
Concord: Homogeneous Programming for
Heterogeneous Platforms

Rajkishore Barik
Intel Labs

Brian Lewis
Intel Labs

Eighty-five percent of processors shipped today include an integrated GPU. While this GPU can
be used to significantly improve application performance and energy use, existing GPU programming
frameworks such as OpenCL, CUDA, and C++ AMP require too much knowledge about the specific
GPU’s architecture to produce good application performance, and that performance isn’t portable to
other GPUs. We advocate the use of familiar multi-core programming models for GPU
programming.

This tutorial describes Concord, a heterogeneous C++ programming framework for processors with
integrated GPUs that allows general-purpose data-parallel programs to take advantage of GPU execution.
It can be used to accelerate both regular programs such as matrix-multiply and irregular programs
such as those doing graph-processing. Concord supports most C++ features including virtual functions
and reductions on the GPU. It supports seamless sharing of data between the CPU and GPU with
an efficient software implementation of shared virtual memory. Concord also includes a number
of compiler optimizations to improve the effectiveness of GPU execution.

We present results for nine realistic irregular C++ applications running on both a high-end desktop
and an ultrabook. The results show that Concord’s GPU acceleration improves energy efficiency by
up to 6.04× on the ultrabook and 3.52× on the desktop over a multi-core CPU.

The outline of our tutorial is as follows:

• Background on GPUs and GPGPU programming

– Integrated and discrete GPUs

– GPGPU frameworks: OpenCL 2.0, CUDA, C++ AMP, HSA, & Renderscript

• Concord C++ heterogeneous programming framework

– Adapts familiar data-parallel C++ constructs from TBB

– Efficient software implementation of shared virtual memory (SVM)

– Compiler optimizations for SVM and improved GPU performance

– Support virtual functions and reductions on GPU

– Demonstrate performance and energy benefits of SVM

OpenCL to 
GPU ISA

GPU 
binary

OpenCL JIT 
Compiler

CLANG

LLVM

OpenCL 
code gen

Object: x86 binary + OpenCL

x86 
code gen

Linker

Executable: x86 binary + OpenCL

Static
Concord
compiler

Concord C++

Compute 
runtime


