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Cloud Runtimes
Usage/Introduction

Title: Luna at Pittock Mansion
Author: Suresh Srinivas

License: Creative Commons
Source: @sweetlunatheyellowlab on Instagram



Cloud Runtime: Usages/Language

Multiple Environments

 IaaS->PaaS->FaaS

Languages 

 4 of top 5 are Runtimes 

 3 are dynamically typed.

Usages

 Function As Service

 WebTier

 Analytics Node.js Node.js

*Other names and brands may be claimed as the property of others.

*

*

4https://octoverse.github.com/projects#languages



Cloud Runtime: Web Tier Scale Out Usage
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 Each server running a Web Server
 Individual server can run at high 

utilization (> 90%)
 Each server also running Cloud 

Runtime
 Scale Out
 Example: Cluster of Dense 

Computing Platform with 
Yosemite v2 (Four 1S servers)

 PHP, Python, Node.js …
 Very different from SPEC 

benchmarks (Large Scattered 
Code, JITting, Type Checks, …)

Customer Data Center



Cloud Runtimes
Challenges/Problems

Title: Luna at Cannon Beach
Author: Suresh Srinivas

License: Creative Commons
Source: @sweetlunatheyellowlab on Instagram



High CPU bottlenecks ~35-45% stalled
 I-Cache Misses

 I-TLB Misses

 Branch Mispredicts

Problem gets worse for bigger function

FaaS JavaScript: Challenges

Anagram Ghost.js

51% retiring 34% retiring

1.18% I-TLB misses 6% I-TLB Misses

1.25% I-$ misses 10% I-$ Misses

26%

9%
14%

51%

Alexa* Anagram

Frontend(%) Bad_Speculation(%) Backend(%) Retiring(%)

33%

11%22%

34%

Ghost.js*

*Other names and brands may be claimed as the property of others. 7

FrontEnd

FrontEnd

Branch



Problem gets worse 
 Bigger Functions

 When multiple functions executing concurrently

 Frontend Stalls increase from 33% to 41%

 Cycles/work much higher

FaaS JavaScript: Characteristis & Challenges 

*Other names and brands may be claimed as the property of others.

33%

11%22%

34%

Ghost.js*

Frontend(%) Bad_Speculation(%) Backend(%) Retiring(%)

41%

11%15%

33%

Ghost.js Multi
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FrontEnd

Branch

FrontEnd

Branch



WebTier: Characteristics & Challenges
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Runtime with High CPU 
bottlenecks 

 Front End Bottlenecks: I-Cache 

Misses, I-TLB Misses

 Interpreters with high Branch 

Mispredicts

 Accounting for 50% of Stalls

Long Pathlength

• 10s of millions of instructions 
executed per request

50
43 41

33
41

36
25
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Cloud Runtime Workloads

Frontend_Bound BadSpeculation BackendBound Retiring

*Other names and brands may be claimed as the property of others.



Cloud Runtimes
Hardware & Software Optimization

Title: Luna on bed of flowers
Author: Suresh Srinivas

License: Creative Commons
Source: @sweetlunatheyellowlab on Instagram



Cloud Runtime: Hardware

Hardware Improvements

• 17% Improvement in Retirement

• 2M Code Pages in shared 2nd level 
structure

• Larger L2 helps with I$ Misses

 40% L2 miss reduction

 25% Frontend Improvement

*Other names and brands may be claimed as the property of others.

MediaWiki
BDX-D

MediaWiki
SKX-D

Topdown Frontend 
bound (%)

43 32

Topdown Retiring (%) 35 41

metric_L2 misses per 
txn (includes 
code+data+rfo w/ 
prefetches)

1,139,373 674,635

RPS 1.0 1.40

Cores 16 18

Package Power
70W 85W



Reduce I-TLB misses and cycles by 
using large pages for code

 Remap a subset of .text segment to 2M 
pages

 Relies on THP through madvise

 Reduce 4K walks and Reduce cycles

 30% Reduction in 4K Walks

Benefits longer running workloads
 Ghost.js*: 5%, WebTooling: 3%

Cloud Runtime: Software

Using 2M Pages reduces 
I-TLB misses 20-30% & improves 

perf 3-5%

0.8

1.9

0.70.7

1.3

0.7

WALK_COMPLETED WALK_COMPLETED_2M_4M WALK_COMPLETED_4K

Effect on I-TLB Misses

webtooling ghost.js

*Other names and brands may be claimed as the property of others. 12



Reduce I-Cache Misses through Code Layout Optimization
 Intel CPUs have a feature called last branch records (LBR) where the CPU can continuously 

log branches to a set of model-specific registers (MSRs).

 Profile guided reordering of the static code in .text reduces L1-I, L2, LLC Code Misses.

 5-7% Performance improvement

Combining Optimization: 

1.05

1.10

Large Pages Large Pages + Code Layout

Ghost.js*

Cloud Runtime: Software 

*Other names and brands may be claimed as the property of others. 13

1.28

1.31

1.29

metric_L1I code read misses
(includes prefetches) per txn

metric_L2 demand code
misses per txn

metric_LLC code references
per txn (L3 prefetch excluded)

Code Layout I$-Miss Improvement



Cloud Runtimes
Next Steps,  
Open Problems
Call to Action



Intel Focus: 

 Continue to optimize Cloud Runtimes

 Collaborate to address Runtime Bottlenecks

 Enhance our Products

 Develop runtime performance optimization 

blue print(s)

Next Steps
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Software

2M Pages.
Code Layout

Hardware
Xeon Scalable (Skylake & Beyond)



• Address Frontend problems (I$, I-TLB) in JITs

• Better locality of Native & JIT code

• Better use of SIMD & u-architecture

• Sharing dynamic code across JIT instances

• HW/SW Communication
• SW Controlled Instruction Fetch
• SW Control for Indirect Branches

Open Problems

16



Call to Action

• Diagnose uarch bottlenecks
• Apply known solutions
• Collaborate on Open Problems

• Contact me suresh.srinivas@intel.com

African Proverb: If you want to go fast, go 
alone. If you want to go far, go together.

Title: Going Far in Forest Park
Author: Suresh Srinivas

License: Creative Commons
Source: @sweetlunatheyellowlab on Instagram

*Other names and brands may be claimed as the property of others. 17

Collaborate to Solve these Cloud Runtime problems on Intel Architecture



Q&A
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https://youtu.be/a3e3JBRX1FI
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Cloud Runtime: FaaS

Evolution

 IaaS->PaaS->FaaS

 FaaS business model vs. IaaS business model 

Pay for Useful Work (Duration of Execution)

 No effort for server management

 Autoscaling & CSP determines platform for execution

Function 

 From 5 lines to multiple megabytes

 Triggered from an event source

JavaScript* (with Node.js*) and Python* 
are leading FaaS languages 63%21%
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*Other names and brands may be claimed as the property of others.
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JavaScript* on Server

libuvV8 JavaScript Engine

C/C++ AddOnsNode.js Bindings

Node.js APIs

Function API’s/Libraries (eg alexa-sdk, …)

Function

 Node.js* is a JavaScript Server runtime built 

on top of the Chrome* v8 JavaScript engine 

 FaaS Function built with Function 

APIs/Libraries (eg. Alexa-sdk, others)

FaaS Alexa* Anagram Skill
https://github.com/evanchiu/alexa-anagramNode.js* Stack

const Alexa = require('alexa-sdk');
const anagrams = require('./anagrams');
var handlers = { 

getAnagrams: function() {… }, …
};

export.handler = function (event, c, l) {
var alexa = Alexa.handler(event, c, l);
alexa.registerHandlers(handlers);
alexa.execute();

}

*Other names and brands may be claimed as the property of others. 21



• Runtimes need high performance primitives
 Memory & String Operations (memcpy, memchr, …)

 Compression

 IA Encoder/Decoder

 Several rely on system (glibc: In 2019 people are still using glibc 2.17 from 2014)

 Runtimes need tooling and common infrastructure
 LBR Samples decorated to IR

 Processor-Trace -> JIT

 Runtimes Libraries don’t expose optimized native
 JavaScript/PHP dont expose IA optimized libs

Common Runtime Challenges
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