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Alibaba Infrastructure

...

System Software (OS / JVM / Virtualization)

Resource Scheduling / Cluster Management / Container

Database / Storage / Middleware / Computing Platform
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• A customized downstream of OpenJDK with free LTS

• https://github.com/alibaba/dragonwell8

• Preview now and GA soon

• Will be the recommended JDK on Alibaba Cloud

• Plan to update in every 3 months
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• Java Flight Recorder (JFR)

• Low-overhead profiling framework 

• Backported JFR from OpenJDK 11 to Alibaba Dragonwell 8

• In progress pushing back to OpenJDK 8

• JWarmUp

• Reduce startup time by reusing Just-in-Time (JIT) compilation info from 
a previous run

• In progress pushing back to OpenJDK

Key Customizations in Alibaba Dragonwell JDK
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• A challenge in the cloud

• CPU utilization is high during JVM startup

• Caused by excessive JIT compilations

AppAOT
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• Ahead-of-Time (AOT) compilation

• AOT in OpenJDK

• jaotc --output libHelloWorld.so HelloWorld.class

• java -XX:AOTLibrary=./libHelloWorld.so HelloWorld

• CPU utilization by JIT compilations saved

• Limitation: AOT code loaded when JVM starts

AppAOT
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• Enhanced from AOT: dynamically load/unload AOT code with the 
support of custom class loaders

• Java API

• AppAOTController.loadAOTLibraryForLoader(ClassLoader loader, 
String library)

• AppAOTController.unloadAOTLibraryForLoader(ClassLoader
loader)

AppAOT
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• Reduce AOT code size

• Use static analysis to construct call graph

• Generate compilation method list from call graph 
with unreachable methods removed

• Do AOT compilations for methods on the 
compilation method list only

• Results from an example app

• 50% reduction on code size

• 90% of actually executed methods covered

AppAOT
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app entry method

foo::m1

call bar::m1

foo::m2

Call graph

Method
list
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• Use case

AppAOT
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Common App Platform
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• Use case

AppAOT
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Common App Platform

AOT’ed
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With AppAOT
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• Results
AppAOT
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• Multiple Java applications running on the same host together

• Memory is a shared resource

• Memory consumption changes along running

• Dynamically resize heap on demand

Elastic Heap

13



2019 2019

• Garbage collection (GC)

• Automatic memory management on heap

• Reclaim the space occupied by dead objects

• Intuition

• Increase heap size when GC happens more

• Decrease heap size with GC happens less

Elastic Heap
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• Use case

Elastic Heap
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Elastic Heap
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• Results from an online service
Elastic Heap
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• Both OpenJDK and our solution are based on Garbage-First (G1) GC

• The solution in OpenJDK is for full GC and concurrent cycle only

• Young GC is covered in our solution

• Heap resizing is more prompt because Young GC happens more 
frequently

• Heap resizing is concurrent

Elastic Heap
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• Challenges in the cloud

• Excessive CPU utilization caused by JIT compilations

• AppAOT

• Better memory sharing across JVM instances on the same host

• Elastic heap

Summary
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