
Alibaba Dragonwell JDK:
Towards a Java Runtime for Cloud Computing

Xiaoming Gu
Alibaba JVM Team

1



2019 2019

Alibaba Infrastructure

...

System Software (OS / JVM / Virtualization)

Resource Scheduling / Cluster Management / Container

Database / Storage / Middleware / Computing Platform

2



2019 2019

Singles’ Day Shopping Festival

3200 14,000
42,000

80,000

140,000

175,000

325,000

1200 3,850 15,000
38,000

86,000
120,000

256,000

0

50000

100000

150000

200000

250000

300000

350000

2011 2012 2013 2014 2015 2016 2017
Alibaba cloud platform Alibaba payment service

more than 100x 
in 7 years

Peak #transactions per second

3



2019 2019

• A customized downstream of OpenJDK with free LTS

• https://github.com/alibaba/dragonwell8

• Preview now and GA soon

• Will be the recommended JDK on Alibaba Cloud

• Plan to update in every 3 months

4

https://github.com/alibaba/dragonwell8


2019 2019

• Java Flight Recorder (JFR)

• Low-overhead profiling framework 

• Backported JFR from OpenJDK 11 to Alibaba Dragonwell 8

• In progress pushing back to OpenJDK 8

• JWarmUp

• Reduce startup time by reusing Just-in-Time (JIT) compilation info from 
a previous run

• In progress pushing back to OpenJDK

Key Customizations in Alibaba Dragonwell JDK

5



2019 2019
• A challenge in the cloud

• CPU utilization is high during JVM startup

• Caused by excessive JIT compilations

AppAOT

6



2019 2019

• Ahead-of-Time (AOT) compilation

• AOT in OpenJDK

• jaotc --output libHelloWorld.so HelloWorld.class

• java -XX:AOTLibrary=./libHelloWorld.so HelloWorld

• CPU utilization by JIT compilations saved

• Limitation: AOT code loaded when JVM starts

AppAOT

7



2019 2019

• Enhanced from AOT: dynamically load/unload AOT code with the 
support of custom class loaders

• Java API

• AppAOTController.loadAOTLibraryForLoader(ClassLoader loader, 
String library)

• AppAOTController.unloadAOTLibraryForLoader(ClassLoader
loader)

AppAOT

8



2019 2019

• Reduce AOT code size

• Use static analysis to construct call graph

• Generate compilation method list from call graph 
with unreachable methods removed

• Do AOT compilations for methods on the 
compilation method list only

• Results from an example app

• 50% reduction on code size

• 90% of actually executed methods covered

AppAOT

9

app entry method

foo::m1

call bar::m1

foo::m2

Call graph

Method
list



2019 2019

• Use case

AppAOT

10

Common App Platform

App
1

(.jar)

App
2 

(.jar)

App
3 

(.jar)

App
N 

(.jar)
……

Normal case (with JIT) 



2019 2019

• Use case

AppAOT

11

Common App Platform

AOT’ed
App 1 
(.so) ……

AOT’ed
App 2 
(.so)

AOT’ed
App 3 
(.so)

AOT’ed
App N 
(.so)

With AppAOT



2019 2019

• Results
AppAOT

12

0

20

40

60

80

100

120

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

13
7

14
1

14
5

14
9

15
3

15
7

16
1

16
5

16
9

17
3

17
7

18
1

18
5

18
9

19
3

19
7

20
1

20
5

20
9

21
3

21
7

22
1

22
5

22
9

23
3

CPU utilization

aot_tiered jit

AppAOT uses less CPU
at app startup time

Peak performance of
AppAOT is similar to JIT

—— AppAOT—— JIT



2019 2019

• Multiple Java applications running on the same host together

• Memory is a shared resource

• Memory consumption changes along running

• Dynamically resize heap on demand

Elastic Heap

13



2019 2019

• Garbage collection (GC)

• Automatic memory management on heap

• Reclaim the space occupied by dead objects

• Intuition

• Increase heap size when GC happens more

• Decrease heap size with GC happens less

Elastic Heap

14



2019 2019

• Use case

Elastic Heap

15

online service with 
higher memory pressure

offline service with 
lower memory pressure

before midnght

online 
service

offline
service

before
traffic peak

online 
service

offline
service

shortly after 
traffic peak 



2019 2019

Elastic Heap

16

online service with 
lower memory pressure

offline service with 
higher memory pressure

before midnght

online 
service

offline
service

after traffic peak
for a while

online 
service

offline
service

shortly after 
traffic peak



2019 2019

• Results from an online service
Elastic Heap

17

CPU utilization

Memory usage

traffic peak
starts

traffic peak
ends

acquire memory
from OS

return memory
back to OS

time



2019 2019

• Both OpenJDK and our solution are based on Garbage-First (G1) GC

• The solution in OpenJDK is for full GC and concurrent cycle only

• Young GC is covered in our solution

• Heap resizing is more prompt because Young GC happens more 
frequently

• Heap resizing is concurrent

Elastic Heap

18



2019 2019

• Challenges in the cloud

• Excessive CPU utilization caused by JIT compilations

• AppAOT

• Better memory sharing across JVM instances on the same host

• Elastic heap

Summary

19



Q & A

20


