
Cloud Language Runtimes on IA -
Challenges & Opportunities

Suresh Srinivas
Principal Engineer, Intel

suresh.srinivas@intel.com

@ssuresh

Contributors:

Uttam, Dunni, Ahmad, Pranitha, Florin, Sushma, Catalin, Vish

Agenda
Cloud Runtime Usage & Introduction

Cloud Runtime Challenges/Problems

Software/Hardware Optimization

Next Steps/Open Problems/Call To Action

Cloud Runtimes
Usage/Introduction

Title: Luna at Pittock Mansion
Author: Suresh Srinivas

License: Creative Commons
Source: @sweetlunatheyellowlab on Instagram

Cloud Runtime: Usages/Language

Multiple Environments

 IaaS->PaaS->FaaS

Languages

 4 of top 5 are Runtimes

 3 are dynamically typed.

Usages

 Function As Service

 WebTier

 Analytics Node.js Node.js

*Other names and brands may be claimed as the property of others.

*

*

4https://octoverse.github.com/projects#languages

Cloud Runtime: Web Tier Scale Out Usage

5

 Each server running a Web Server
 Individual server can run at high

utilization (> 90%)
 Each server also running Cloud

Runtime
 Scale Out
 Example: Cluster of Dense

Computing Platform with
Yosemite v2 (Four 1S servers)

 PHP, Python, Node.js …
 Very different from SPEC

benchmarks (Large Scattered
Code, JITting, Type Checks, …)

Customer Data Center

Cloud Runtimes
Challenges/Problems

Title: Luna at Cannon Beach
Author: Suresh Srinivas

License: Creative Commons
Source: @sweetlunatheyellowlab on Instagram

High CPU bottlenecks ~35-45% stalled
 I-Cache Misses

 I-TLB Misses

 Branch Mispredicts

Problem gets worse for bigger function

FaaS JavaScript: Challenges

Anagram Ghost.js

51% retiring 34% retiring

1.18% I-TLB misses 6% I-TLB Misses

1.25% I-$ misses 10% I-$ Misses

26%

9%
14%

51%

Alexa* Anagram

Frontend(%) Bad_Speculation(%) Backend(%) Retiring(%)

33%

11%22%

34%

Ghost.js*

*Other names and brands may be claimed as the property of others. 7

FrontEnd

FrontEnd

Branch

Problem gets worse
 Bigger Functions

 When multiple functions executing concurrently

 Frontend Stalls increase from 33% to 41%

 Cycles/work much higher

FaaS JavaScript: Characteristis & Challenges

*Other names and brands may be claimed as the property of others.

33%

11%22%

34%

Ghost.js*

Frontend(%) Bad_Speculation(%) Backend(%) Retiring(%)

41%

11%15%

33%

Ghost.js Multi

8

FrontEnd

Branch

FrontEnd

Branch

WebTier: Characteristics & Challenges

9

Runtime with High CPU
bottlenecks

 Front End Bottlenecks: I-Cache

Misses, I-TLB Misses

 Interpreters with high Branch

Mispredicts

 Accounting for 50% of Stalls

Long Pathlength

• 10s of millions of instructions
executed per request

50
43 41

33
41

36
25

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Cloud Runtime Workloads

Frontend_Bound BadSpeculation BackendBound Retiring

*Other names and brands may be claimed as the property of others.

Cloud Runtimes
Hardware & Software Optimization

Title: Luna on bed of flowers
Author: Suresh Srinivas

License: Creative Commons
Source: @sweetlunatheyellowlab on Instagram

Cloud Runtime: Hardware

Hardware Improvements

• 17% Improvement in Retirement

• 2M Code Pages in shared 2nd level
structure

• Larger L2 helps with I$ Misses

 40% L2 miss reduction

 25% Frontend Improvement

*Other names and brands may be claimed as the property of others.

MediaWiki
BDX-D

MediaWiki
SKX-D

Topdown Frontend
bound (%)

43 32

Topdown Retiring (%) 35 41

metric_L2 misses per
txn (includes
code+data+rfo w/
prefetches)

1,139,373 674,635

RPS 1.0 1.40

Cores 16 18

Package Power
70W 85W

Reduce I-TLB misses and cycles by
using large pages for code

 Remap a subset of .text segment to 2M
pages

 Relies on THP through madvise

 Reduce 4K walks and Reduce cycles

 30% Reduction in 4K Walks

Benefits longer running workloads
 Ghost.js*: 5%, WebTooling: 3%

Cloud Runtime: Software

Using 2M Pages reduces
I-TLB misses 20-30% & improves

perf 3-5%

0.8

1.9

0.70.7

1.3

0.7

WALK_COMPLETED WALK_COMPLETED_2M_4M WALK_COMPLETED_4K

Effect on I-TLB Misses

webtooling ghost.js

*Other names and brands may be claimed as the property of others. 12

Reduce I-Cache Misses through Code Layout Optimization
 Intel CPUs have a feature called last branch records (LBR) where the CPU can continuously

log branches to a set of model-specific registers (MSRs).

 Profile guided reordering of the static code in .text reduces L1-I, L2, LLC Code Misses.

 5-7% Performance improvement

Combining Optimization:

1.05

1.10

Large Pages Large Pages + Code Layout

Ghost.js*

Cloud Runtime: Software

*Other names and brands may be claimed as the property of others. 13

1.28

1.31

1.29

metric_L1I code read misses
(includes prefetches) per txn

metric_L2 demand code
misses per txn

metric_LLC code references
per txn (L3 prefetch excluded)

Code Layout I$-Miss Improvement

Cloud Runtimes
Next Steps,
Open Problems
Call to Action

Intel Focus:

 Continue to optimize Cloud Runtimes

 Collaborate to address Runtime Bottlenecks

 Enhance our Products

 Develop runtime performance optimization

blue print(s)

Next Steps

15

Software

2M Pages.
Code Layout

Hardware
Xeon Scalable (Skylake & Beyond)

• Address Frontend problems (I$, I-TLB) in JITs

• Better locality of Native & JIT code

• Better use of SIMD & u-architecture

• Sharing dynamic code across JIT instances

• HW/SW Communication
• SW Controlled Instruction Fetch
• SW Control for Indirect Branches

Open Problems

16

Call to Action

• Diagnose uarch bottlenecks
• Apply known solutions
• Collaborate on Open Problems

• Contact me suresh.srinivas@intel.com

African Proverb: If you want to go fast, go
alone. If you want to go far, go together.

Title: Going Far in Forest Park
Author: Suresh Srinivas

License: Creative Commons
Source: @sweetlunatheyellowlab on Instagram

*Other names and brands may be claimed as the property of others. 17

Collaborate to Solve these Cloud Runtime problems on Intel Architecture

Q&A

18

https://youtu.be/a3e3JBRX1FI

Disclaimers

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in
trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to
change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published
specifications. Current characterized errata are available on request. No product or component can be absolutely secure.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or
by visiting www.intel.com/design/literature.htm

Intel, the Intel logo, Intel Atom, Intel Optane, and Intel Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation.

19

Cloud Runtime: FaaS

Evolution

 IaaS->PaaS->FaaS

 FaaS business model vs. IaaS business model

Pay for Useful Work (Duration of Execution)

 No effort for server management

 Autoscaling & CSP determines platform for execution

Function

 From 5 lines to multiple megabytes

 Triggered from an event source

JavaScript* (with Node.js*) and Python*
are leading FaaS languages 63%21%

6%

6%
4%

68%
27%

3%
1%

1%
Node

Python

Java

Go

.NET
Node.js Node.js

E
p

s
a

g
o

n
*

A
W

S

S
e

rv
e

rle
s
s

.c
o

m
*

*Other names and brands may be claimed as the property of others.

*

*

20

JavaScript* on Server

libuvV8 JavaScript Engine

C/C++ AddOnsNode.js Bindings

Node.js APIs

Function API’s/Libraries (eg alexa-sdk, …)

Function

 Node.js* is a JavaScript Server runtime built

on top of the Chrome* v8 JavaScript engine

 FaaS Function built with Function

APIs/Libraries (eg. Alexa-sdk, others)

FaaS Alexa* Anagram Skill
https://github.com/evanchiu/alexa-anagramNode.js* Stack

const Alexa = require('alexa-sdk');
const anagrams = require('./anagrams');
var handlers = {

getAnagrams: function() {… }, …
};

export.handler = function (event, c, l) {
var alexa = Alexa.handler(event, c, l);
alexa.registerHandlers(handlers);
alexa.execute();

}

*Other names and brands may be claimed as the property of others. 21

• Runtimes need high performance primitives
 Memory & String Operations (memcpy, memchr, …)

 Compression

 IA Encoder/Decoder

 Several rely on system (glibc: In 2019 people are still using glibc 2.17 from 2014)

 Runtimes need tooling and common infrastructure
 LBR Samples decorated to IR

 Processor-Trace -> JIT

 Runtimes Libraries don’t expose optimized native
 JavaScript/PHP dont expose IA optimized libs

Common Runtime Challenges

22

