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MLIR is a toolkit supporting the development of extensible and composable intermediate representations (IRs)
called dialects; it was created in response to rapid changes in hardware platforms, programming languages,
and application domains such as machine learning. MLIR supports development teams creating compilers
and compiler-adjacent tools by factoring out common infrastructure such as parsers and printers. A major
limitation of MLIR is that it is syntax-focused: it has no support for directly encoding the semantics of
operations in its dialects. Thus, at present, the parts of MLIR tools that depend on semantics—optimizers,
analyzers, verifiers, transformers—must all be engineered by hand.

Our work makes formal semantics a first-class citizen in the MLIR ecosystem.We designed and implemented
a collection of semantics-supporting MLIR dialects for encoding the semantics of compiler IRs. These dialects
support a separation of concerns between three domains of expertise when building formal-methods-based
tooling for compilers. First, compiler developers define their dialect’s semantics as a lowering (compilation
transformation) from their dialect to one or more of ours. Second, SMT solver experts provide tools to
optimize domain-specific high-level semantics and lower them to SMT queries. Third, tool builders create
dialect-independent verification tools.

We validate our work by defining semantics for five key MLIR dialects, defining a state-of-the-art SMT
encoding for memory-based semantics, and building three dialect-agnostic tools, which we used to find five
miscompilation bugs in upstream MLIR, verify a canonicalization pass, and also formally verify transfer
functions for two dataflow analyses: “known bits” (that finds individual bits that are always zero or one in
all executions) and “demanded bits” (that finds don’t-care bits). The transfer functions that we verify are
improved versions of those in upstream MLIR; they detect on average 36.6% more known bits in real-world
MLIR programs compared to the upstream implementation.
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1 Introduction
An intermediate representation (IR) is, effectively, a specialized programming language that exists
only ephemerally inside of a compiler. Modern compilers often contain multiple IRs to facilitate
analyses and transformations at widely different levels of abstraction. For example, Rust [28] and
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Swift [34] both have a high-level language-specific IR (MIR and SIL, respectively), which is lowered
to LLVM IR, then passes through the low-level “machine IR” before reaching assembly language.

IRs have traditionally been second-class citizens regarding tooling, specification, and documen-
tation; this made sense in the past when each IR was being used by a small, close-knit group of
compiler developers. However, it makes much less sense in the modern era of open-source compil-
ers, where the IR has become an extension point, supporting the interposition of new front-ends,
backends, optimization passes, analysis tools, and more. Moreover, in an era of rapid innovation
in programming languages and hardware platforms, IRs have come under intense pressure to be
rapidly developed and evolved. Over the past several years, MLIR [19]—theMulti-Level Intermediate
Representation—has emerged as a partial solution to these problems. The MLIR infrastructure
supports the creation of dialects, which are partial or complete IRs. It provides substantial support
for creating parsers, printers, analyses, transformations, and other tools that need to exist for every
IR. Perhaps the most interesting feature of MLIR is that it supports the fine-grained composition of
dialects: multiple dialects can be used even within a single expression.

MLIR, as it currently exists, is syntax-focused: there is no support for defining the semantics of
MLIR-based IRs. Semantics, however, are crucial when showing that analyses, optimizations, and
other transformations are behaving correctly. For example, the CompCert C compiler [25] formally
defines the semantics of its IRs in Rocq to prove the correctness of its passes. Other projects, such
as LLVM [18], define the semantics of their IR only informally,1 leaving the task of formalization to
third parties such as Vellvm [40] and Alive2 [26].

The late, external formalization of LLVM IR revealed numerous ambiguities and even semantics-
level defects in LLVM IR, necessitating difficult engineering work such as the introduction of the
new “freeze” instruction [21]. Our work is based on the premise that from this point forward, IRs
should be (at least partially) formalized early in their development. From this point of view, MLIR
offers an unparalleled opportunity to make formal semantics into an integral part of compiler IR
design. However, MLIR also comes with significant challenges. First, formal-methods-based tools
for compilers such as LLVM or GCC have monolithic designs specifically crafted for their target
environment. MLIR is an open system: we cannot anticipate what kinds of dialects people will
define in the future. What is needed is basic infrastructure for not only helping compiler experts to
define their dialect semantics, but also for formal verification experts to define an efficient encoding
of these semantics to SMT queries, and for tool builders to create verification tools that do not rely
on particular dialect semantics.

This paper:We support the definition of IR semantics at the framework level—in MLIR—rather
than doing so after the fact at the level of a particular compiler IR. This supports the derivation
of semantics-based tools “for free” and allows the reuse of otherwise siloed state-of-the-art
mapping of high-level semantics to SMT. Since our thesis is difficult to evaluate directly, we
indirectly evaluate it by showing that we can use our tools to build a translation validation tool,
a peephole rewriter, and a verified dataflow analysis. By design, these tools can be used with
any sufficiently compatible MLIR IR for which the developer can provide formal semantics.

Our strategy for defining the semantics of IRs within MLIR is to define a new set of dialects for
expressing semantics—that we call, naturally enough, semantic dialects—that support encoding
semantics as SMT expressions for IR dialects consisting of side-effect-free operations. We addition-
ally define a set of higher-level dialects for expressing side effects, such as memory accesses and
undefined behavior. All the semantic dialects are eventually lowered to SMT-LIB [7] queries.

1https://llvm.org/docs/LangRef.html
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Fig. 1. First-Class Semantics as an integral part of the (MLIR) compiler ecosystem enable 1 compiler experts
to manipulate semantics as part of their daily workflow, using familiar compiler technology; 2 SMT experts
to optimize the SMT encoding while offering intuitive domain-specific interfaces to the compiler; and 3
tool builders to work across different dialects following fast-evolving dialects with ease. While previous
semantics-based tools are kept apart by reuse-barriers between tools and an informal semantic connection to
the compiler ecosystem, our proposal moves semantics into the core of the compiler.

By reusing the same IR infrastructure used to optimize a program to define semantics, we let
compiler experts define semantics in a language they are already familiar with. This abstraction
also allows tools to be built without relying on a specific dialect’s semantics. Additionally, defining
semantics as a combination of SMT-LIB expressions and higher-level dialects allows SMT experts
to provide more efficient encodings of these semantics to SMT queries. Our contributions are:
• A set of reusable semantic dialects, composed of SMT-LIB-based dialects to interface with SMT
solvers and higher-level semantic dialects to represent side-effects such as memory accesses
and undefined behavior

• The extraction of a state-of-the-art SMT encoding of sequential memory semantics as a reusable
compiler transformation, and domain-specific optimizations on our high-level semantic dialects
to improve the efficiency of SMT queries

• A compilation transformation from key control-flow free MLIR dialects (‘arith’, ‘func’, ‘builtin’,
‘memref’, and ‘comb’) to our semantic dialects

• The creation of three semantics-agnostic tools for (1) translation validation, (2) verifying
peephole rewrites, and (3) verifying dataflow analyses

• The usage of our verification tools to find five miscompilation bugs in upstream MLIR, verify a
full canonicalization pass, and formally verify new transfer functions for a “known bits” and a
“demanded bits” analysis for the ‘comb’ dialect in CIRCT

2 A Vision for Semantics-Based Compiler Engineering
The fundamental premise behind this paper is: Defining the formal semantics of MLIR dialects early,
and in an idiomatic MLIR style, supports the creation of valuable semantics-based tools and imposes
a relatively low cost on compiler developers. In contrast, at present, most IRs do not have a formal
semantics at all, much less one that is created early on. We make—and evaluate in Section 6—the
following specific claims:
1) Special-purpose dialects for expressing semantics are an effective way to formalize the meaning

of MLIR dialects. In our work, the semantics of MLIR program dialects—those used to express
application logic—are defined by how they are lowered to our set of semantic dialects, which are
eventually translated into SMT-LIB queries. This strategy allows MLIR developers to continue using
tools and compilation strategies with which they are familiar. The current state of the practice in
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the MLIR community is to define the semantics of a program dialect implicitly by how it is lowered
to other dialects. This leads to loss of information across abstraction boundaries, and sometimes,
conflicts can arise when a dialect supports multiple lowerings. In contrast, our semantic dialects
are intended to be ergonomic and to be a single source of semantic truth for a program dialect.
They are purpose-built for encoding programming language semantics: they directly and explicitly
represent common features such as undefined behavior and memory.
2) Providing multiple levels of semantic dialects enables efficient SMT encodings. Similar to how

MLIR dialects are defined at different levels of abstraction, we believe that dialects for expressing
formal semantics must also work at different levels of abstraction. Furthermore, the presence of
different levels of abstraction of semantic dialects allows SMT experts to provide a more efficient,
and sometimes domain-specific, encoding of these semantics to SMT queries, which can be reused
across different dialects and projects. Overall, we believe that MLIR’s multi-dialect design, which is
used to optimize high-level programs, can also be applied to represent MLIR semantics efficiently.
3) Formal verification tools for MLIR can be defined at the framework level. Once semantics are

defined as a lowering to a semantic dialect, we can use these to give compiler developers useful
tools. For example, translation validation is straightforward to implement. We have also supported
MLIR’s pdl dialect, which is used to define rewrite rules for other dialects, supporting ahead-of-time
formal verification of rewrites (in contrast with translation validation, which validates only a single
execution of a transformation at a time). Third, we have created a new transfer dialect; when
dataflow transfer functions are implemented with it, they can be proved to be sound approximations
of concrete instructions that make up dialects. Operations in the transfer dialect can also be
lowered to C++ code that is suitable for inclusion in MLIR’s dataflow framework, resulting in
complete dataflow analyses. Since the tooling we are creating is generic and dialect-independent, it
can be reused by MLIR developers to define their dialect’s semantics using our semantic dialects.

Representing semantics as a first-class IR through our semantic dialects is the central idea of our
architecture (Figure 1). It serves as the foundation for the declarative semantics we introduce for
transfer functions and rewrites and allows us to derive our three semantics-agnostic tools, all of
which are optimized using domain-specific SMT-based encodings.

3 Background
We first introduce intermediate representations in compilers, their realization in the MLIR and
xDSL [13] compiler frameworks, and then the CIRCT EDA (electronic design automation) toolchain.

3.1 Static Single Assignment Intermediate Representations
Modern compilers use IRs for storing, analyzing, and transforming programs. The foundation of
a typical imperative IR is an operation that takes zero or more operands as input arguments and
returns zero or more values. To make data-flow information explicit, modern compiler IRs enforce
static single assignment (SSA), assigning a unique name to the value returned by each operation.
MLIR-style IRs—as used in this paper—also allow call-site-specific data to be associated with each
call site through attributes, which are either explicitly written as a name-to-value dictionary or, if
their meaning is clear from the context, as inline values.

The following two operations belong to the arith dialect, which groups operations that perform
arithmetic on integers into their own namespace. The operation arith.constant takes no operands,
has an integer attribute indicating the constant value to create, and returns a new value of type
i32. The arith.add operation takes two i32 operands and returns one i32 result.

%0 = arith.constant 12 : i32
%1 = arith.add %0, %0 : i32

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 206. Publication date: June 2025.



First-Class Verification Dialects for MLIR 206:5

effect

SMT-LIB

smt_intsmt_bv

mem_effect

smt_array smt_pair

ub_effect

smt_core

SMT
Expert

2

High-Level Semantics

Compiler TransformationMLIR

arith memref scf comb

First-Class Semantics

Compiler
Expert

1

poison memory

Fig. 2. We allow compiler developers to define high-level semantics using tools they are familiar with
(lowerings) through multiple levels of semantic dialects. SMT experts then identify and implement the best
lowering to low-level SMT abstractions, potentially exploring and offering multiple lowering strategies.

3.2 MLIR: A Framework for Designing Domain-Specific Compilers
MLIR is a production-grade compiler framework that provides a C++ implementation of data
structures for instantiating an SSA-based IR consisting of operations, blocks, regions, and attributes,
as introduced above. In addition, MLIR offers extensive tooling for analyzing and transforming
these IRs, such as a pass manager and a rewrite engine. MLIR also offers core dialects that can be
shared across different compilers, e.g., the arith dialect for arithmetic over n-bit integers, the index
dialect for pointer arithmetic, and other dialects for modeling control flow, tensor computations,
linear algebra, and more. MLIR’s unique strength is its extensibility, allowing compiler developers to
define their own IRs. MLIR also allows multiple dialects to be composed within a single translation
unit, which makes it easy to build new dialects on a common, pre-existing framework. Although
MLIR is primarily used for building software compilers, its CIRCT2 subproject supports hardware
design. A core abstraction used in CIRCT is the comb dialect for reasoning about combinatorial
logic.

3.3 xDSL: a Python-Native SSA Compiler Framework
In our evaluation, we use the xDSL compiler framework [13], which makes it possible to rapidly
prototype MLIR in Python. From the reader’s perspective, both MLIR and xDSL are interchangeable
in the sense that they are two implementations of the same IR abstractions, and in fact they can
interoperate through textual IR files. In our work, we have used both MLIR and xDSL, choosing the
most appropriate tooling for a given task.

4 Formal Semantics via a Collection of MLIR Dialects
We introduce a new set of dialects (Figure 2), rooted in the SMT-LIB language but extended with
higher-level abstractions, to express MLIR dialects’ semantics. By using dialects, we gain the
property that defining semantics for an MLIR dialect can be done by writing a transformation
from the program dialect to our semantic dialects. This allows the MLIR community to continue
using tools and techniques they are already familiar with and also allows us to use MLIR as it was
intended to be used: as the basis for avoiding the reinvention of compiler-like tools from scratch,
such as a pass manager and a rewrite engine, both of which we use for manipulating semantics.
We have created lower-level dialects that provide convenient MLIR access to SMT-LIB mechanisms,
and also higher-level dialects for expressing language-specific semantics—such as memory—to
create a separation of concerns between defining semantics and encoding them efficiently as SMT
queries.

2https://circt.llvm.org
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4.1 Interfacing with SMT Solvers using SMT-LIB Dialects
Our low-level dialects are based on the SMT-LIB v2 language [6], a mechanism for expressing
SMT terms, formulas, and commands that interface with SMT solvers. We chose SMT-LIB because
it enjoys broad support among modern SMT solvers; different solvers have different strengths,
and we do not wish to tie our users to any single solver. However, while we base our work on
SMT and SMT-LIB, these ideas could be applied to other formally specified languages and theories.
SMT-LIB is based on S-expressions, making it easy to adapt to the MLIR dialect format. Each
symbol in SMT-LIB is represented by a corresponding MLIR operation, and SMT-LIB sorts are
translated to MLIR types. As SMT-LIB is composed of and can be extended with additional theories,
which are sets of domain-specific symbols and axioms such as the bitvector and array theories, we
define one dialect for each theory. The following SMT-LIB program checks if the integer formula
(𝑥 · 2) ≠ (𝑥 + 𝑥) is satisfiable. We show the same program in our smt and smt_int dialects (for the
core and integer theory) alongside it.

(declare-const x Int)
(assert
(distinct (* x 2) (+ x x)))

(check-sat)

%x = smt.declare_const : !smt_int.int
%two = smt_int.constant 2
%mul_two = smt_int.mul %x, %two
%add_twice = smt_int.add %x, %x
%eq = smt.distinct %mul_two, %add_twice : !smt_int.int
smt.assert %eq
smt.check_sat

As there is a clear one-to-one translation between SMT-LIB and our smt dialect, we can easily
output SMT-LIB from an MLIR program using smt. It should also be easy to translate SMT-LIB to
the smt dialect. Since this work was completed, the core smt dialect and associated theory dialects
(such as smt_int and smt_bv) discussed here have been contributed to the upstream MLIR project
as a single smt dialect.3

4.2 Efficient Encoding of High-Level Semantics to SMTQueries
Although SMT-LIB is an expressive language, it is also very low-level. There is a significant gap
between the high-level semantics that compiler developers define and the low-level SMT-LIB
language that SMT solvers understand. This gap is especially pronounced when encoding, for
example, C or LLVM memory semantics [20], which require complex SMT-LIB representations
of multiple memory blocks, their aliasing relationships, and the distinction between pointer and
non-pointer values in memory. With only SMT-LIB as a target language for semantics, compiler
developers would have to both do the work of defining the semantics for their dialect, and also the
work of finding an efficient encoding of these semantics to SMT-LIB. This would both complicate
the definition of semantics and make it harder to compose semantics between different dialects.
To bridge this abstraction gap, we define a set of high-level semantic dialects that are a better

match for how compiler developers are likely to want to describe their dialects. These currently deal
with memory semantics and undefined behavior, as these are the most complex parts of the MLIR
dialects for which we have defined semantics. We believe this approach is generalizable to other
language features and other domain-specific semantics. Defining semantics in these high-level
dialects allows compiler developers to work in a language closer to the one they want to describe
and allows SMT experts to provide efficient encodings of these semantics to SMT queries using
specialized compilation passes (Figure 2). We believe that this separation of concerns between
defining semantics and encoding them to SMT-LIB is necessary for our research program to succeed.
To illustrate what our high-level dialects look like, consider this example of the semantics of a

program that writes the constant 42 to a memory location. The program triggers undefined behavior
3https://github.com/llvm/llvm-project/commit/de67293c093efddb9f9444b3a614695ad243355d
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if the memory location is out of bounds. The world state is represented as an SSA value (with type
!effect.state), and both the mem_effect and ub_effect dialects are used to interact with that
state. Our high-level dialects make these semantics much more readable and understandable than
their direct SMT-LIB encoding, as described for example by Lee et al. [20].

smt.declare_fun @write_42(%ptr: !mem_effect.ptr, %size: !smt.bv<64>, %index: !smt.bv<64>,
%state: !effect.state) -> !effect.state {

%in_bounds = smt.bv.ult %index, %size : !smt.bv<64>
%new_ptr = mem_effect.offset_ptr %ptr[%index]
%val = smt.bv.constant 42 : !smt.bv<64>
%state_noub = mem_effect.write %val, %state[%new_ptr] : !smt.bv<64>
%state_ub = ub_effect.trigger %state
%new_state = smt.ite %in_bounds, %state3_noub, %state3_ub : !smt.bv<64>
smt.return %new_state : !effect.state

}

We describe below the semantics of our high-level semantic dialects using denotational semantics.
+ represents a disjoint union, × a Cartesian product, and→ a map from one set to another, that is
accessed with [], and updated with update(𝑚𝑎𝑝, 𝑖𝑛𝑑𝑒𝑥, 𝑣𝑎𝑙𝑢𝑒). Pairs are formed with (𝑥,𝑦), and
their elements accessed with 0 and 1. inhabitant(𝑇 ) is a value of type 𝑇 . ⟦op⟧ represents the
denotation of an MLIR op op as a mathematical function, and ⟦type⟧ the denotation of an MLIR
type as a mathematical type (4). poison, dead, and ub are singleton types that represent the poison
marker, a dead memory block, and an undefined behavior flag, respectively.

We currently define four high-level semantic dialects: the poison dialect (Figure 5) is used to add
a poison marker to types, the effect dialect defines a type that is used to represent the world state,
the ub_effect and mem_effect (Figure 6) dialects are used to represent undefined behavior and
sequential memory effects, respectively, and the memory dialect (Figure 7) provides a lower-level
abstraction for memory manipulation. We base our memory semantics on the work of Lee et al. [20],
with a few simplifications as we currently do not handle writing pointers in memory or sub-byte
memory accesses, which are not present in the MLIR programs we are considering.

byte ≔ 28 + poison

bytes ≔ 264 → byte

block ≔ 264 × bytes + dead
block_id ≔ N

memory ≔ N → block

state ≔ memory + ub

⟦!poison.poison<T>⟧ ≔ 𝑇 + poison

⟦!effect.state⟧ ≔ state

⟦!mem_effect.ptr⟧ ≔ block_id × 264

⟦!memory.memory⟧ ≔ memory

⟦!memory.block⟧ ≔ block

⟦!memory.bytes⟧ ≔ bytes

⟦!memory.block_id⟧ ≔ block_id

Fig. 4. Our high-level semantic dialects represent poison, memory, and undefined behavior.

⟦poison.from_value⟧(𝑣) ≔ 𝑣 ⟦poison.poison⟧ ≔ poison

⟦poison.is_poison⟧(𝑝) ≔ true if 𝑝 = poison else false

⟦poison.to_value⟧(𝑝) ≔ inhabitant(𝑇 ) if 𝑝 = poison else 𝑝

Fig. 5. The poison dialect is used to explicitly mark values as poison.

4.3 Defining Formal Semantics Using Compiler Transformations
As we can encode semantics using the MLIR infrastructure, giving semantics to a dialect is a matter
of defining a lowering (compilation pass) from the dialect to our semantic dialects. This fits nicely
into the existing MLIR philosophy that a lowering from one dialect to another gives the semantics
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⟦ub_effect.trigger⟧(𝑠) ≔ ub

⟦ub_effect.to_bool⟧(𝑠) ≔ true if 𝑠 = ub else false

⟦mem_effect.offset_ptr⟧(𝑝, 𝑖) ≔ (𝑝0, 𝑝1 + 𝑖)
⟦mem_effect.read⟧(𝑠, 𝑝) ≔ (ub, poison) if 𝑠 = ub ∨ 𝑠 [𝑝0] = dead ∨ 𝑝1 ≥ (𝑠0 [𝑝0])0

≔ (𝑠, ((𝑠 [𝑝0])1 [𝑝1])) otherwise

⟦mem_effect.write⟧(𝑣, 𝑠, 𝑝) ≔ (ub, poison) if 𝑠 = ub ∨ 𝑠 [𝑝0] = dead ∨ 𝑝1 ≥ (𝑠0 [𝑝0])0
≔ update(𝑠, 𝑝0, ((𝑠 [𝑝0])0, update((𝑠 [𝑝0])1, 𝑝1, 𝑣))) otherwise

⟦mem_effect.alloc⟧(𝑠, 𝑠𝑖𝑧𝑒) ≔ ub if 𝑠 = ub

≔ let 𝑖𝑑 ≔ ⟦memory.get_fresh_block_id(𝑠)⟧ in

update(𝑠, 𝑖𝑑, (𝑠𝑖𝑧𝑒, {poison | 𝑖 ∈ N})) otherwise

Fig. 6. ub_effect and mem_effect define high-level operations to represent memory and undefined behavior.

⟦memory.read_bytes⟧(𝑏, 𝑖) ≔ 𝑏 [𝑖]
⟦memory.write_bytes⟧(𝑣, 𝑏, 𝑖) ≔ update(𝑏, 𝑖, 𝑣)

⟦memory.create_bytes⟧ ≔ {poison | 𝑖 ∈ 264}
⟦memory.create_dead_block⟧ ≔ dead

⟦memory.create_live_block⟧(𝑠, 𝑏) ≔ (𝑠, 𝑏)
⟦memory.is_block_live⟧(𝑏) ≔ false if 𝑏 = dead else true

⟦memory.unpack_block⟧(𝑏) ≔ (0, {poison | 𝑖 ∈ 264}) if 𝑏 = dead else (𝑏0, 𝑏1)
⟦memory.get_block⟧(𝑚, 𝑖) ≔𝑚[𝑖]

⟦memory.set_block⟧(𝑏,𝑚, 𝑖) ≔ update(𝑚, 𝑖, 𝑏)
⟦memory.get_fresh_block_id⟧(𝑚) ≔ min({𝑖 ∈ N|𝑚[𝑖] ≠ dead})

Fig. 7. The memory dialect provides a low-level abstraction to manipulate memory blocks.

of the source dialect. The key distinction is that our dialect has simple and well-defined semantics,
compared to most MLIR dialects which often only have informal semantics with often poorly
specified corner cases (the arith dialect only specified its overflow semantics two years after its
creation). Additionally, while the llvm dialect, a popular compilation target in MLIR, has well-
defined semantics, its semantics are quite hard to reason about as it has both poison and undef [21]
values. Thus, compiling from a dialect without undef or poison semantics can be error-prone.

Our semantic dialects make concepts such as poison values explicit, using the poison dialect
(Figure 5). Similar to how Alive2 [26] internally represents possibly-poison values, our poison
type is compiled to a pair (defined using an SMT-LIB algebraic datatype) of a value and a Boolean
poison flag. For instance, the following example shows how the arith dialect’s addi operation is
compiled into our semantic dialects.

%one = arith.constant 1 : i64
%r = arith.addi %x, %one : i64

%one = smt_bv.constant 1 : !smt_bv<64>
%x_value = poison.to_value %x : !smt_bv<64>
%x_poison = poison.is_poison %x : !smt.bool
%r_value = smt_bv.add %x_value, %one : !smt_bv<64>
%r_val = poison.from_value %r_value : !smt_bv<64>
%r = smt.ite %x_poison, %x, %r_val : !poison.poison<!smt_bv<64>>

Expressing semantics using the MLIR infrastructure allows users to define semantics using the
same tools they use to define compilation passes and to use the same infrastructure to optimize the
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Fig. 9. Our semantics building blocks serve as the foundation for dialect-independent tools.

semantics. For most operations, this means that users can define their semantics using the MLIR
peephole rewrite infrastructure, making the definitions familiar to MLIR users.
While our semantics are currently defined in Python (as we use xDSL, otherwise they would

be defined in C++), we believe that defining them in a declarative language would enable new
tools and workflows. For instance, one could imagine generating semantics documentation or
reusing the same semantics in a theorem prover such as Lean [8]. In exploratory work, we tried
out this idea and defined some of our semantics using the pdl (Pattern Descriptor Language)
dialect, which allows the definition of rewrites as an MLIR program. However, we found that pdl
was too limited to define the semantics of all operations we want to support, as it only supports
DAG-to-DAG transformations (preventing us from compiling side-effectual operations) and has
limited support for manipulating attributes and types (preventing us from handling operations
such as arith.constant). We believe that either extending pdl or designing a more general dialect
would be necessary to achieve a more declarative definition of semantics.

4.4 Optimizing SMTQueries Across Levels of Abstraction
As we encode semantics at multiple levels of abstraction, compiler experts and SMT experts can
work together to define domain-specific optimizations at each level, reducing the complexity of the
final SMT encoding and speeding up the verification process. Each of our semantic dialects defines
constant folding and simple peephole rewrite rules to reduce the size of the SMT encoding and
ease the process of debugging semantics when reading the IRs. By adding a common subexpression
elimination pass and a set of domain-specific optimizations, the majority of our SMT queries for the
arith dialect are reduced by half in terms of the number of operations. Similarly, many tests we
wrote for our memref dialect semantics did not even need to be run through an SMT solver, as our
simplification passes were able to prove simple examples (such as constant folding across memory
operations) directly, while the original query was using around 200 smt operations. Previous work
has shown that these simple peephole rewrite optimizations have great potential to reduce SMT
solving times, as the subset of LLVM instcombine rules have been shown to speed up SMT queries
when applied to SMT expressions [29].

As we define specialized semantic dialects, we can also define domain-specific optimizations
that have more impact on the SMT encoding, as they are not always supported by SMT solvers.
For instance, we define a compilation pass that removes algebraic datatypes from an SMT query,
significantly improving the performance of Z3 solving time (Section 6.4). We also use state-of-the-
art SMT encodings for memory semantics [20], which are not defined as an optimization, but as a
compilation pass from our high-level memory_effect dialect to the memory dialect, which is then
lowered to the SMT-LIB dialects.

5 Defining Verification Tools at the Framework Level
Figure 9 shows how semantics can be mixed and matched to create multiple dialect-independent
compiler-adjacent formal verification tools. Given the open-ended nature of MLIR, a separation of
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concerns between defining semantics and building verification tools is essential. To demonstrate the
applicability of our approach, we created three semantics-agnostic verification tools: a translation
validation tool (Section 5.1), a peephole rewrite verification tool (Section 5.2), and a dataflow analysis
verification tool (Section 5.3).

Beyond the tools we have created, our approach opens up broader possibilities for tools built
on top of our semantic dialects. We could for instance create a program verification tool, to check
that a program is free of undefined behavior or that it follows a specification. We could also try to
define superoptimizers or rewrite synthesizers, like the work of Souper [35] or Hydra [30]. Another
possible avenue is to generate other sections of a compiler, such as an interpreter or a constant
folder, which are easy to get wrong due to corner cases in the semantics such as undefined behavior.
Finally, we believe that generating documentation for the semantics of a dialect would be quite
valuable, as the semantics of dialects are usually not well documented, or only informally specified.

5.1 Translation Validation
A translation validation tool takes a source and a target program and checks whether the target
refines the source. In the presence of undefined behaviors, non-trivial refinements—compiler trans-
formations that are legal in one direction, but that cannot be soundly reversed—are ubiquitous
and can be difficult for humans to reason about. Translation validation can be used to gain formal
confidence in a compiler’s work without reasoning about the compiler’s implementation. Alterna-
tively, in combination with a fuzzer, translation validation can be used to look for compiler bugs.
Our semantic dialects support and simplify the process of writing a translation-validation tool that
works for multiple program dialects. Two programs are passed to the tool, which compiles them
to the semantic dialects by using the provided lowerings, combines their lowered forms with a
dialect-specific refinement relation, and inserts a check that the target program is a refinement of
the source program for all possible inputs.

The refinement relation is split into two components: the state refinement relation, which checks
a refinement of the final function state (consisting of the memory and an undefined behavior flag),
and the function results refinement relation, which checks a refinement for each result of the
function. The state refinement relation is always the same, and is the one defined by Lee et al. [20].
The function results refinement, however, is provided by the user for each type that appears in a
function result, with defaults provided for common types such as integers and poison. In particular,
the refinement might be from one dialect type to another in the case of a lowering.

5.2 Verifying Peephole Rewrites
Peephole optimizers are a common source of compiler bugs; for example, the Csmith paper reports
that InstCombine, LLVM’s primary peephole optimization pass, was its single buggiest compo-
nent [39]. Verifying an entire peephole rewrite offers strong correctness guarantees for a given
optimization, compared to translation validation, which only checks the correctness for a given
input code. Several important MLIR passes rely on peephole rewrites and will consequently benefit
from a tool for verifying them. A rewrite that performs lowering from a higher-level to a lower-level
dialect is also an attractive target for formal verification. In particular, MLIR’s use of specialized
dialects tends to yield progressive lowerings that pass through multiple abstraction levels and,
consequently, have numerous opportunities for bugs to occur.
Simple peephole rewrites consisting of a specific input IR snippet that must be rewritten to a

specific output IR snippet, e.g., MUL(x, 2) → ADD(x, x), can be verified easily by translating
both sides of the rewrite to the SMT dialect as described in Section 5.1. However, when the rewrite
involves literal constants, we would prefer to verify it for all possible values of the constant—
translation validation is not helpful for this. Consider, for example, the rewrite MUL(x, C) →
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SHL(x, log2(C)), which is valid when C is a power of two and which leads to the following
transformation on MLIR’s arith dialect when C=32:

%C = arith.constant 32 : i32
%r = arith.muli %x, %C : i32 →

%log2_C = arith.constant 5 : i32
%r = arith.shli %x, %log2_C : i32

We want to preserve the generality of the rewrite when translating to the smt dialect.

5.2.1 Peephole Rewrites in pdl. To automatically reason about the correctness of peephole rewrites,
the rewrites should be written declaratively in a DSL that can generalize over IR properties such as
constants and types. MLIR has a DSL called PDLL (Pattern Descriptor Language Language) and
offers pdl (Pattern Descriptor Language), a high-level dialect that describes the transformation as
introspectable compiler IR. While PDLL is meant to be the entry point for users, pdl is an MLIR
dialect, which is well-suited for connecting to our semantic dialects.

pdl.pattern @MulToShift : benefit(0) {
// Match an SSA value of type i32
%type = pdl.type : i32
%x = pdl.operand : %type

// Match a power of two constant and the root multiplication
%C_attr = pdl.attribute : %type
%C_op = pdl.operation "arith.constant" {"value" = %C_attr} -> %type
%C = pdl.result 0 of %C_op
pdl.apply_native_constraint "is_power_of_two"(%C_attr)
%mul_op = pdl.operation "arith.muli"(%x, %C) -> %type

// Rewrite the multiplication
pdl.rewrite %mul_op {
// Compute log2(C) and create the corresponding constant
%log2_C_attr = pdl.apply_native_rewrite "log2"(%C_attr)
%log2_C_op = pdl.operation "arith.constant" {"value" = %log2_C_attr} -> %type
%log2_C = pdl.result 0 of %log2_C_op

// Replace the multiplication with a shift
%shift_op = pdl.operation "arith.shli"(%x, %log2_C) -> %type
pdl.replace %mul_op with %shift_op

}}

A pdl-based pattern is defined in the region of a pdl.pattern operation and uses pdl operations
to match and constrain a rooted DAG of MLIR operations. The last operation in the region is a
pdl.rewrite, which specifies new operations to create and how to replace the root operation with
them. The preceding pdl pattern (with a simplified syntax) represents the rewrite MUL(x, C) →
SHL(x, log2(C)), where C is constrained to be a power of two.

The pattern matches on an expression tree with a multiplication at its root where the multiplica-
tion is composed of an unconstrained operand %x on the left-hand side, and a constant %C on the
right-hand side that is constrained to be a power of two using so-called native constraints. The
rewrite then replaces the multiplication with a shift operation by a constant representing the log
base two of the original constant C.

5.2.2 Lowering pdl Programs to the smt Dialect. We lower pdl programs to the smt dialect in
a single pass consisting of local rewrites. Consequently, we describe the lowering of each pdl
operation to the smt dialect independent of other operations. While our tool fully supports poison
values and undefined behavior, we simplify the presentation in this section by not describing this.

We translate pdl.operand, which matches a single SSA value, to an smt.declare_const op-
eration that introduces a new value of the given type. Each MLIR type has a corresponding SMT
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sort. For instance, the i32 type is lowered to a 32-bit bitvector (ignoring poison). Similarly, we
convert pdl.attribute, which matches attributes, to an smt.declare_const operation. While,
in our examples, we translate both an operand and an attribute of type i32 to a 32-bit bitvector, an
attribute can have different semantics than an SSA value of the same type. In practice, because
of poison semantics, an i32 is encoded as a pair of a 32-bit bitvector and a boolean poison flag,
while an i32 attribute, which cannot be poison, is encoded simply as a 32-bit bitvector.

%op = pdl.operation "arith.muli"(%x, %y) -> %type
%res = pdl.result 0 of %op

→ %res = smt.bv.mul %x, %y
: !smt.bv<32>

%op = pdl.operation "arith.constant"
{"value" = %attr} -> %type

%res = pdl.result 0 of %op

→ %res = %attr

%op = pdl.replace %op1 with %op2 → %r = smt.eq %res_op1, %res_op2
smt.assert %r

Fig. 11. pdl code referencing operations such as arith.muli and arith.constant lowers to native SMT
operations or just an assignment, respectively. The pdl.replace operation is lowered to a refinement check,
here an equality test, since we are omitting undefined behavior checks to simplify the presentation.

We translate pdl.operation and pdl.result, which match operations and their results to the
corresponding semantics of the matched operation (Figure 11). For operations that take attributes,
e.g., arith.constant, we expect the operation semantics to refer to the attribute as an SSA value, as
we cannot determine statically the attribute value. Finally, pdl.replace, which erases an operation
and replaces its results with the results of another operation, is lowered to a refinement check
(provided by the user) for each result. Ignoring poison, the refinement is simply an equality check.

Our lowering of the pdl dialect to SMT consists of pdl-specific transformations that are generic
over all dialects paired with the dialect-specific semantics for types (including refinements), at-
tributes, and operations. All dialect-specific semantics are shared across our implementation of
translation validation and pdl. This removes the risk of introducing bugs by duplicating information
and allows us to build multiple tools from the same semantics.

5.2.3 Handling pdl Native Rewrites and Constraints. To keep pdl concise while allowing for user-
defined constraints and rewrites, pdl has two operations, pdl.apply_native_constraint and
pdl.apply_native_rewrite, which allow users to call out arbitrary code during a rewrite. These
two operations are essential to represent realistic rewrites, as they allow users to, for example,
constrain attributes using user-defined code. In our example, MUL(x, C) → SHL(x, log2(C)),
constraining C to be a power of two requires a native constraint, and the computation of the value
of log2(C) requires a native rewrite.
To lower native constraints and rewrites to the smt dialect, we provide a mapping to their

corresponding SMT encoding. We assume that the arbitrary code that the native operations
perform is correct and corresponds to these SMT semantics. For instance, the lowering of a
pdl.apply_native_constraint that checks that an integer is a power of two, and the lower-
ing of a pdl.apply_native_rewrite that computes the logarithm base two both lowers to the
semantic dialects encoding of these operations. While this requires the user to provide a correct se-
mantics implementation of these operations, rewrites often reuse the same constraints and rewrites
across multiple rewrites (Section 6.2).

5.2.4 Enumerating Feasible Bitwidths. While our earlier examples of pdl rewrites fixed all types
to 32-bit integers, most rewrites are valid for several or even arbitrary bitwidths. pdl has native
support for expressing rewrites over a family of types by not constraining the type. However, a
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known limitation of SMT is that it cannot reason about bitvectors with unknown or parametric
bitwidth. Hence, when translating from pdl to SMT, we first iteratively specialize the pattern
for each combination of feasible bitwidth up to a configurable limit. Then, we individually verify
each of the specialized instances of the rewrite. For certain operations, the set of valid types is
constrained. For instance, if a rewrite matches an arith.trunci operation, which truncates an
integer to a smaller bitwidth, the rewrite is only valid if the source bitwidth is larger than the
target bitwidth. This condition must be checked before lowering the rewrite to the smt dialect,
as the semantics of an arith.trunci cannot be expressed in the SMT type system if the output
bitwidth is larger than the input bitwidth. To ensure these checks are performed in time, we lower
the corresponding native constraints first and only synthesize the full SMT expression if the native
constraints confirm that a valid lowering to the SMT types is possible.

5.2.5 Bitwidth-Independent Reasoning. Despite the limitation detailed above, Niemetz et al. [33]
have demonstrated that it is sometimes feasible to prove properties on integers of parametric
bitwidth. Their approach involves representing integers with two SMT integers: one for its value
and another for its bitwidth. The bitwidth variable is then used to implement bitwise modular
arithmetic for integers. Thus, for 𝑥 ∈ N, the result of an arithmetic operation, and 𝑤 ∈ N∗, its
bitwidth, 𝑥%2𝑤 calculates its bitwise value. Finally, we can prove that a property about this bitwise
value holds true for all bitwidths by quantifying over𝑤 .

We implemented a second version of the arith semantics that supports this bitwidth-independent
reasoning. As our pdl verification tool is not dependent on the particular semantics, we can use it
with either version of the semantics. Each of the two versions has its own advantages: the bitwidth-
independent version is more general and can prove a rewrite for all bitwidths at once instead
of enumerating feasible bitwidths (which takes exponential time in the number of independent
bitvectors in the pdl pattern). However, the bitwidth-independent version is in an undecidable
fragment of SMT and, in practice, does not solve all of our queries.

5.3 Formal Verification of Dataflow Transfer Functions
Optimizing compilers use dataflow analyses to derive facts about SSA values that are valid for all
program executions. Since these facts are then used to justify optimizations, an incorrect dataflow
analysis will tend to make an optimization unsound, leading to miscompilations. To make a dataflow
analysis for an IR, a dataflow transfer function must be implemented for each operation in the
IR. Implementing sound, precise, and efficient transfer functions can be difficult, and in fact, both
GCC and LLVM have had miscompilation bugs rooted in unsound analyses.4,5 Additionally, having
an automatic verification tool for dataflow analysis encourages compiler developers to be more
courageous when writing highly precise transfer functions. In this section, we show how we can
build a tool to verify dataflow analyses using our lowering-based semantics.

5.3.1 A Forward and a Backward Analysis for CIRCT. The comb dialect used by the CIRCT EDA
suite employs a known bits analysis that attempts to prove that individual bits are always either zero
or one. It represents an abstract value as a pair of bitvectors (𝑧𝑒𝑟𝑜𝑒𝑠, 𝑜𝑛𝑒𝑠), such that 𝑧𝑒𝑟𝑜𝑒𝑠𝑖 = 1 if
the 𝑖-th bit is provably always zero, and 𝑜𝑛𝑒𝑠𝑖 = 1 if the 𝑖-th bit is provably always one. The top
element of the per-bit semilattice, corresponding to the situation where a bit cannot be proved to
always be either zero or one, is represented by 𝑧𝑒𝑟𝑜𝑒𝑠𝑖 = 0, 𝑜𝑛𝑒𝑠𝑖 = 0. There is no bottom element,
and 𝑧𝑒𝑟𝑜𝑒𝑠𝑖 = 1, 𝑜𝑛𝑒𝑠𝑖 = 1 is an invalid representation. Given this representation, a maximally
precise transfer function for the bitwise OR operation (in pseudocode) is:

4https://reviews.llvm.org/D60846
5https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54031
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KbValue<W> KbOr(KbValue<W> lhs, KbValue<W> rhs) {
return (lhs.zeroes & rhs.zeroes, lhs.ones | rhs.ones)

}

Known bits is a forward dataflow analysis, meaning that the analysis of an operation’s result is
computed from the analysis of its operands. To this, we added demanded bits, a backward analysis,
meaning that the analysis computes properties of an operation’s operands based on the properties
of its result. A bit of an SSA value is not demanded if its value provably does not affect the ongoing
computation. For example, when an integer-typed value is truncated (and has no other uses), its
upper bits are not demanded. A bit is considered to be demanded if it cannot be proven to be
not demanded. The representation for an abstract value in the demanded bits domain is simply a
bitvector. (CIRCT does not explicitly provide a demanded bits analysis, but it does gain some of
the benefits by optimizing the special case of a bitwise operation followed by a bit extraction. The
bitwise operation can be removed when it does not modify the extracted bits.)

5.3.2 First-Class MLIR Support for Transfer Functions. We created the transfer MLIR dialect that
can be lowered to C++ for inclusion in a compiler, and it can also be lowered to smt dialects to
support mechanical reasoning. A transfer function is defined as a func.func operation that takes
abstract values as input and outputs. Each abstract value is represented as a !transfer.abs_value,
and we additionally define the transfer.integer type to manipulate integer values with unknown
bitwidth that are used in our abstract values. The transfer dialect defines arithmetic and logical
operations for bitvectors of parametric width, and it also supports operations that we have observed
to be useful in practice for building transfer functions, such as counting leading zeroes and looping
for a fixed number of iterations. This dialect is expressive enough to define numerous sound and
precise transfer functions for the known bits and demanded bits abstract domains (Section 6.3).
This example shows the transfer functions for the bitwise OR operation for the known bits

domain using the transfer dialect:
!int = !transfer.integer
!knownBits = !transfer.abs_value<[!int, !int]>

func.func @ORImpl(%arg0: !knownBits, %arg1: !knownBits) -> !knownBits {
%arg0_0, %arg0_1 = transfer.unpack(%arg0) : !int, !int
%arg1_0, %arg1_1 = transfer.unpack(%arg1) : !int, !int
%result_0 = transfer.and(%arg0_0, %arg1_0) : !int
%result_1 = transfer.or(%arg0_1, %arg1_1) : !int
%result = transfer.make(%result_0, %result_1) : !int, !int
func.return %result : !knownBits

}

After lowering transfer functions to C++ we can plug them into the existing MLIR dataflow
framework, resulting in a complete dataflow analysis.

5.3.3 Proving Properties of Transfer Functions. The Galois connection describes the relationship
between concrete and abstract values; we use it to prove the soundness and precision of transfer
functions [10]. We can additionally check if a transfer function is maximally precise.

To reason about known bits, we start by defining a “wellFormed” predicate insisting that abstract
values obey their representational invariant and also an “includes” predicate that is true when
a concrete value 𝑥 is a member of the concretization set of an abstract value 𝑎. Here are their
definitions for the known bits domain:

wellFormed(𝑎) def
= (a.zeroes & a.ones) = 0

includes(𝑎, 𝑥) def
= ((∼ 𝑥 | a.zeros) =∼ 𝑥) ∧ ((𝑥 | a.ones) = 𝑥)
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Then, ifA is the set of abstract values in the known bits domain and C is the set of concrete values,
a transfer function is sound if:

∀𝑎, 𝑏 ∈ A, ∀𝑥,𝑦 ∈ C, wellFormed(𝑎) ∧wellFormed(𝑏) ∧ includes(𝑎, 𝑥) ∧ includes(𝑏,𝑦)
=⇒ includes(abstractOp(𝑎, 𝑏), concreteOp(𝑥,𝑦))

In other words, the result of applying a concrete operation—which comes from our lowering-
based semantics—must always be contained within the result of the abstract operation. Once we
implement this formula in our smt dialect, it can be generically applied to any known bits transfer
function for a binary operation. We have implemented a similar formula to check precision; we
omit it for brevity (and, in any case, many transfer functions of interest are not maximally precise).
To formally verify the soundness of demanded bits transfer functions, we define an “isSame”

predicate that is true when two bitvectors 𝑥1 and 𝑥2 are indistinguishable from each other under a
given demanded bit mask:

isSame(𝑎, 𝑥1, 𝑥2)
def
= (𝑎 & 𝑥1) = (𝑎 & 𝑥2)

Then, for all pairs of concrete bitvectors that are indistinguishable, we insist that the concrete
operation has the same result:

∀𝑎 ∈ A, ∀𝑥1, 𝑥2, 𝑦 ∈ C,
isSame(abstractOp(𝑎), 𝑥1, 𝑥2) =⇒ isSame(𝑎, concreteOp(𝑥1, 𝑦), concreteOp(𝑥2, 𝑦))

This formula is for the first operand of a binary operation; its partner for the second operand is
straightforward. And, again, we omit the formula for precision.

6 Evaluation
In Section 2 we made three claims. First: special-purpose dialects for expressing semantics are
an effective way to formalize the meaning of MLIR dialects. Second: providing multiple levels of
semantic dialects enables efficient SMT encodings. And third: formal verification tools for MLIR
can be defined at the framework level. This section presents results from using our semantic dialect
framework to make improvements to the MLIR ecosystem.

We created three dialect-agnostic tools that are built on top of our semantic dialects: a translation-
validation tool (Section 6.1), a peephole rewrite verification tool (Section 6.2), and a transfer function
verification tool (Section 6.3). We additionally show that domain-specific optimization passes on
top of semantics expressed in our SMT dialect can lead to improved performance (Section 6.4). All
three tools are generic over the dialect semantics and work with any dialect that can be lowered
to the SMT dialect. Our performance tests are run on an AMD Ryzen 9 5950X 16-core CPU with
64GB of DRAM using Z3 version 4.12.1, CIRCT commit 6133e783, and xDSL version 0.22.0.

6.1 Translation Validation For Free
The arith dialect for computations running on CPUs and the comb dialect for combinatorial logic in
hardware design are both used in industrial projects. We used translation validation, in combination
with systematic and random testing, to look for bugs in three transformation passes, all of which
are implemented in C++: arith-expand, which expands arithmetic to target-supported sizes,
arith-unsigned-when-equivalent, which turns signed operations into unsigned ones when this
is semantics-preserving, and canonicalize, which iteratively applies a set of peephole rewrites,
called canonicalization patterns, and also runs a few global transformations such as dead code
elimination and hoisting constants to the beginning of functions. To support this effort, we defined
semantics for all 26 arith integer operations (we are not covering the floating point operations)
as well as all 20 comb operations. In particular, we only defined semantics for control-flow free
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operations, though our work could easily be extended to cover control-flow operations without
loops. Additionally, we defined semantics for the integer types and attributes offered by the builtin
dialect, as they are used by both arith and comb.

Our semantics use both the SMT-LIB core and bitvector theory, as well as the algebraic datatypes
as added in SMT-LIB 2.6. Integer values are encoded as a pair of a bitvector and a boolean, where the
boolean indicates if the value is poison, a concept that is used in MLIR to indicate deferred undefined
behavior. 14 out of the 20 comb operations can be directly mapped to a single SMT operation, while
only 6 out of the 26 arith operations map to a single SMT operation. The remaining operations
require either multiple SMT operations, a more complex mapping to SMT-LIB, or have to emit
poison values for certain inputs. Yet, all operations can be expressed as lowerings to the SMT
dialect, such that we obtain complete semantics for both dialects.
Since translation validation requires the compiler to execute before it can find bugs, we drove

the passes in two ways. First, we exhaustively generated all arith and comb functions containing
at most two operations, but using a restricted set of constants: −1, 0, 1, INT_MAX, and INT_MIN. This
resulted in 443,106 MLIR functions. To this, we added 100,000 randomly generated functions, each
containing up to 100 operations. We ran each of the resulting 1.6 million translation validation
tests under a 32-second timeout; this took 8.5 hours using all cores on a 32-core machine (Table 1).

Pass Ops Tests T/O Time Ops Tests T/O Time
canonicalize 1-2 443 k 0.04% 5416 s 100 100 k 0.49% 3759 s
arith-expand 1-2 443 k 0.29% 6660 s 100 100 k 1.29% 8159 s
arith-unsigned-when-equivalent 1-2 443 k 0.00% 5302 s 100 100 k 0.01% 1478 s

Table 1. Summary of using bounded-exhaustive and randomized testing to drive translation validation of
three MLIR transformation passes. T/O indicates how many of the tests timed out.

Name Pattern
SelectI1Simplify select(pred, x, y)→ or(and(pred, x), and(xor(pred, 1), y)) for x, y ∈ i1

SelectAndCond select(predA, select(predB, x, y), y)→ select(and(predA, predB), x, y)
SelectAndNotCond select(predA, select(predB, y, x), y)→ select(and(predA, not(predB)), x, y)
SelectOrCond select(predA, x, select(predB, x, y))→ select(or(predA, predB), x, y)
SelectOrNotCond select(predA, x, select(predB, y, x))→ select(or(predA, not(predB)), x, y)

Table 2. Testing MLIR’s canonicalize pass using our translation validator revealed these five miscompilation
bugs, which have all been fixed.

This testing campaign resulted in the discovery of five bugs in rewrites used in the canonicalize
pass, that we reported and that have been fixed in upstream MLIR (Table 2). All five of these bugs
had the effect of making the code less defined by introducing poison values in cases where the
original code was not poisonous. This is a consequence of a subtle rule where arith.select (a
ternary operator like LLVM’s select instruction or C and C++’s ?: operator) blocks a poison value
coming in on its not-selected operand. For example, given the arith.select %pred, %x, %y :
i1 operation, where all three operands are Booleans, the SelectI1Simplify would rewrite it to a
combination of arith.or, arith.and, and arith.xor operations, creating straight-line code. This
rewrite is incorrect, for example, when %pred is false, %x is poison, and %y is not poison. In the
original pattern, the result would be equal to the value of %y (since arith.select blocks poison
from its not-selected operand). However, all of arith.or, arith.and, and arith.xor produce
poison output when either of their inputs is poison. Introducing new poison values is a dangerous
miscompilation because subsequent passes can act on the poison values, producing further breakage.
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Fig. 12. Operations from MLIR’s arith and comb dialects are used (repeatedly) across our peephole rewrites
demonstrating a need for semantics across a wide set of operations.

Category # rewrites Description
Mathematical operations 8 Operations on integer attributes, such as addition
Constants 3 Getting a constant with a specific type
Integer type width 2 Convert integer attributes to type with specific width
Comparison predicates 2 Inverting a comparison opcode (e.g. eq to ne)

Category # constraints Description
Equality to constants 4 Constraining an attribute to a given constant value
Equality of attributes 3 Checking if two attributes are equal or not
Integer type width 2 Checks on the bit-width of an integer type
Comparison predicates 2 Checking if an attribute is a comparison opcode

Table 3. Most native rewrites and patterns are not specific to either arith nor comb.

Bugs related to undefined behavior are tricky to catch using standard testing techniques, but
they are easily detected by UB-aware translation validation tools. This testing campaign greatly
increased our confidence in the correctness of these three MLIR passes. Moreover, translation
validation is a foundation for other technologies such as superoptimization that we plan to explore.

6.2 Verified Peephole Rewrites for a Full MLIR Pass
In Section 6.1, we looked at MLIR transformations implemented in C++, where the best we can
do is to check their work using translation validation. Next, we look at once-and-for-all formal
verification (up to a maximum bitwidth) of transformations that are expressed declaratively. To
do this, we used pdl to reimplement 31 arith peephole rewrites and 35 comb rewrites from their
respective canonicalize passes. These rewrites cover a large variety of operations (Figure 12);
constants are used in most rewrites, and otherwise they cover addition, subtraction, multiplication,
division, shifts, and various bitwise operations. These peepholes account for most of the complexity
and most of the opportunities for error in the canonicalizers. Since we have already formalized the
operations from the arith and comb dialects, we could simply reuse those semantics here.
Our pdl patterns also rely on a set of native constraints and rewrites (Section 5.2.3), which

we newly define to cover their corresponding uses in our patterns (Table 3). As upstream MLIR
currently does not use pdl to optimize arith or comb, no native rewrites or constraints had been
defined for our use case, which means that we had to define them ourselves. Interestingly, most of
the constraints we defined can be reused across the arith and comb dialects: they are not specific
to individual patterns. This is not surprising as most native rewrites are either simple mathematical
operations such as addition or subtraction, conversion from integer attributes to integer types, or
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constant factories given a specific type. Similarly, most constraints are either checking equality to
a constant or an attribute, or constraints on the bitwidth of integers.

Pattern (sorted by time)

0.1
1.0

10.0
100.0

1000.0
Time [s] 0 Types

1 Type
2 Types
3 Types

(a) Rewrites for the arith dialect

Pattern (sorted by time)
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100.0

1000.0
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(b) Rewrites for the comb dialect

Fig. 13. Most patterns can be quickly verified up to 64 bits, except for a few outliers in the arith.extsi and
arith.trunci canonicalizations, which involve more than three different integer types in the same pattern.

A particular weakness of SMT-based tools is that they generally cannot reason about bitvectors
of parametric size. Thus, we follow the example of Alive [27] and individually verify every feasible
bitwidth for each pdl pattern, up to a configurable maximum width, which we set here to 64.
Although most patterns contain two or fewer integer types and can be verified using a few queries,
the canonicalization patterns in arith.extsi and arith.trunci contain up to three different
integer types, which results in a large number of queries and thus a verification time of around
three minutes per pattern. Figure 13 gives more details.

Using our verifier, we proved correct all the pdl rewrite rules that we took from a version of MLIR
that contained bug fixes for the five miscompilations we described in Section 6.1. We also ensured
that we could detect buggy transformations, including the ones we reported. The correctness
guarantee that we provide for the MLIR canonicalize pass is that its rewrites, as expressed by the
pdl patterns we derived from the C++ implementation, are semantics-preserving up to 64 bits with
respect to the semantics we defined for the arith and comb dialects. We also managed to prove
correct some of these patterns for any bitwidth. For that, we used our arbitrary bitwidth semantics,
which proves in less than a second most patterns, in particular 2 of the 3 patterns that take more
than 3 minutes to prove correct with our fixed-bitwidth semantics.

MLIR already offers an execution engine for pdl. Also, the executable C++ specifications of native
constraints and rewrites, which are needed to transition to our pdl patterns, are straightforward to
implement. Thus, we have high confidence in the correctness of these patterns, and we believe that
the MLIR community could increase the trustworthiness of its transformations by adopting our
declarative pdl implementation.

6.3 Formally Verified Known and Demanded Bits Analysis for CIRCT
CIRCT’s comb dialect has a known bits analysis supporting five operations (and, or, xor, mux, concat)
implemented in C++. We implemented a new known bits analysis for comb using our transfer
dialect; it additionally supports shl, mul, add, sub, extract, and cmp. We also created a demanded
bits analysis for its bitwise operations, add, sub, extract, concat, and mux (Table 4). We lowered
these transfer functions to our semantic dialects and then proved that—for bitwidths up to 64—they
are sound with respect to our concrete semantics for comb. We also proved that eight out of the
eleven transfer functions are maximally precise; mul and shl are not (as expected, as a maximally
precise function for these operations would be likely to be too complex to be practical).

We empirically compared the precision of the CIRCT known bits analysis with ours by running
both analyses over all of the comb code in two open-source RISC-V processors: Rocket [1] and

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 206. Publication date: June 2025.



First-Class Verification Dialects for MLIR 206:19

AND/ ADD/ NE/
Operations OR XOR SUB MUL SHL MUX CONCAT EXTRACT EQ
Known Bits - CIRCT ✓✓ ✓✓ × × × ✓ ✓✓ × ×
Known Bits - Ours ✓✓ ✓✓ ✓✓ ✓ ✓ ✓✓ ✓✓ ✓✓ ✓

Demanded Bits - Ours (new) ✓ ✓✓ ✓ × × ✓✓ ✓✓ ✓✓ ×

Table 4. Comparing static analyses from upstream CIRCT’s comb dialect with our improved analyses. Transfer
functions marked ✓ are implemented but not maximally precise. Transfer functions marked ✓✓ are
implemented and also maximally precise.

Total Known Bits Known Bits Bits Not
Class # Ops bits (Upstream) (Ours) Increase Demanded

Rocket Small 28 812 180 249 30 640 40 620 32.6% 20 063
Medium 31 272 199 815 33 374 43 418 30.1% 20 739
Large 40 338 273 388 41 438 51 992 25.5% 24 080

BOOM Small 81 325 559 150 77 669 103 727 33.6% 50 593
Medium 116 797 718 087 81 931 115 483 41.0% 53 731
Large 182 594 1 203 763 138 246 191 455 38.5% 94 913
Mega 285 723 1 947 627 233 865 362 412 55.0% 169 989

Table 5. Our known bits analysis is consistently more precise (from 30.1% to 55%) than CIRCT’s default
analysis across the combinatorial logic of real-world RISC-V processors with up to 286 k comb operations. We
also provide a demanded bits analysis that is not implemented in CIRCT.

BOOM [2]. Rocket is an in-order core, and BOOM is out-of-order; both are derived from Chisel [3]
specifications, passing through Chisel’s FIRTL IR, to CIRCT’s RTL dialects: comb, seq, and hw. For
the BOOM design, we instantiated four variants—small, medium, large, and mega—that share the
same overall core design but differ in size and complexity, while for Rocket processor, we have
three variants —small, medium and large.

Table 5 shows that, compared to CIRCT’s analysis, we see a 30% to 55% increase in the number
of bits that are statically known. For instance, our analysis statically determines that 362,412 out of
1,947,627 possible bits in the BOOM Mega design are known, whereas CIRCT’s current analysis
pass only determines 233,865 bits. We found that by supporting more operations, the analysis result
could be improved. For the BOOM Small design, if we remove all newly added transfer functions
but only replace transfer functions from the upstream with more precise ones, we only observe
a 3.4% improvement in detected known bits. Our analysis is not only substantially more precise
than the upstream one, but it has also been proved correct with respect to the Comb’s concrete
semantics. An advantage of declarative, formally verified transfer functions is that since correctness
is assured, compiler developers can be more courageous in pursuing efficiency and precision.
To make use of our improved analysis results, we implemented 13 optimizations that exploit

known and not-demanded bits. These are an optimization that replaces a value with a constant
when every bit is either not-demanded or known, and also four optimizations for each of bitwise
AND, OR, and XOR, replacing instructions with constants or with one of their operands, when
this is safe to do. Table 6 shows how many times these optimizations fire during compilation.
Figure 14 shows an example of an optimization that fired during the compilation of the Large
BOOM processor. As a final validation step, we ensured that the synthesized RISC-V processors (in
simulation) continued to correctly run the Dhrystone benchmarks.
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Class
Small
Medium
Large

Const. AND OR XOR
121 76 9 2
124 77 11 2
123 76 15 1

(a) Rocket

Class
Small
Medium
Large
Mega

Const. AND OR XOR
79 2 20 1
105 2 28 1
88 1 30 1
99 1 36 1

(b) BOOM

Table 6. Number of times our dataflow-driven optimizations fire while compiling various processors.

func.func @unoptimized(%arg0: i17,
%arg1: i1, %arg2: i53) -> i34 {
%c0_i36 = hw.constant 0 : i36
%0 = comb.concat %arg0, %c0_i36 : i17, i36
%c0_i53 = hw.constant 0 : i53
%1 = comb.mux %arg1, %0, %c0_i53 : i53
%2 = comb.or bin %1, %arg2 : i53
%3 = comb.extract %2 from 0 : i53 -> i34
return %3 : i34

}
func.func @optimized(%arg0: i17, %arg1: i1,

%arg2: i53) -> i34 {
%0 = comb.extract %arg2 from 0 : i53 -> i34
return %0 : i34

}

Demanded Bits Known Bits

%c0_i36 N/A (0...0)36
%0 (1...1)53 (?...?)17 (0...0)36
%c0_i53 N/A (0...0)53
%1 (0...0)19 (1...1)34 (?...?)17 (0...0)36
%2 (0...0)19 (1...1)34 (?...?)53
%3 (1...1)34 (?...?)34

Fig. 14. An example of an optimization that fires during compilation of the Large BOOM processor. In the
dataflow results on the right side of the figure, (1...1)34 indicates a run of 34 one bits, (?...?)53 indicates a run
of 53 unknown bits. By demanded bits analysis, we know %3 only uses the low 34 bits from %2. By known
bits analysis, we know the low 34 bits of %1 are zeros and they won’t contribute to %2 because %2 is a bitwise
OR. As a result, %2 can be replaced by %arg2.

6.4 Optimizing SMTQueries in the Presence of Poison Semantics
An advantage of expressing SMT expressions as a compiler IR is that compiler IRs are designed
to be optimized. In Section 4.4, we mentioned that simple peephole optimizations, applied to our
semantic dialects, typically eliminate about half of the code in them. In this section, we answer the
question: Are there more interesting compiler optimizations that can be performed on our semantic
dialects, that make solver queries measurably faster?
The default lowerings from our semantic dialects use tuples, defined as an algebraic datatype

in SMT-LIB, to model functions that return multiple values, and also to model integer values that
might be poison. However, SMT solvers do not uniformly perform well when presented with
higher-level abstractions such as tuples. In particular, they can cause Z3 to slow down significantly.
To retain the ergonomics of tuples, but avoid the performance penalty, we wrote an optimization
pass that removes them when possible.

To evaluate the performance benefit of our datatype elimination pass, we evaluate it in the context
of our translation validation tool and compare the solver time with and without our optimization
pass. We evaluate our tool on the arith-expand pass, on all arith programs of at most two
non-constant operations, and on 100 k programs with up to 100 operations. We use a timeout of 8 s
for the small programs benchmark and 32 s for the larger one. Our datatype elimination pass is
currently written in Python and takes 6684 s and 1542 s, an overhead that we expect to be drastically
reduced once the pass is moved to C++.
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Fig. 15. Optimizing our semantic dialects can make SMT queries faster.

Our optimization pass produces clear benefits. Ignoring queries that time out, the total run time
of our queries drops from 6050 s to 4853 s for the small programs benchmark, and from 3746 s to
2349 s for the large programs benchmark. This results in a speedup of 24.6% and 59.5%, respectively.
A closer look at the runtime of queries that take more than 0.1 s to solve (Figure 15) shows that our
optimized queries can consistently solve more queries given the same time budget. We see similar
improvements in the number of timeouts, which our pass reduces from 0.26% to 0.22%, and from
2.29% to 1.50%, respectively.
Overall, expressing semantic dialect optimization as a normal compiler pass greatly reduces

query time for our translation validation tool. While specific query optimizations may not be
beneficial in all settings, domain-specific optimizations on the SMT queries are a powerful tool to
make optimal use of an SMT solver with potentially complex performance behavior.

7 Related Work
Validating existing compiler transformations. Several projects have been developed to use
formal methods to validate existing compiler transformations. MLIR-TV [4] defines a translation
validation tool for MLIR using SMT solvers, specifically for machine learning dialects. This approach
was inspired by the Alive [27] and Alive2 [26] projects, which defined both a translation validation
tool and a peephole rewrite verification tool for LLVM, finding and preventing hundreds of bugs and
still being actively developed and used in the LLVM ecosystem. Another project, Alive-mutate [11],
found bugs by adding a mutation-based fuzzer to the existing Alive2 translation validator. Other
automatic verification tools than SMT solvers have been used as well. For instance, Peggy [36] and
LLVM-MD [37] use e-graphs for defining translation validation tools for LLVM. Despite all these
projects defining translation validation tools, and most of these projects targeting LLVM, none of
these projects share any significant code. In contrast, our semantics-agnostic tools are designed to
work with any IR that is lowered to our smt dialect, allowing both reuse of the verification tools
for new IRs, and allowing reuse of the semantics for new verification tools.

Automatically proving transformations and analyses correct. Multiple other projects have
used automated theorem provers to verify the absence of miscompilations. Similar to our work on
pdl and the transfer dialect, Cobalt [22] and Rhodium [23] define DSLs for defining both compiler
transformations and analysis as local rewrites, and then use the Simplify automatic theorem prover
to prove them correct. Similar to our translation of PDL to SMT-LIB, Crocus [38] translates Cranelift
instruction selector rules into SMT-LIB to prove their correctness. In particular, their translation of
arbitrary helper terms to SMT-LIB is similar to our handling of pdl.apply_native_constraint.
Previous work also used verification of transformations to synthesize them, for instance in the
Halide compiler [32]. Other work focused on proving and synthesizing dataflow analysis, such as
VeRA [9], which targets a subset of the C++ language to prove a range analysis, and AMURTH [16],
which can automatically synthesize sound and possibly most-precise transformers.
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Interactive theorem provers for compiler verification. Another approach for proving
compilers correct, much more costly in terms of engineering, but also more powerful, is to formally
verify compilers using proof assistants. A well-known example is the CompCert [24, 25] project,
which defined a C compiler in the Rocq theorem prover, which allowed them to prove the absence
of miscompilations, and later on the correctness of the Verasco [15] static analyzer. Similarly,
CakeML [17] defined a verified ML compiler in HOL4 that is proven correct. At the framework
level, Vellvm [40] aims at providing a verified LLVM compiler, by defining executable semantics for
LLVM IR in Rocq, which has been used to prove the correctness of a mem2reg [41] transformation.
Lean-MLIR [8] also formalized the structural semantics of SSA peephole rewrites in Lean and
implemented a few MLIR dialect semantics, though does not handle side-effects yet. We believe
that our approach is complementary to the one of Lean-MLIR, as while Lean-MLIR is not restricted
to SMT-LIB, it does not have yet the same level of automation as SMT solvers.
Intermediate Verification Languages. Existing tools such as Boogie [5], Why3 [31], and

Viper [14] define intermediate languages that can efficiently be mapped to SMT solvers. Compared
to these tools, our work is focused on integrating such intermediate languages into a compiler IR,
and allowing extensibility of the intermediate language. We believe that in an open ecosystem like
MLIR, which contains very specialized and domain-specific dialects, flexibility is needed in which
abstractions are supported. The goal of our work is to provide infrastructure for domain-specific
semantic dialects, and tools for optimizing and lowering them, allowing semantics IRs tailored to
domain-specific dialects.

8 Conclusion
We are currently in an era of radical innovation in compiler IRs, driven by machine learning and
other new application domains, and aided by technologies such as MLIR that make it easier to create
and interoperate new specialized IRs. Our research is addressing fundamental infrastructure-level
issues in MLIR in order to make it easier for compiler developers to specify a formal semantics
for IRs that they create. We do this in an idiomatic MLIR style, where we have created multiple
semantic dialects—in MLIR—for specifying the meaning of program dialects: the bread and butter
dialects that represent application code. We aim to generate a change in the MLIR ecosystem where
semantics are defined, as early as possible, by compiler developers. We have shown that we can
repay the engineering effort devoted to this formal specification work by generating useful formal-
methods-based tools that exploit the semantics to perform important tasks such as translation
validation and proving the soundness of dataflow analysis transfer functions. In summary, our
first-class verification dialects now bring a long-required formal semantics ecosystem to MLIR.
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Acknowledgments
We thank the MLIR and CIRCT communities for their support and feedback. We especially thank
Martin Erhart, Maksim Levental, Bea Healy, Mike Urbach, Will Dietz, and Leon Hielscher for the
development and integration of the smt dialect into the CIRCT and MLIR projects. This work was
supported by the Engineering and Physical Sciences Research Council (EPSRC) grant EP/W007940/1,
as well as the European Union’s Horizon EUROPE research and innovation program under grant
agreement no. 101070375 (CONVOLVE), This material is based uponwork supported by the National
Science Foundation under Grant No. 1955688.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 206. Publication date: June 2025.



First-Class Verification Dialects for MLIR 206:23

References
[1] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin, Christopher Celio, Henry Cook,

Daniel Dabbelt, John Hauser, Adam Izraelevitz, et al. 2016. The Rocket chip generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17 4 (2016), 6–2.

[2] Krste Asanovic, David A Patterson, and Christopher Celio. 2015. The Berkeley Out-of-Order Machine (BOOM): An
Industry-Competitive, Synthesizable, Parameterized RISC-V Processor. University of California at Berkeley Berkeley
United States, Tech. Rep (2015).

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis, John Wawrzynek, and
Krste Asanović. 2012. Chisel: Constructing Hardware in a Scala Embedded Language. In Proceedings of the 49th Annual
Design Automation Conference. 1216–1225.

[4] Seongwon Bang, Seunghyeon Nam, Inwhan Chun, Ho Young Jhoo, and Juneyoung Lee. 2022. SMT-Based Translation
Validation for Machine Learning Compiler. In International Conference on Computer Aided Verification. Springer,
386–407.

[5] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rustan M Leino. 2005. Boogie: A modular
reusable verifier for object-oriented programs. In International Symposium on Formal Methods for Components and
Objects. Springer, 364–387.

[6] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2024. The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org.

[7] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. The SMT-LIB standard: Version 2.0. In Proceedings of the 8th
International Workshop on Satisfiability Modulo Theories, Vol. 13. 14.

[8] Siddharth Bhat, Alex Keizer, Chris Hughes, Andrés Goens, and Tobias Grosser. 2024. Verifying Peephole Rewriting in
SSA Compiler IRs. arXiv preprint arXiv:2407.03685 (2024).

[9] Fraser Brown, John Renner, Andres Nötzli, Sorin Lerner, Hovav Shacham, and Deian Stefan. 2020. Towards a verified
range analysis for JavaScript JITs. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation. 135–150.

[10] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages. 238–252.

[11] Yuyou Fan and John Regehr. 2024. High-Throughput, Formal-Methods-Assisted Fuzzing for LLVM. In 2024 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). 349–358.

[12] Mathieu Fehr. 2025. First-Class Verification Dialects for MLIR - PLDI 2025 Artifact. doi:10.5281/zenodo.15231119
[13] Mathieu Fehr, MichelWeber, Christian Ulmann, Alexandre Lopoukhine, Martin Lücke, Théo Degioanni, Michel Steuwer,

and Tobias Grosser. 2023. Sidekick compilation with xDSL. arXiv preprint arXiv:2311.07422 (2023).
[14] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3—where programs meet provers. In European symposium

on programming. Springer, 125–128.
[15] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David Pichardie. 2015. A formally-verified

C static analyzer. Acm Sigplan Notices 50, 1 (2015), 247–259.
[16] Pankaj Kumar Kalita, Sujit Kumar Muduli, Loris D’Antoni, Thomas Reps, and Subhajit Roy. 2022. Synthesizing abstract

transformers. Proc. ACM Program. Lang. 6, OOPSLA2, Article 171 (oct 2022), 29 pages.
[17] Ramana Kumar, Magnus O Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: a verified implementation of

ML. ACM SIGPLAN Notices 49, 1 (2014), 179–191.
[18] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation.

In International Symposium on Code Generation and Optimization (CGO). IEEE, 75–86.
[19] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana

Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling compiler infrastructure for domain specific
computation. In 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). IEEE, 2–14.

[20] Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P Lopes. 2021. An SMT encoding of LLVM’s memory model
for bounded translation validation. In Computer Aided Verification: 33rd International Conference, CAV 2021. Springer,
752–776.

[21] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David Majnemer, John Regehr, and Nuno P
Lopes. 2017. Taming undefined behavior in LLVM. ACM SIGPLAN Notices 52, 6 (2017), 633–647.

[22] Sorin Lerner, Todd Millstein, and Craig Chambers. 2003. Automatically proving the correctness of compiler optimiza-
tions. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation.
220–231.

[23] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. 2005. Automated soundness proofs for dataflow analyses
and transformations via local rules. ACM SIGPLAN Notices 40, 1 (2005), 364–377.

[24] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107–115.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 206. Publication date: June 2025.

www.SMT-LIB.org
https://doi.org/10.5281/zenodo.15231119


206:24 Mathieu Fehr, Yuyou Fan, Hugo Pompougnac, John Regehr, and Tobias Grosser

[25] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and Christian Ferdinand. 2016.
CompCert-a formally verified optimizing compiler. In ERTS 2016: Embedded Real Time Software and Systems, 8th
European Congress.

[26] Nuno P Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. 2021. Alive2: bounded translation
validation for LLVM. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. 65–79.

[27] Nuno P Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. 2015. Provably correct peephole optimizations
with Alive. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation.
22–32.

[28] Nicholas D Matsakis and Felix S Klock. 2014. The Rust Language. ACM SIGAda Ada Letters 34, 3 (2014), 103–104.
[29] Benjamin Mikek and Qirun Zhang. 2023. Speeding up SMT Solving via Compiler Optimization. In Proceedings of the

31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering.
1177–1189.

[30] Manasij Mukherjee and John Regehr. 2024. Hydra: Generalizing peephole optimizations with program synthesis.
Proceedings of the ACM on Programming Languages 8, OOPSLA1 (2024), 725–753.

[31] Peter Müller, Malte Schwerhoff, and Alexander J Summers. 2016. Viper: A verification infrastructure for permission-
based reasoning. In Verification, Model Checking, and Abstract Interpretation: 17th International Conference, VMCAI
2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings 17. Springer, 41–62.

[32] Julie L Newcomb, Andrew Adams, Steven Johnson, Rastislav Bodik, and Shoaib Kamil. 2020. Verifying and improving
halide’s term rewriting system with program synthesis. Proceedings of the ACM on Programming Languages 4, OOPSLA
(2020), 1–28.

[33] Aina Niemetz, Mathias Preiner, Andrew Reynolds, Yoni Zohar, Clark Barrett, and Cesare Tinelli. 2019. Towards
Bit-Width-Independent Proofs in SMT Solvers. In Automated Deduction – CADE 27, Pascal Fontaine (Ed.). Springer
International Publishing, Cham, 366–384.

[34] The Swift Project. 2024. Swift Intermediate Language (SIL). https://github.com/swiftlang/swift/blob/main/docs/SIL.rst.
[35] Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Gratian Lup, Jubi Taneja, and John Regehr.

2017. Souper: A synthesizing superoptimizer. arXiv preprint arXiv:1711.04422 (2017).
[36] Michael Stepp, Ross Tate, and Sorin Lerner. 2011. Equality-based translation validator for LLVM. In Computer Aided

Verification: 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings 23. Springer,
737–742.

[37] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. 2011. Evaluating value-graph translation validation for
LLVM. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation.
295–305.

[38] Alexa VanHattum, Monica Pardeshi, Chris Fallin, Adrian Sampson, and Fraser Brown. 2024. Lightweight, modular
verification for webassembly-to-native instruction selection. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume 1. 231–248.

[39] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In PLDI.
doi:10.1145/1993498.1993532 http://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf.

[40] Jianzhou Zhao, Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. 2012. Formalizing the LLVM intermedi-
ate representation for verified program transformations. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. 427–440.

[41] Jianzhou Zhao, Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. 2013. Formal verification of SSA-based
optimizations for LLVM. In Proceedings of the 34th ACM SIGPLAN conference on Programming Language Design and
Implementation. 175–186.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 206. Publication date: June 2025.

https://github.com/swiftlang/swift/blob/main/docs/SIL.rst
https://doi.org/10.1145/1993498.1993532
http://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf


First-Class Verification Dialects for MLIR 206:25

Received 2024-11-14; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 206. Publication date: June 2025.


	Abstract
	1 Introduction
	2 A Vision for Semantics-Based Compiler Engineering
	3 Background
	3.1 Static Single Assignment Intermediate Representations
	3.2 MLIR: A Framework for Designing Domain-Specific Compilers
	3.3 xDSL: a Python-Native SSA Compiler Framework

	4 Formal Semantics via a Collection of MLIR Dialects
	4.1 Interfacing with SMT Solvers using SMT-LIB Dialects
	4.2 Efficient Encoding of High-Level Semantics to SMT Queries
	4.3 Defining Formal Semantics Using Compiler Transformations
	4.4 Optimizing SMT Queries Across Levels of Abstraction

	5 Defining Verification Tools at the Framework Level
	5.1 Translation Validation
	5.2 Verifying Peephole Rewrites
	5.3 Formal Verification of Dataflow Transfer Functions

	6 Evaluation
	6.1 Translation Validation For Free
	6.2 Verified Peephole Rewrites for a Full MLIR Pass
	6.3 Formally Verified Known and Demanded Bits Analysis for CIRCT
	6.4 Optimizing SMT Queries in the Presence of Poison Semantics

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

