
How .NET Runtime
Evolves for the Cloud

Mei-Chin Tsai

Physical Server

Host OS

Monolithic Application

Physical Server

Host OS

Virtual Machine

App
Container

App
Container

Virtual Machine

App
Container

App
Container

Workload such as Exchange, Bing Workload such as Lambda or
Functions

Physical
resources that

impact
Runtime

heuristics

• Number of available CPU cores

• Number of threads

• Number of managed heaps

• Size of available memory

• Heap size

• Number of heaps

• Others

.NET GCs

• .NET GCs are generational

• Two different flavors of GCs today

• Workstation GC

• One managed heap (one GC thread)

• Server GC

• N managed heaps and N GC threads

Server GC Workstation GC
one GC heap per core one heap for all

Core 1

Heap 1 Heap 2 Heap 3 Heap 4

Core 2 Core 3 Core 4 Core 1 Core 2 Core 3 Core 4

Heap

Use multi-pronged approach for scaling

Using less
memory is

generally better
Scale down

Docker support

Allow application
to specify intent

Scale up

Optimize for
many-core chip

architecture

Runtime Application/Process Application Runtime
Configuration

Using less
memory is

generally
better – less
memory by

default

• Reduce the initial commit size of gen 0

• Reduce the initial gen 0 allocation budget to better
align with modern cache size and cache hierarchy

• New policy to determine number of GC heaps to
create based on memory limit
• Example –

• Application memory limit is 160MB, default
GC memory segment per heap is 16MB

• Old behavior: allocating one heap per core
on 48 core machine exceeds limit

• New behavior: allocate 10 heaps, meets
limit

TechEmpower benchmarks
~50% of committed memory reduction

Scale down –
Docker

container
support

• Memory limit set on container

• docker run -m 100mb -t xxx

• GC heap is not the only component use memory.

• Introducing GCHeapHardLimit config

• GCHeapHardLimit - specifies a hard limit for the GC
heap

• GCHeapHardLimitPercent - specifies a percentage of
the physical memory this process is allowed to use

• If neither is specified but the process is running inside a
container with a memory limit specified, we will take this
as the hard limit:

• max (20mb, 75% of the memory limit on the
container)

Allow
application to
specify intent
- Large pages

support

• Observation - Bing frontend observed many TLB
misses in their workload latency

• Add an application config to allow large page
support

• Pay more cost on each new page load request
but hope to pay less frequently

• On Windows – Runtime commit all the
managed memory upfront.

• Does change application performance
characteristic

• Use carefully

Bing frontend (SNR) –
P95 improvement ~108ms -> ~88ms (18.5% improvement).

50th %ile (average), the improvement was around 9%

Scale Up –
many-core
processors

The heap balancing mechanism needed to be revisited

Trend is to use more cores (many of our customers are
on 32 to 48 cores and are looking to upgrade core

count)

E.g. AMD ROME CPU – 64 cores, NUMA

Server GC
one GC heap per core

Core 1

Heap 1 Heap 2 Heap 3 Heap 4

Memory in use

Core 2 Core 4Core 3

Each heap maintains its gen0 budget
(ie, allocations it allows before
triggering the next GC)

• when any heap’s budget is
exceeded, a GC pass is
triggered

• When GC is triggered, the
whole world is stopped

Heap
balancing goal

• When allocations on threads are
balanced, they should stay allocating
on the same heap

• When allocations on threads are
unbalanced, they should in general
spread evenly across heaps

• But there are special
considerations, eg, we should
favor the heap for that core

Current heap balancing mechanism explained

• Home and alloc heap

• Local heaps (on current NUMA node) vs remote heaps

• Look at local heaps first

• Requires a large delta to balance to a remote heap

• When allocating to a remote heap, we incur not just remote allocation cost. We
also incur remote access cost in the future.

• Problem – we are trying too hard to keep heaps well balanced

• Not showing up as problems when you had fewer heaps to search

• The cost of remote access cannot be easily factored in ahead of time

Realizations

• If we do less work and still achieve similar fill ratios, we should do that instead of looking
at each heap

• Balancing on earlier allocations is less important than later ones which tend to survive
more

Thoughts

• Really need better tooling to help with the investigation

• vtune does show many memory counters but they can be hard to interpret; we also
want to correlate with GC activities

• New GC specific tooling shows how threads and their alloc heaps migrate

Show the heap/thread
logs of runtime
instrumentation

Q/A

