into a ray stream memory to enable efficient
data processing through ray reordering. This increases L1 hit rates and reduces off-chip memory energy substantially through
better management of off-chip memory access patterns. To evaluate this model, we augment our architectural simulator with a
detailed memory system simulation that includes accurate control, timing and power models for memory controllers and off-chip
dynamic random-access memory . These details change the results significantly over previous simulations that used a simpler
model of off-chip memory, indicating that this type of memory system simulation is important for realistic simulations that
involve external memory. Secondly, we employ reconfigurable special-purpose pipelines that are constructed dynamically under
program control. These pipelines use shared execution units that can be configured to support the common compute kernels that
are the foundation of the ray tracing algorithm. This reduces the overhead incurred by on-chip memory and register accesses.
These two synergistic features yield a ray tracing architecture that reduces energy by optimizing both on-chip and off-chip
memory activity when compared to a more traditional approach.
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1. Introduction

Ray tracing [Whi80] has traditionally been considered to require too
much computation to be used in interactive rendering. With the ad-
vances in integrated circuit process technologies, more computation
capabilities have become available, typically in the form of increas-
ingly many computation cores tiled on a chip. Ray tracing scales
well with increases in available computation, but the memory sys-
tem quickly becomes a bottleneck, particularly when assaulted with
the random memory access patterns exhibited by naive ray tracing
algorithms. Also, with the increase in available computation comes
an increase in power consumption. Power is increasingly becoming
a primary issue both in large high-performance chips, where power
and heat are limiting how much of the chip can be active at one time
[Dal13], and for chips targeting the embedded space where power
is directly related to battery life and device temperature [She13].
Studying power consumption of processors under various graphi-

cal workloads is becoming more popular in the research literature
[CLAL07, JGDAM12, MLC06, PLS11, PLS10a, SP10, PLS10b].

Many researchers have explored ways to harness available hard-
ware parallelism to enhance the speed of ray tracing. These stud-
ies can be very broadly broken down into those that leverage sin-
gle instruction, multiple data (SIMD) parallelism (e.g. [WSBW01,
DHS04, RSH05, WBB08, BSP06, PBD*10, Ima13, Sil13]) and
those that opt for a multiple instruction multiple data (MIMD)
or single-program multiple-data (SPMD) approach (e.g. [GDS*08,
SCS*08, SKKB09, KJJ*09, KSBD10, SKBD12, LSL*13]) or a mix
of these (e.g. [WFWB13, WWB*14]).

In this paper, we examine ray tracing on non-SIMD parallel
hardware. We explore methods to reduce the power requirements
while maintaining rendering speed and without compromising im-
age quality. We assume that for the ray tracing algorithm, the arith-
metic work load is already highly optimized and leaves little room
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Figure 1: Breakdown of energy consumption per frame, averaged
over all test scenes in Figure 2, for our baseline architecture.

for energy reduction except at the circuit level. The primary oppor-
tunity lies in improving the memory system by restructuring data
access patterns to increase cache hit rates and reduce off-chip mem-
ory access energy. From an energy and delay perspective, this is a
compelling target because fetching an operand from main memory
is both slower and three orders of magnitude more energy expen-
sive than doing a floating point arithmetic operation [Dal13]. This
is made clear by estimating the breakdown of energy consumption
per frame using our baseline architectural simulation (see Figure 1).
This estimate shows that dynamic random-access memory (DRAM)
energy takes up slightly over 60% of the entire energy for a frame
for this system.

A natural approach would be to reduce the consumed bandwidth
to main memory. This would decrease the number of main mem-
ory accesses, and thus reduce the energy cost related to gathering
data. While this is certainly true, a more detailed look at DRAM
energy costs reveals that because of the structure of DRAM cir-
cuits, changing the data access patterns is an equally effective
means of reducing energy costs. This is true even in cases where
the raw bandwidth consumption increases over the baseline sys-
tem. This observation would not be possible without the addition
of a detailed DRAM memory model to our architectural simu-
lation. In this case, we use the Utah Simulated Memory Mod-
ule (USIMM) DRAM memory simulator which includes a de-
tailed model of the complex timing and energy behaviour of a
modern DRAM memory system [CBS*12, MSC12]. The use of
this memory simulator is a significant extension of our previous
simulations [KSS*13] and is described in Section 4. Additional
improvements are possible by reducing register access, and in-
struction fetch and decode energy by algorithmic or architectural
improvements.

Specifically, we propose two mechanisms to improve energy per-
formance for ray tracing. First, we use a streaming data model
and treelet decomposition of the acceleration structure similar to
[NFLM07] and [AK10] but with specific hardware support for
stream buffers to increase L1 cache hit rates and restructure the
access patterns to the off-chip DRAM. This involves repurposing
much of the L2 data cache as programmer-managed on-chip ray
buffers with the goal of keeping ray data on-chip as much as pos-
sible (Section 3.1). Scene data are organized as treelets designed to

work well both with the L1 data cache and with the internal DRAM
row buffers (historically known as DRAM pages) (Section 4).

Secondly, we employ special-purpose pipelines which are dy-
namically configured under program control (Section 3.3). These
pipelines consist of execution units (XUs), multiplexers (MUXs)
and latches that are shared by multiple lightweight thread proces-
sors (TPs). Our focus in this work is on the traversal and primitive
intersection phases. We do not attempt to optimize shading in this
work, though special-purpose shading pipelines may also be effec-
tive. The result is that we construct two special-purpose pipelines:
one for bounding volume hierarchy (BVH) box intersection and the
other for triangle intersection. The essential benefit of this tactic
is to replace a large number of conventional instructions with a
single large fused box or triangle intersection instruction. This sig-
nificantly reduces register and instruction memory accesses as well
as reducing the instruction decode overhead. The energy efficiency
of these pipelines is similar to an application-specific integrated cir-
cuit (ASIC) design except for the relatively small energy overhead
caused by the MUXs and slightly longer wire lengths [MDP04,
IPD04]. However, unlike ASICs, our pipelines are flexible since
they are configured under program control.

These two synergistic features yield a ray tracing architecture
that significantly improves power consumption for intersection and
traversal when compared to a more traditional approach. Although
power is the primary metric of interest, note that this technique has
a processing overhead that can affect frame rate. Once the system’s
bandwidth capability is saturated, the proposed technique always
outperforms the baseline by allowing more efficient use of DRAM
for large numbers of processors.

We use 12 ray tracing benchmark scenes, as shown in Figure 2,
to evaluate the performance of our proposed technique. The scenes
used represent a wide range of geometric complexities and data foot-
prints: architectural models (Sibenik, Crytek, Conference, Sodahall,
San Miguel), scanned models (Buddha, Dragon) and nature/game
models (Fairy, Vegetation, Hairball). The laser scan models are un-
likely to be used alone in empty space in a real situation such as a
movie or game. Because of that we also include versions of them
enclosed in a box, allowing rays to bounce around the environment.

2. Background

Recent work in ray tracing has explored a variety of ways to increase
efficiency. Software approaches to increase performance on exist-
ing platforms involve gathering rays into packets to better match
the SIMD execution model [BSP06, BEL*07, GPSS07, ORM08,
WWB*14]. These systems can increase cache hit rates if they are
able to assemble ray packets to operate on similar regions of in-
terest. As an example of an SIMD approach targeted specifically
to ray tracing, the Mobile Ray Tracing Processor [KKK12], traces
packetized rays through the scene using four computation kernels,
one for each step of the ray tracing algorithm. To effectively handle
their Single Instruction, Multiple Thread (SIMT) execution model
for ray tracing, the processor is able to dynamically switch between
12-way SIMT (12 processors each running the same instruction
kernel on scalar data) and four-way three-vector processing (four
threads, each using a three-vector data path) for different phases
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Figure 2: Benchmark scenes used to evaluate performance.

of the algorithm. While different from the data path reconfigura-
tion model we propose, it demonstrates that the different phases of
the ray tracing algorithm can significantly benefit from hardware
pipeline customization.

More directly related to this work, there are several approaches
that attempt to reduce overall off-chip bandwidth requirements
on more general architectures. These approaches can involve
cache-conscious data organization [PH96, CLF*03, PKGH97,
MMAM07], and ray reordering [SCL05, BWB08, NFLM07,
MBK*10]. Some researchers specifically employ image-space
rather than data-space partitioning for rays [IBH11, BFH12,
BIH13]. Stream-based approaches to ray generation and process-
ing have also been explored both in a ray tracing context [GR08,
RG09, Tsa09, AK10, NFLM07] and a volume rendering context
[DK00]. At least two commercial hardware approaches to ray trac-
ing use some form of ray sorting and/or classification [Ima13, Sil13].
Our work has found that while an overall reduction in bandwidth
consumption is certainly helpful, it can be equally helpful to care-
fully control the DRAM access patterns, even if that results in slight
increases in bandwidth consumption in some cases.

Architectural approaches for high-performance ray tracing have
mostly involved the design and evaluation of non-SIMD parallel ap-
proaches that are better suited to the run-time branching behaviour
of ray tracing than wide SIMD processing [GDS*08, SCS*08,
SKKB09, KJJ*09, KSBD10, SKBD12, LSL*13]. These efforts can
be characterized broadly as tiled lightweight general purpose cores
with relatively simple memory systems that do not support hard-
ware shared memory. We use this type of parallel architecture as a
starting point for our exploration.

3. Streaming Treelet Ray Tracing Architecture (STRaTA)

We start with our parallel MIMD architecture called TRaX
(Threaded Ray eXecution) because it is designed specifically for

ray tracing [SKKB09], and because we also believe that the MIMD
execution model is better suited to ray tracing than the SIMD execu-
tion of existing platforms [KSBP08, KSBD10, SKBD12]. We have
made this model publicly available with a cycle-accurate simulator
and LLVM-based compiler that can be modified for further architec-
tural evaluation [HWR12]. Specifically, we modify this architecture
using the available tools to create STRaTA.

The basic TRaX architecture is a collection of simple, in-order,
single-issue integer TPs configured with general purpose regis-
ters and a small local memory. The local memory acts as an ex-
tended register file for local stack operations. The exact size of
these resources can be varied easily in our simulator. The generic
TRaX thread multi-processor (TM) aggregates a number of TPs
which share more expensive XUs such as floating point and in-
verse square root units. The TPs in a TM also share separate
multi-banked L1 instruction and data caches. The TM and multi-
TM chip architectures are shown in Figure 3. The specifics of the
size, number and configuration of the processor resources are vari-
able in the simulator. We use this infrastructure to explore how
exploiting features of DRAM access patterns and access energy
can lead to overall energy reduction in a parallel ray tracing
architecture.

In short, the TRaX MIMD sharing model is the opposite of what
one finds in the SIMD structure of modern GPUs. TRaX shares
data path XUs while allowing each TP to operate on a different
instruction. Individual TRaX TPs do not employ branch prediction
or multi-threading and thus can operate effectively with relatively
small register files. Note, however, the total register storage on a
large chip is quite large in aggregate. Additional thread parallelism
is achieved by adding more TPs, made possible by the simplicity
of the TP core. The resulting small, simple TPs, can be tiled on
a chip in a reasonable die area budget. Multiple TP cores form a
TM block. Multiple TMs may then be aggregated onto a chip with
larger shared L2 caches. The result is a very large number of small
lightweight cores and a simple hierarchical memory system. The
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Figure 3: Baseline TRaX architecture. Left: an example configura-
tion of a single Thread Multi-processor (TM) with 32 lightweight
Thread Processors (TPs) which share caches (instruction I$, and
data D$) and execution units (XUs). Right: potential TRaX chip
organization with multiple TMs sharing L2 caches [SKKB09]. In a
STRaTA configuration, the L2 caches are mostly replaced with ray
stream buffer memory.

throughput of TRaX is primarily limited by power and bandwidth
consumption rather than the lack of computational resources.

3.1. Ray stream buffers

Recent work [NFLM07, AK10] focuses on reducing off-chip band-
width consumption by partitioning the BVH tree into subgroups
called treelets, sized to fit comfortably in either the L1 or L2 data
cache.

Each node in the BVH belongs to exactly one treelet, and treelet
identification tags are stored along with the node ID. During traver-
sal, when a ray crosses a treelet boundary, it is sent to a correspond-
ing ray buffer where its computation is deferred until a processor is
assigned to that buffer. In this scheme, a processor will work for a
prolonged period of time only on rays that traverse a single treelet.
This allows that subset of BVH data to remain in the cache associ-
ated with that processor to increase cache hit rate. This technique
requires many rays to be in flight at once in order to fill the treelet ray
buffers, as opposed to the typical single ray at a time per core model.
The state of each ray must be stored in global memory and passed
along to other processors as needed. Ideally, this auxiliary ray state
storage should not increase off-chip bandwidth consumption drasti-
cally, since reducing memory bandwidth is the end goal. In contrast
to previous work, STRaTA stores the ray state in a buffer on-chip,
therefore storing or retrieving rays does not affect the consumed
off-chip bandwidth.

We adapt Aila’s approach by partitioning a special-purpose ray
stream memory that replaces some or all of the L2 data cache. This
avoids auxiliary traffic by never saving ray state off-chip, at the cost
of a lower total number of rays in flight, which are limited by the
size of the ray stream partition. The TRaX architecture uses very
simple direct-mapped caches, which prove to work well enough for
the ray tracing data access patterns [KSBD10], and save area and
power over more complex associative caches. We assign treelets to
be exactly the size of an L1 cache, and the BVH builder arranges
the treelets into cache-aligned contiguous address spaces. Since the
L1 only contains treelet data, this guarantees that while a TM is

Row 0 

Row 2 

Row 4 

Row 6 

… 

Row 1 

Row 3 

Row 5 

Row 7 

… 

Bank 0 Bank 1

DRAM

Figure 4: Treelets are arranged in contiguous data blocks targeted
as a multiple of the DRAM row size. In this example, treelets are
constructed to be the size of two DRAM rows. Primitives are stored
in a separate type of ‘treelet’ differentiated from node treelets, and
subject to the same DRAM row sizes.

working on a specific treelet, each line in the TM’s L1 cache will
incur at most one miss, and will be transferred to the L1 only once.

We also modify Aila’s algorithm to differentiate triangle data
from BVH data, and assign each to a separate type of treelet (see
Figure 4). Note that triangle treelets are not technically a ‘tree’, but
simply a collection of triangles in nearby leaf nodes. This ensures
that any TM working on a leaf or triangle treelet is doing noth-
ing but triangle intersections, allowing us to configure a specialized
pipeline for triangle intersection (see Section 3.3). Similarly, when
working on a non-leaf BVH treelet, the TM is computing only ray–
box intersections utilizing a box intersection pipeline. Most impor-
tantly, we differ from Aila et al.’s work by focusing our evaluation
on data access patterns to the DRAM rather than simply reducing
raw bandwidth consumption. DRAM chips have a complex internal
structure and correspondingly complex access protocols. Carefully
controlling the access patterns to match the internal behaviour of
the DRAM can have a larger impact on memory access energy than
reducing bandwidth consumption alone.

The ray stream memory holds the ray buffers for every treelet.
Any given ray buffer can potentially hold anywhere from zero rays
up to the maximum number that fit in the stream memory, leaving
no room for any of the other buffers. The capacity of each ray buffer
is thus limited by the number of rays in every other buffer. Although
the simulator models these dynamically sized ray buffers as a simple
collection data structure, we envision a hardware model in which
they are implemented using a hardware managed linked-list state
machine with a pointer to the head of each buffer stored in the Static
Random Access Memory (SRAM). Link pointers for the nodes and
a free list could be stored within the SRAM as well. This would
occupy a small portion of the potential ray memory: not enough to
drastically affect the total number of rays in flight since it requires
8% or less of the total capacity for our tested configurations. The
energy cost of an address lookup for the head of the desired ray
buffer, plus the simple circuitry to handle the constant time push
and pop operations onto the end of the linked list is assumed to be
roughly equal to the energy cost of the tag and bank circuitry of
the L2 cache that it is replacing. We believe that these energy costs
are roughly comparable, but this assumption will need to be more
precisely quantified in future work.
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Note that the order in which the ray data entries in these buffers
are accessed within a TM is not important. All rays in a buffer will
access the same treelet, which will eventually be cache-resident.
Rays that exit that treelet will be transferred to a different treelet’s
ray buffer. In this work, we employ singly linked lists which are
accessed in a last in, first out (LIFO) manner. This choice minimizes
hardware overhead, allows a large number of these LIFO structures
to co-exist in a single memory block, and removes the need to keep
each structure in a contiguous address space.

Contiguous treelet data which fits in the L1 cache is also contigu-
ous in the DRAM. This means that data loaded from the DRAM into
the cache can amortize the internal operations of the DRAM in a
way that greatly reduces both latency and energy compared to more
random DRAM accesses. There are more details about this in Sec-
tion 4 but essentially each access to DRAM loads a large amount
of data (typically 4–8 KB) into a static ‘row buffer’ (historically
known as a DRAM page). Data accessed from a row buffer (e.g.
for an L1 cache load) have a dramatically better latency and power
profile than random DRAM accesses.

The programmer fills the ray buffers with some initial rays before
rendering begins, using provided application programming interface
(API) functions to determine maximum stream memory capacity.
These initial rays are all added to the buffer for the top-level treelet
containing the root node of the BVH. After the initial rays are
created, new rays are added to the top treelet ray buffer but only after
another ray has finished processing, thus new rays effectively replace
old ones. When a ray completes traversal, the executing thread may
either generate a new secondary shadow ray or global illumination
bounce ray for that path, or a new primary ray if the path is complete.
Rays are removed from and added to the buffers in a one-to-one ratio,
where secondary rays replace the ray that spawned them to avoid
overflowing on-chip ray buffers. Managing ray generation is done
by the programmer with the help of the API. For example, during
shading (when a ray has completed traversal/intersection), if another
ray must be generated as part of the shader, the programmer simply
adds that ray with the same pixel ID and updated state (such as ray
type) to the root treelet ray buffer instead of immediately invoking
a BVH traversal routine.

In this work, each ray requires 48 bytes comprised of: ray origin
and direction (24 bytes total), ray state (current BVH node index,
closest hit, traversal state, ray type, etc. totalling 20 bytes) and a
traversal stack (4 bytes, see Section 3.2).

3.2. Traversal stack

Efficient BVH traversal attempts to minimize the number of nodes
traversed by finding the closest hit point as early as possible. If a
hit point is known and it lies closer than the intersection with a
BVH node, then the traversal can terminate early by ignoring that
branch of the tree. To increase the chances of terminating early,
most ray tracers traverse the closer BVH child first. Since it is
non-deterministic which child was visited first, typically a traver-
sal stack is used to keep track of nodes that need to be visited at
each level. One can avoid a stack altogether by adding parent point-
ers to the BVH, and using a deterministic traversal order (such as
always left first then right), this however eliminates the possibil-

ity of traversing the closer child first and results in less efficient
traversal.

Streaming approaches such as the one used in this work typically
require additional memory space to store ray state. Rays are passed
around from core to core and are stored in memory buffers. In our
case, the more rays present in a buffer, the longer a TM can operate
on that treelet, increasing the energy savings by not accessing off-
chip memory during that computation. Storing the entire traversal
stack with every ray has a very large memory cost, and would reduce
the total number of rays in flight significantly. There have been a
number of recent techniques to reduce or eliminate the storage size
of a traversal stack, at the cost of extra work during traversal or
extra data associated with the BVH such as parent pointers [Smi98,
Lai10, HDW*11].

We use a traversal technique in which parent pointers are included
with the BVH so full node IDs are not required for each branch
decision. We do, however, need to keep track of which direction
(left child or right child) was taken first at each node. To reduce the
memory cost of keeping this information, we store the direction as
a single bit on a stack and thus the entire stack fits in one integer.
Furthermore, there is no need for a stack pointer, as it is implied
that the least significant bit (LSB) is the top of the stack. Stack
operations are simple bitwise integer manipulations: shift left one
bit to push, shift right one bit to pop. In this scheme, after a push,
either 1 is added to the stack (setting the LSB to 1, corresponding
to left), or it is left alone (leaving the LSB as 0, corresponding to
right). After visiting a node’s subtree, we examine the top of the
stack. If the direction indicated on the top of the stack is equal to
which side the visited child was on, then we traverse the other child
if necessary, otherwise we are done with both children and pop the
stack and continue moving up the tree.

3.3. Reconfigurable pipelines

One of the characteristics of ray tracing is that computation can be
partitioned into distinct phases: traversal, intersection and shading.
The traversal and intersection phases have a small set of specific
computations that dominate time and energy consumption. If the
available XUs in a TM could be connected so that data could flow
directly through a series of XUs without fetching new instructions
for each operation, a great deal of instruction fetch and register file
access energy could be saved. We propose repurposing the XUs by
temporarily reconfiguring them into a combined ray–triangle or ray–
box intersection test unit using a series of latches and MUXs when
the computation phase can make effective use of that functionality.
The overhead for this reconfigurability (i.e. time, energy and area)
is fairly low as the MUXs and latches are small compared to the size
of the floating point XUs, which themselves occupy a small portion
of the circuit area of a TM [MDP04, IPD04, RD07, Ram12].

Consider a hardware pipeline test for a ray intersection with an
axis-aligned box. The inputs are four 3D vectors representing the
two corners of the bounding box, the ray origin, and ray direction
(12 floats total). Although the box is stored as two points, it is
treated as three pairs of planes – one for each dimension in 3D
[Smi98, WBMS05]. The interval of the ray’s intersection distance
between the near and far plane for each pair is computed, and if
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there is overlap between all three intervals, the ray hits the box,
otherwise it misses. The bulk of this computation consists of six
floating point multiplies and six floating point subtracts, followed
by several comparisons to determine if the intervals overlap.

The baseline TRaX processor has eight floating point multiply,
and eight floating point add/subtract units shared within a TM,
which was shown to be an optimal configuration in terms of area
and utilization for simple path tracing [KSBD10]. Our ray–box
intersection pipeline uses six multipliers and six add/subtract units,
leaving two of each for general purpose use. The comparison units
are simple enough that adding extra ones as needed for the pipeline
to each TM has a negligible effect on die area. The multiply and
add/subtract units have a latency of two cycles in 65 nm at 1 GHz,
and the comparisons have a latency of one cycle. The box-test unit
can thus be fully pipelined with an initiation interval of one and a
latency of eight cycles.

Ray–triangle intersection is typically determined based on
barycentric coordinates [MT97] and is considerably more complex
than the ray–box intersection. We remapped the computation as
a data-flow graph, and investigated several potential pipeline con-
figurations. Because an early stage of the computation requires a
high-latency divide (16 cycles), all of the options have prohibitively
long initiation intervals and result in poor utilization of XUs and low
performance. An alternative technique uses Plücker coordinates to
determine hit/miss information [SSKN07] and requires the divide
at the end of the computation, but only if an intersection occurs.
If a ray intersects a triangle, we perform the divide as a separate
operation outside of the pipeline. Of the many possible ray–triangle
intersection pipelines, we select one with a minimal resource re-
quirement of four multipliers and two adders, which results in an
initiation interval of 18, a latency of 31 cycles and an issue width of
two.

The final stage shades the ray without reconfiguring the TM
pipeline. In our test scenes, Lambertian shading is a small portion
of the total computation, and threads performing shading can take
advantage of the leftover general purpose XUs without experiencing
severe starvation. Alternatively, if shading were more computation-
ally intensive or if the data footprint of the materials is large, the
rays could be sent to a separate buffer or be processed by a pipeline
configured for shading.

The programmer invokes and configures these phase-specific
pipelines with simple compiler intrinsics provided in the API. Once
a TM is configured into a specific pipeline, all of the TPs within
operate in the same mode until reconfigured. Since the pipelines
have many inputs, the programmer is also responsible for loading
the input data (a ray and a triangle/box) into special input registers
via compiler intrinsics. This methodology keeps the instruction set
simple and avoids any long or complex instruction words.

4. Accurate DRAM Modelling

A fair amount of recent work aims to reduce off-chip bandwidth
consumption (see Section 2), since incoherent access to DRAM can
be the main performance bottleneck in a ray tracer, and is clearly
a large energy consumer. Raw bandwidth consumption however
does not tell the full story, since the internal structure of DRAM

yields highly variable energy and latency characteristics depending
on access patterns. A benchmark with a higher number of total
accesses but a friendlier access pattern may outperform another
benchmark even if it consumes less raw bandwidth.

The internal structure of a DRAM chip is logically organized
as a set of memory arrays or banks. Each bank holds a portion of
the total DRAM data, and can be accessed relatively independently.
Because of the circuit structure of the DRAM bank arrays, they
are accessed at the granularity of an entire row of the array, which
typically contains 4 or 8 KB of data [JNW10]. This large chunk of
data is staged in a static buffer on the chip known as a ‘row buffer.’
Because of the size of a typical row buffer, each row buffer may
contain multiple cache lines.1

A basic read from DRAM consists of two phases: reading a row
into a row buffer (this operation is known as opening the row),
then selecting and reading a column from that row. If the address
requested lies in the row that happens to be already open, only
a column read must be performed, which is much cheaper than
opening a row, both in terms of energy and delay. This is called a
row buffer hit, and amortizes the significant energy cost of opening
the row. When an address in a different row is required, the current
row must be closed, and the new one opened. Closing a row requires
rewriting the data from the buffer back into the memory cells, since
the initial row read is destructive. In the worst case, an access pattern
will read only a single column before requiring a new row. The
memory controller can attempt to increase row buffer hit rate by
preferentially scheduling reads to open rows, but there is a limit to
its effectiveness with overly chaotic access patterns.

Many architectural simulations, including previous incarnations
of our simulator [KSS*13], focus on accurate modelling of the
on-chip systems, but use a simplified approximation for DRAM
performance, such as assuming an average latency and energy for
all reads and writes. USIMM is a DRAM simulator with sophisti-
cated modelling of timing and energy characteristics for the entire
DRAM system [CBS*12], and has been used by a number of sim-
ulation systems as an accurate memory model [MSC12, NCQ13].
In this work, we incorporate USIMM into the TRaX simulator, and
adapt it to operate with on-the-fly DRAM requests as they are gen-
erated, as opposed to operating on trace files. The result is a cycle
accurate simulation of a complete GPU architecture which reveals
many performance characteristics previously hidden by a simpler
DRAM model. DRAM performance is subtle and complex when
all the details are exposed. For example, detailed DRAM behaviour
requires modelling the following types of activity:

� Opening/closing rows, sometimes called a page access, and mod-
elling row hits versus row misses—These can result in drastic
differences in energy and delay.

� Scheduling (memory controller)—Reads can be serviced out of
order, which results in opportunities for increasing row hits.

� Write drain mode—Draining the write queue disables reads for a
long period of time, introducing hiccups in DRAM access timing.

1Historically, DRAM chips that included static memory to hold an entire row
from the internal memory arrays were known as ‘page mode’ DRAMs, and
the data fetched from the array on a single read were known as a DRAM page.
This static buffer is known as a ‘row buffer’ in modern DRAM parlance.
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� Refresh—Memory cells must be rewritten periodically or they
lose data. This disables everything for a long period of time,
introducing hiccups, and consuming a large amount of energy.

� Separate memory clock—A memory controller can make deci-
sions between GPU/CPU cycles.

� Queueing delay—All of the above behaviours have a combined
effect on queueing delay.

� Background energy—DRAM energy is not only a function of
the number and pattern of accesses, but also of running time.

� Address mapping policy—How addresses map to chan-
nels/banks/rows has a direct impact on how efficiently the data
are accessed.

To understand the key difference in DRAM access patterns be-
tween the baseline and STRaTA, we must examine the algorithmic
source of these accesses. The baseline ray tracer’s memory access
pattern is determined by the nature of the BVH traversal algorithm.
If no special care is taken in the implementation to govern memory
access patterns this results in chaotic memory accesses when, for
example, path tracing inevitably generates many incoherent rays.
Accesses that miss in the L1 and L2 are thus both temporally and
spatially incoherent, generating continuous moderate pressure on
all channels, banks and rows in DRAM.

STRaTA remaps the ray tracing algorithm to specifically target
coherent L1 accesses. While a TM is operating on a certain treelet,
all accesses will hit in the L1, except for the first to any given cache
line. Ideally, a TM will operate on the treelet for a prolonged period
of time, generating no L2 or DRAM accesses. The accesses that do
make it past the L1 occur right after a TM has switched to a new
treelet. All threads within a TM will immediately begin reading
cache lines for the new treelet, missing in the L1, and generating a
very large burst of L2/DRAM accesses. While the small L2 cache in
STRaTA may absorb some of this burst, the remainder that makes
it to DRAM will have the same bursty structure. Intuitively, this
behaviour may seem detrimental for DRAM utilization; however,
treelets are stored in a consecutive address block, mapping to as few
DRAM row buffers as possible (in our configurations treelets are
the size of two rows). Figure 4 shows an example of this. Once a
DRAM row is open, the treelet data can flow quickly through the
memory channel, at a very low energy cost compared to the more
constant but incoherent accesses generated by the baseline. Table 1
shows a significant increase in row buffer hit rate for STRaTA on all
benchmark scenes (Figure 2), as well as a reduction in read latency
on all but one scene.

5. Results and Discussion

We start with a baseline TRaX system (based on previous
area/performance explorations) with 128 TMs which results in 4096
total TPs. Each TP is configured with 32 registers and a 512 B local
memory. Although these individual resources are small, the com-
bination across all the TPs on a chip is large. Because individual
TPs do not support multi-threading, we increase concurrency by
adding TPs rather than increasing register file size. For the baseline
non-STRaTA system, we use a near-future capacity of 4 MB of L2
cache shared among the TMs on the chip (current top-end GPUs
have up to 1.5 MB of on-chip L2). In this work, each TM’s L1 data

cache (and thus maximum treelet size) is 16 KB. To model near-
future GPU DRAM capabilities, we configure USIMM for both the
baseline and STRaTA to use GDDR5 with eight 64-bit channels,
running at 2 GHz (8 GHz effective), for a total of 512 GB/s maxi-
mum bandwidth. The chip configurations in this work use a 1 GHz
core clock rate.

All benchmark scenes (Figure 2) are rendered using a single point-
light source and path tracing [Kaj86] because it generates incoherent
and widely scattered secondary rays that provide a worst-case stress
test for a ray tracing architecture. We use a resolution of 1024 ×
1024, and a maximum ray-bounce depth of five resulting in up to
10.5 million ray segments per frame. Our focus in this work is on the
traversal and primitive intersection phases, and we do not attempt
to optimize shading, so we use a simple Lambertian material on all
scenes.

Our test renderer is limited to shading with non-branching ray
paths. To support more advanced shaders, the programmer could
add more information to the per-ray state to determine the remaining
rays yet to be generated. When one shading ray finishes, a new ray
could be generated with updated state for the associated shading
point. Increasing the data footprint of rays will reduce the number
of them that fit in the stream memory, but our results indicate that
the number of rays in flight could decrease by a fair amount without
being detrimental to the system. Another option is to allow the on-
chip ray buffers to overflow to main memory when full (for example,
[AK10] store rays in main memory), although this would likely
impact our DRAM access patterns negatively. Note that texture
accesses could have similar DRAM access patterns if combined
into texture ‘treelets’ (with associated ray buffers) in an augmented
STRaTA implementation.

5.1. Off-chip memory access

Starting from our baseline configuration, we first investigate the
effects on DRAM access energy and performance by repurposing
the L2 cache as a dedicated ray stream memory. This involves
replacing the L2 cache with a programmer-managed SRAM for
storing and retrieving treelet streams. Treelet streams consist of
rays associated with a particular BVH treelet. The size of the stream
memory directly controls how many rays can be in flight at any
given time. The STRaTA treelet-streaming model improves L1 hit
rates significantly (Figure 5), but rather than remove the L2 cache
completely we include a small 512 KB L2 cache in addition to the
stream memory to absorb some of the remaining L1 misses.

Table 1 shows a breakdown of various DRAM characteristics on
each scene, as well as total running time in ms/frame, for the base-
line and STRaTA techniques. Note that although STRaTA increases
L1 hit rates, the lack of a large L2 cache can result in a greater
number of total DRAM accesses and thus bandwidth consumption
on some scenes. However, the coherent pattern of STRaTA’s ac-
cesses increases the row buffer hit rate significantly on all scenes,
and drastically on some (San Miguel, Buddha Box, Dragon Box).
Raw bandwidth consumption, while an interesting metric, does not
reveal other subtleties of DRAM access; the increase in row buffer
hit rate reduces DRAM energy consumed on all but two outlier
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Table 1: DRAM performance characteristics for baseline versus STRaTA, where bold signifies the better performer. Read latency is given in units of GPU
clock cycles. STRaTA DRAM energy is also shown as a percentage of baseline DRAM energy. For all columns except Row Buffer Hit Rate, lower is better.

Baseline STRaTA

DRAM Row buffer Avg. read ms/ Total DRAM DRAM Row buffer Avg. read ms/ Total DRAM
Scene accesses (M) hit rate (%) latency Frame energy (J) accesses (M) hit rate (%) latency Frame energy (J)

Sibenik 39 69 39 21 1.7 15 84 31 23 0.98 (58%)
Fairy 22 62 49 12 1.1 14 83 45 16 0.77 (70%)
Crytek 59 44 60 31 3.5 52 84 35 34 2.0 (57%)
Conference 18 57 42 17 1.1 9 83 35 23 0.84 (76%)
Dragon 70 55 264 22 3.2 78 80 63 25 2.5 (78%)
Dragon Box 168 35 429 71 10.1 252 80 65 57 7.3 (72%)
Buddha 47 63 219 13 1.9 86 77 83 23 2.7 (142%)
Buddha Box 133 31 416 61 8.6 224 78 63 54 6.8 (79%)
Vegetation 148 43 346 56 8.2 160 77 53 51 5.4 (66%)
Sodahall 5 64 41 8 0.4 4.5 72 69 9 0.4 (100%)
Hairball 135 48 352 46 6.9 126 75 62 40 4.3 (62%)
San Miguel 218 27 352 108 14.8 323 60 169 94 13.7 (93%)

scenes (Buddha increases by 42% and Sodahall is tied), discussed
further below.

As a secondary effect, increased row buffer hit rate can also lead
to greatly reduced read latency, up to 85% on the Dragon Box
scene. This can result in higher performance, even though STRaTA
introduces some overhead in the traversal phase due to its lack of
a full traversal stack (Section 3.2) and the need to detect treelet
boundaries.

There are two notable outlier scenes: Buddha and Sodahall. Bud-
dha is the only scene in which STRaTA consumes more DRAM
energy than the baseline. The major reason for this is that Buddha
requires the fewest total rays to render. The Buddha is the only ob-
ject in the scene so over half of the primary rays immediately hit the
background and do not generate secondary bounces. The few rays
that do hit the Buddha surface are likely to bounce in a direction
that will also terminate in the background. Because of this, a dis-
proportionate number of rays never leave the top level (root) treelet,
and Buddha does not reach a critical mass of rays required for our
ray buffers to function effectively. Hence, we also consider a more
realistic scene by placing Buddha in a box.

When a TM switches to a treelet ray buffer, if there are not
enough rays to keep all of its threads busy, many of the compute
resources sit idle, effectively reducing parallelism. Even though
STRaTA increases row buffer hit rates on Buddha, the increase in
DRAM energy is partly background energy caused by the nearly
doubled running time while threads sit idle. We note that DRAM
energy is not only a function of the number and pattern of accesses,
but it also has a dependency on the total running time (e.g. ms/frame
in Table 1), mostly due to the need for continuous refreshing of the
DRAM data even when no read/write activity occurs.

Also note that the baseline has a relatively high row buffer hit rate
on Buddha, so STRaTA is unable to make as large of a difference.
The Dragon scene is similar to Buddha, but does not exhibit this
problem. Note that the baseline takes almost twice as long to render

Dragon than Buddha, since Dragon fills a larger portion of the
frame. This closes the gap in background energy between the two
techniques. Dragon also results in more total rays, and has a smaller
data footprint with fewer unique treelets and thus more rays on
average in each buffer.

The other interesting outlier is Sodahall. Even though it has a
large data footprint (2.2M triangles), it generates by far the fewest
DRAM accesses. Most of the geometry is not visible from any one
viewing angle since it is separated into many individual rooms. Only
a small percentage of the total data is ever accessed. The pressure
on DRAM is so low that background energy is the dominant factor
for both STRaTA and the baseline. The viewpoint shown (Figure 2)
has similar results to viewpoints inside the building.

5.2. On-chip memory access

Figure 5 shows the on-chip memory access behaviour for a subset of
our test scenes. All other scenes except Buddha have similar results.
The solid lines show the total number of L1 misses (and thus L2
cache accesses), while the dotted lines show the total number of
accesses to the stream memory for our proposed STRaTA technique.
The size of the L2 cache (baseline) and stream memory (STRaTA)
are the same. The significant increase in L1 hit rate allows STRaTA
to do away with all but a very small L2 cache without detrimentally
increasing DRAM accesses. More importantly, STRaTA’s DRAM
access pattern yields a much higher row buffer hit rate.

Note in Figure 5 that the number of L1 misses for the base-
line technique increases (and thus L1 hit rate decreases) as the
L2 capacity and frame rate increases. While this initially seems
counter-intuitive, there is a simple explanation. The L1 cache is di-
rect mapped and shared by 32 threads which leads to an increased
probability of conflict misses. As the size of the L2 cache increases,
each thread has a reduced chance of incurring a long-latency data
return from main memory since it is more likely that the target ac-
cess will be serviced by the L2 cache. The increased performance of
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Figure 5: Number of L1 misses (solid lines) for the baseline, and the
proposed STRaTA technique, and stream memory accesses (dashed
line) on a selection of benchmark scenes. L1 hit rates range 91–
94% for the baseline, and 97–99% for STRaTA. The vertical grey
line corresponds to 1.5 MB, the L2 cache size of NVIDIA’s GK110
GPU.

each thread generates a higher L1 access rate causing more sporadic
data access patterns. The result is an increase in the number of L1
conflict misses.

The number of stream accesses is constant with regards to the
size of the stream memory because it is only a function of the
number of treelet boundaries that an average ray must cross during
traversal. Since the treelet size is held constant, the stream access
patterns are only affected by which scene is being rendered. Increas-
ing the stream size does however increase the average number of
rays in each treelet buffer, which allows a TM to spend more time
processing while the treelet’s subset of BVH data is cached in the
L1.

Figure 6 shows the energy consumption per frame considering the
L2 cache/stream memory accesses and off-chip memory accesses
for a subset of scenes. DRAM energy is reported by USIMM, and
Table 2 shows energy estimates for the cache/stream memories from
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Figure 6: Energy consumption for the L2 cache/stream memory
and DRAM on a selection of benchmark scenes. The vertical grey
line corresponds to 1.5 MB, the L2 cache size of NVIDIA’s GK110
GPU.

Table 2: Estimated energy per access in nanojoules for various memories.
Estimates are from Cacti 6.5.

L2/Stream memories

512 KB 1 MB 2 MB 4 MB 8 MB 16 MB
0.524 0.579 0.686 0.901 1.17 1.61

Inst. Cache Reg. File

4 KB 128 B
0.014 0.008

Cacti 6.5 [MBJ07]. Not surprisingly, the baseline L2 cache energy
consumption increases as larger capacities consume more energy per
access. The proposed STRaTA technique follows a similar curve,
but both techniques are dominated by DRAM energy. Note that the
L1 misses (L2 accesses) for the proposed STRaTA technique in
Figure 5 are to a fixed small 512 KB L2 cache. Table 1 shows that
even though STRaTA sometimes requires more DRAM accesses,
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Table 3: Energy consumption (in Joules) for components affected by phase-
specific pipelines. ‘RF’ column refers to register file and ‘iCache’ column
refers to instruction cache. ‘Diff’ column shows STRaTA as a percentage of
the baseline for the sum of all energies shown.

Baseline STRaTA

Scene RF iCache RF iCache Diff (%)

Sibenik 1.18 0.9 0.88 0.73 77
Fairy 0.67 0.51 0.49 0.41 76
Crytek 1.85 1.42 1.33 1.11 75
Conference 1.0 0.76 0.71 0.59 74
Dragon 0.53 0.4 0.45 0.36 87
Dragon Box 1.27 0.97 1.02 0.83 83
Buddha 0.36 0.28 0.32 0.25 89
Buddha Box 0.98 0.75 0.8 0.65 84
Vegetation 1.74 1.33 1.25 1.04 75
Sodahall 0.49 0.38 0.36 0.3 76
Hairball 1.11 0.84 0.77 0.64 72
San Miguel 1.96 1.5 1.38 1.15 73

the energy consumed is lower in almost all scenes due to higher row
buffer hit rates.

5.3. Phase-specific pipelines

In addition to the treelet-stream approach, we propose configur-
ing the shared XUs into phase-specific pipelines to perform box
and triangle intersection functions. The effect of these pipelines is
a reduction in instruction fetch and decode energy since a single
instruction is fetched for a large computation, and a reduction in
register file accesses since data are passed directly between pipeline
stages. This reduction in energy is largely independent of the other
STRaTA features (treelets and ray buffers), since it simply reduces
the energy cost associated with ray–triangle and ray–box intersec-
tion, and does not affect main memory traffic behaviour. However,
without treelets enabling the batch processing of rays performing
the same task, reconfiguring the pipelines for individual rays would
add significant overhead.

Table 3 shows the effect of STRaTA’s phase-specific pipeline
techniques on all test scenes. By engaging the phase-specific
pipelines, we see a reduction in instruction fetch and register file
energy of between 11% and 28%.

In addition to reducing energy consumption, STRaTA can
also increase performance scalability with the number of cores.
Figure 7 shows performance for STRaTA with increasing numbers
of TMs (dotted lines), compared to the baseline (solid lines) for a
subset of benchmark scenes. With few cores when neither technique
is memory bound, STRaTA initially has slightly lower performance
due to the overhead added by using treelets during traversal. How-
ever, memory becomes a bottleneck much more quickly for the
baseline than for STRaTA, which is able to utilize more cores to
achieve significantly higher performance.
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Figure 7: Performance on a selection of benchmark scenes with
varying number of TMs. Each TM has 32 cores. Performance
plateaus due to DRAM overutilization.

The total energy used per frame for a path tracer in this TRaX-
style architecture is a strong function of the size of the L2 cache or
stream memory, and whether the phase-specific pipelines are used.
If we combine the treelet streaming and phase-specific pipeline
enhancements, we see a total system-wide reduction in energy (in-
cluding all caches, DRAM, register files and compute) of up to
30%. These reductions in energy come from relatively simple mod-
ifications to the basic parallel architecture with negligible overhead.
The significant reductions in energy used in the various memory
systems, combined with low hardware overhead, implies that these
techniques would be welcome additions to any hardware architec-
ture targeting ray tracing.

6. Conclusions

The STRaTA design presented in this work demonstrates two im-
provements for ray tracing that can be applied to throughput ori-
ented architectures. First, we provide a memory architecture to
support smart ray reordering when combined with software that
implements BVH treelets. By deferring ray computations through
streaming rays, we can greatly increase cache hit rates, and improve
the off-chip memory access patterns, resulting in row buffer hit rates
increasing from 35% to 80% in the best case, DRAM energy up to
43% lower and DRAM read latencies up to 85% faster. Secondly,
STRaTA allows shared XUs to be dynamically reconfigured into
phase-specific pipelines to support the dominant computational ker-
nel for a particular treelet type. When these phase-specific pipelines
are active, they reduce instruction fetch and register usage by up to
28%.

More generally, we show that understanding DRAM circuits
is critical to making evaluations of energy and performance in
memory-dominated systems. DRAM access protocols, and the re-
sulting energy profiles, are complex and subtle. We show that man-
aging DRAM access patterns (e.g. to optimize row buffer hit rates)
can have a significantly greater impact on energy than simply reduc-
ing overall DRAM bandwidth consumption. These effects require
a high-fidelity DRAM simulation, such as USIMM, that includes
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internal DRAM access modelling, and detailed modelling of the
memory controller. The interaction between compute architectures
and DRAM to reduce energy is an underexplored area. We plan to
continue to explore how applications like ray tracing interact with
the memory system. Especially interesting is the DRAM subsys-
tem because DRAM access is the primary consumer of energy in
a memory-constrained application such as ray tracing, or graphics
rendering in general. In particular, one might develop a memory con-
troller scheduler that is ray-tracing aware, and hide DRAM access
optimizations from the programmer.

Acknowledgements

This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1017457. Manjunath Shevgoor,
Niladrish Chatterjee and Tim Purcell provided many useful discus-
sions. Sibenik Cathedral is from Marko Dabrovic, Fairy Forest is
from the University of Utah, Crytek Sponza is from Frank Meinl
at Crytek and Marko Dabrovic, Conference is from Anat Grynberg
and Greg Ward, Dragon and Buddha are from the Stanford Com-
puter Graphics Laboratory, Vegetation and Hairball are from Samuli
Laine and San Miguel is from Guillermo Leal Laguno.

References

[AK10] AILA T., KARRAS T.: Architecture considerations for tracing
incoherent rays. In Proceedings of High Performance Graphics
(Saarbrucken, Germany, 2010).

[BEL*07] BOULOS S., EDWARDS D., LACEWELL J. D., KNISS J., KAUTZ

J., SHIRLEY P., WALD I.: Packet-based whitted and distribution ray
tracing. In Proceedings of Graphics Interface (Montreal, Quebec,
Canada, 2007).

[BFH12] BROWNLEE C., FOGAL T., HANSEN C. D.: GLuRay: Enhanced
ray tracing in existing scientific visualization applications using
OpenGL interception. In Proceedings of EGPGV (Cagliari, Italy,
2012), Eurographics, pp. 41–50.

[BIH13] BROWNLEE C., IZE T., HANSEN C. D.: Image-parallel ray
tracing using OpenGL interception. In Proceedings of EGPGV
(Girona, Spain, 2013), Eurographics, pp. 65–72.

[BSP06] BIGLER J., STEPHENS A., PARKER S. G.: Design for parallel
interactive ray tracing systems. In Proceedings of Symposium on
Interactive Ray Tracing (IRT ’06) (Salt Lake City, UT, USA,
2006), pp. 187–196.

[BWB08] BOULOS S., WALD I., BENTHIN C.: Adaptive ray packet re-
ordering. In Proceedings of Symposium on Interactive Ray Trac-
ing (IRT ’08) (Los Angeles, CA, USA, 2008).

[CBS*12] CHATTERJEE N., BALASUBRAMONIAN R., SHEVGOOR M.,
PUGSLEY S., UDIPI A., SHAFIEE A., SUDAN K., AWASTHI M.,
CHISHTI Z.: USIMM: the Utah SImulated Memory Module.
Tech. Rep. UUCS-12-02, University of Utah, 2012. See also:
http://utaharch.blogspot.com/2012/02/usimm.html. Accessed 23
July 2014.

[CLAL07] CHANG C.-H., LOHRMANN P. J., AGU E. O., LINDEMAN R.
W.: ENCORE: Energy-conscious rendering for mobile device. In
Proceedings of GPGPU (Boston, MA, USA, 2007).

[CLF*03] CHRISTENSEN P. H., LAUR D. M., FONG J., WOOTEN W.
L., BATALI D.: Ray differentials and multiresolution geometry
caching for distribution ray tracing in complex scenes. In Pro-
ceedings of Eurographics 2003 (Granada, Spain, 2003), pp. 543–
552.

[Dal13] DALLY B.: The challenge of future high-performance com-
puting. Celsius Lecture, Uppsala University, Uppsala, Sweden,
2013. http://media.medfarm.uu.se/play/video/3261. Accessed 23
July 2014.

[DHS04] DMITRIEV K., HAVRAN V., SEIDEL H.-P.: Faster Ray Tracing
with SIMD Shaft Culling. Tech. Rep. MPI-I-2004-4-006, Max-
Planck-Institut für Informatik, December 2004.

[DK00] DACHILLE IX F., KAUFMAN A.: Gi-cube: An architecture
for volumetric global illumination and rendering. In HWWS ’00:
Proceedings of ACM SIGGRAPH/EUROGRAPHICS Workshop
on Graphics Hardware (Interlaken, Switzerland, 2000), ACM,
pp. 119–128.

[GDS*08] GOVINDARAJU V., DJEU P., SANKARALINGAM K., VERNON M.,
MARK W. R.: Toward a multicore architecture for real-time ray-
tracing. In Proceedings of IEEE/ACM Micro ’08 (Lake Como,
Italy, 2008).
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