A Processing-in-Memory Taxonomy and a Case for Studying Fixed-function PIM

Gabriel H. Loh Nuwan Jayasena Mark H. Oskin Mark Nutter David Roberts Mitesh Meswani Dong Ping Zhang Mike Ignatowski

AMD Research — Advanced Micro Devices, Inc.

{ gabriel.loh, nuwan.jayasena, mark.oskin, mark.nutter, david.roberts, mitesh.meswani, dongping.zhang, mike.ignatowski} @amd.com

Abstract

The emergence of die-stacking technology with mixed logic
and memory processes has brought about a renaissance
in “processing in memory” (PIM) concepts, first envisioned
decades ago. For some, the PIM concept conjures an image
of a complete processing unit (e.g., CPU, GPU) integrated di-
rectly with memory, perhaps on a logic chip 3D-stacked under
one or more memory chips. However, PIM potentially cov-
ers a very wide spectrum of compute capabilities embedded
in/with the memory. This position paper presents an initial
taxonomy for in-memory computing, and advocates for the
exploration of simpler computing mechanisms in the memory
stack in addition to fully-programmable PIM architectures.

1. Introduction

Processing in memory (PIM) is a decades-old concept of plac-
ing computation capabilities directly in memory [11]. The
PIM approach can reduce the latency and energy consumption
associated with moving data back-and-forth through the cache
and memory hierarchy, as well as greatly increase memory
bandwidth by sidestepping the conventional memory-package
pin-count limitations.

Motivated by the “Memory Wall” [12], PIM research
reached a feverish pitch in the mid-to-late 1990’s with a variety
of proposals and studies [, 4,6—9] and test chips and systems
developed [3]. Fabrication limitations and business models
worked against PIM being adopted widely in industry; instead,
advances in memory interfaces (e.g., RAMBUS, DDRx) have
been the main focus of industrial innovation in memory system
design.

Recent advances of die-stacking (3D) technology have
reignited interest in PIM architectures. A silicon die im-
plemented in a high-performance technology process can be
stacked with one or more memory layers. The basic tech-
nology building blocks are already in place; for example,
Micron’s Hybrid Memory Cube technology [10] along with
several academic projects [2, 5] have already demonstrated the
3D stacking of logic and memory chips.

Past proposals have largely focused on fully-programmable
processors (including vector/SIMD and special-purpose).
However, there exists a continuum of compute capabilities
that can be embedded “in memory”. This paper presents a tax-
onomy of this design space. In addition we argue for continued
research in less-than-fully-programmable PIM approaches.

2. A Processing-in-Memory Taxonomy

In this section, we present a taxonomy for different types of,
or approaches to, PIM design. Figure 1 shows our taxon-
omy; the classes are largely divided by how the computing
would (likely) interface with software, but they also have im-
plications on the area requirements and power-performance

Logic in Memory
Software-visible

[Fixed-Function Operations]
Bounded Operands Compound

Reductions
Figure 1: Taxonomy of processing in memory.

Non-Compute Programmable

Memory controllers
Built-in self test
ECC and sparing
In-stack caching
In-stack prefetch
Memory profiling

NVRAM management

Scatter/gather, Memcpy
Layout transformation
Search, Sort
Combined operations

APU, GPGPU
Microcontroller
FPGA

Load-op-store
Fixed-width vector ops
Atomics

cPU ’

Video encode/decode
Compression
Encryption

. . Net k
Signature matching G IS

efficiency. For the non-compute class, there is no software
interface because these all implement software-transparent fea-
tures. Fixed-function operations with bounded operands map
closely to ISA-level instructions and could be accessed via
assembly-level intrinsics. Fixed-function operations with com-
pound operands and computations likely would correspond to
invoking library calls. Fully-programmable PIMs would be
employed with standard (although possibly PIM-enhanced)
paradigms such as threading packages, GPGPU programming
interfaces (e.g., OpenCL), or whatever is appropriate for the
specific type of computing device.

2.1. Non-compute Logic in Memory

For completeness, the first class in our taxonomy covers uses
of logic in memory that act invisibly to application software.
For example, many of the functions of the Micron Hybrid
Memory Cube approach fall under this category, such as the
in-stack integration of memory controllers and built-in self-test
capabilities [1 0]. While this may have significant performance,
power, or cost benefits, such benefits are largely invisible to
the software stack. While there are many promising research
directions for such software-transparent applications of logic
in memory, this class is not the focus of this paper.

2.2. PIM with Fixed-function Operations

The remaining classes of PIM computation styles are all
software-visible. The next level of our taxonomy differen-
tiates based on whether the in-memory computing provides
pre-defined or fixed functions, or whether the computation
substrate is more generally programmable.

2.2.1. Fixed-function, Bounded-operand PIM Operations
The bounded-operand PIM operations (BPO) can be speci-
fied in a manner that is consistent with existing instruction-
level memory operand formats. Current load and store in-
structions specify an address, and the size of the operation is
implied/encoded by the opcode (e.g., load byte, store double-
word). Simple extensions to this format could encode the
PIM operation directly in the opcode, or perhaps as a special
prefix in the case of the x86-64 ISA, but no additional fields
are required to specify the memory operands. To contrast,

a non-bounded operand could consist of a base address and
vector length, whereby the size of the data to be manipulated
is dynamically determined based on the arguments supplied
to the operation, but such an operand format is not typical of
modern ISA encodings.!

A bounded operand need not be limited to a single word
of data. BPOs may operate on multiple words in a limited-
vector form, much like how modern x86 SIMD extensions
manipulate fixed, pre-defined vectors (i.e., each operand is a
single, predetermined, fixed-sized collection of data words).
Given the theme of maintaining typical instruction encodings,
BPOs likewise would be expected to perform only a single
operation (e.g., add) or a very limited, pre-specified set of
operations (e.g., test-and-set, multiply-accumulate).

2.2.2. Fixed-function, Compound PIM Operations
Compound PIM operations (CPOs) may access an arbitrary
number of memory locations (not-specifically pre-defined)
and perform a number of different operations. Some examples
include data movement operations such as scatter/gather, list
reversal, matrix transpose, and in-memory sorting. In these
examples, a non-PIM system would have to read entire data
structures all the way into a CPU’s registers, simply to have
to write all of the contents back out to memory again in a
different order. For common patterns and paradigms, sim-
pler fixed-function implementations may provide significantly
more area-efficient, lower-power, and higher-performance im-
plementations than performing the equivalent work with a
fully-programmable processor in memory.

CPOs can cover functionality similar to that provided by
BPOs but over more complex sets of data. Whereas an exam-
ple BPO might perform a reduction (e.g., summation) over
a fixed block of data, a CPO could perform a similar reduc-
tion over a dynamically specified array, or even a combined
operation such as performing an in-memory gather followed
by a reduction on the gathered elements. Further, CPOs may
be synchronous or asynchronous depending on the nature and
expected latency of the computation.

2.3. Fully-programmable PIM

The last class in our taxonomy, and the domain of much previ-
ous PIM work, is fully-programmable logic in memory. These
solutions provide the expressiveness and flexibility of a con-
ventional processor (or configurable logic device), along with
all of the associated overheads except off-chip data migration.

3. Why Fixed-function PIM?

The previous section described our taxonomy for PIM-like
computing designs. In general, the different classes varied
from one end being fixed-function to the other extreme of
full programmability. Past work mostly focused on either
end of the spectrum. This position paper argues that there
is significant middle ground worth further exploration, for

There certainly exist operations that support non-bounded operands, for example,
the x86 REP-prefixed instructions, but these are not typically used outside of a few
specialized libraries (e.g., memcpy).

(a) (d)

long x[128];

long sum = 0;

for(i=0;1<128;i++)
sum += x[i];

long x[128];
long sum = 0;
PIM_fork(sum_func,&sum,x,128);

(b)
long x[128];
long sum = 0;
for(i=0;1<128;1i+=32)
sum += reduce_add_q32(x+i);

/...

Tong sum_func(long* vec, size_t len)
{

long sum = 0;
(c) for(i=0;i<len;i++)

Array<long> x; sum += vec[i];

long sum = 0; return sum;

sum = x.summation(); ¥

Figure 2: Vector summation code examples using (a) conventional pro-
gramming, (b) a BPO intrinsic, (c) a CPO in a library call, and (d) a fully-
programmable PIM invocation. (Initialization of the array x omitted for brevity.)
which the proposed taxonomy can serve as a framework for
classifying and ultimately better understanding the strengths
and weaknesses of the different classes of PIM. In this section,
we briefly walk through a simple PIM example to highlight
some of the potential tradeoffs of the different approaches, and
then discuss key areas for further research explorations.

For our example, we consider an array of 128 integer quad-

word (64-bit) values to be added together (a total of 1,024
bytes of data).” Figure 2(a) shows conventional C-like code
for performing this computation without any PIM function-
ality. This code would generate 128 load operations (or 16
reads from memory assuming a 64-byte cacheline size) just to
compute a single sum.
BPO Implementation: For the sake of illustration, we
will assume a BPO summation operation of the form
reduce.add.q32 dest [src] that performs an addition re-
duction on the thirty-two quad-word elements (q32) starting
at the address pointed to by the src register, and the sum-
mation is placed in the register dest. Figure 2(b) shows
the pseudo-code in which reduce_add_g32 () would be an
intrinsic call to invoke the corresponding assembly-level oper-
ation. The code is still fairly straightforward, although just as
with SIMD operations in conventional processing cores, the
highest-performing code will rely on the programmer to write
efficient machine- or assembly-level code. This code would
require four requests to, and corresponding responses from,
main memory (i.e., the four reduce.add.g32 commands) to
compute the final 128-element summation.

The PIM hardware required to support such a BPO is fairly
straightforward and quite efficient. Internal to the memory
stack, the PIM would only have to implement a hard-wired,
32-way summation tree (which can be relatively fast using
Wallace tree-like organizations) to compute the sum. Space-
time trade-offs can be made; for example, a 16-way summation
tree can be used once on each half of the 32-element array.
CPO Implementation: A possible CPO summation operation
could take the form of an Array library call summation ().

2This is but a simple example, but even vector summation (and its variants) has
many common uses such as computing prefix sums and long-vector dot products.

Figure 2(c) shows the pseudocode invoking such a PIM op-
eration. Compared to the BPO version, this CPO summation
hides the PIM-level details from the programmer. Under the
covers, the library implementation would map this to a lower-
level call that unpacks the array specifications (base address
and size) and passes these to the PIM hardware. From a
memory-bandwidth perspective, the CPO is very efficient be-
cause it generates only a single request to main memory and
receives a single response with the final summation.

A key trade-off for the CPO summation is greater hardware

complexity compared to BPO. The PIM in this case requires
some control logic to iterate through the array accumulating
the results. While the logic may add multiple elements in
parallel to speed up the process, it is an inherently variable-
latency operation depending on the array size.
Full-PIM Implementation: Finally, Figure 2(d) shows a sum-
mation operation used with a hypothetical fully-programmable
PIM interface (“PIM_fork™). The programmer-level imple-
mentation is fairly simple, although it can be argued that this
is still quite a bit more work when compared to the CPO
and BPO versions. The benefit is that such a framework pro-
vides significant flexibility in that the function off-loaded to
the PIM need not be restricted to a finite set of predefined,
fixed-function operations.

From an efficiency standpoint, a full processor in the PIM
incurs additional area, power, and possibly performance over-
heads compared to the fixed-function implementations. The
processor must store the code for the PIM function; fetch,
decode, and execute the instructions, likely implemented as a
fully-pipelined processor including register files, caches, etc.;
potentially support the same ISA as the host processor (if
any code can be offloaded to the PIM); support virtual mem-
ory; and handle thread synchronization and cache coherence
with the host (assuming a standard threading model is em-
ployed). To be fair, much of this would have to be performed
anyway if the summation was not offloaded to the PIM at
all, but compared to the fixed-function design points, a fully-
programmable PIM introduces significantly more complexity,
requires more area in the logic-layer of the PIM stack, and
consumes more energy.

4. Other Issues and Extensions

The PIM taxonomy presented in this paper is but one possible
way to categorize the spectrum of PIM-like architectures. To
some extent, the exact taxonomic groupings and specific de-
tails are not even that important to the central premise of this
position paper, which is to advocate for more explorations in
fixed-function PIM approaches. However, we will now briefly
discuss some other design concerns that currently are not cap-
tured by our taxonomy, and these issues may serve as the basis
for extensions or improvements in future PIM taxonomies.

4.1. PIM and Cache Coherence
Whether the PIM hardware supports cache coherence with the
host processor(s) is not a design aspect currently covered by

our taxonomy, but this is an area that would have significant
impacts on the complexity of the PIM implementation. Even
with such a simple example as the reduction operation shown
in Section 3, all PIM implementations would need some way
of ensuring that the memory operands being operated on by
the PIM are correct. There are a variety of possible solutions,
each with strengths and weaknesses. For example, the PIM
could behave just like any other cache-coherent processor,
which would require it to perform directory look-ups, issue
probes/invalidations, and otherwise generate a potentially sig-
nificant amount of coherence traffic before proceeding with its
intended operation. In the pathological case in which the PIM
operation operates on large sets of data that already are mostly
resident in the on-chip caches, it may end up taking more time
and power to force all of the relevant data to be flushed back
to memory for the PIM to work on it than to just let the CPU
perform the computation directly out of the caches.

The programmer could instead be forced to explicitly flush
the needed operands from the caches to memory prior to the
invocation of the PIM operation. For simple sets of data (e.g.,
base+length), this could be a relatively simple operation (al-
though it may still require a significant amount of coherence
traffic). If the data set is highly irregular (e.g., gather/scatter
with pointer indirection), such a CPU-pushed cache flush op-
eration becomes more complex. There are other possible
approaches that could and should be researched, but this is a
cross-cutting PIM design issue that affects both fixed-function
and fully-programmable approaches.

4.2. PIM and Virtual Memory

Unless PIM operations are restricted to accessing memory
within a single page, some type of virtual memory support
will be required. For example, take the simple CPO summa-
tion from Section 3, but consider the situation when the target
array crosses page boundaries. For this CPO to operate cor-
rectly, the PIM logic must compute the virfual addresses of
the array elements, translate them to physical addresses, and
then access and add the data. This could require hardware
page-table walkers in the PIM * and possibly TLBs for accel-
erating translations, and incur all of the system complexities
that come with supporting virtual memory. However, An in-
triguing possibility is to integrate this translation support with
the translation mechanisms being built for I/O devices and
hardware virtual machine and RDMA support.

While array operations potentially could be constrained to
operate within page boundaries (which would place an addi-
tional burden on the programmer or compiler to manage this),
other potentially powerful PIM operations that support pointer-
based/indirect memory accesses definitely will require virtual
memory translation support. For example, walking a linked-
list or other pointer-based data-structure requires converting

3PIM-based page-table walkers themselves would be an instance of a Non-Compute
operation in our taxonomy, and could be fairly efficient because each step in a multi-
level page-table look-up potentially can access page-table data structures directly with-
out going through the traditional on-chip cache hierarchy.

the virtually-addressed pointer to a physical address for every
hop in the list traversal. An indirect gather (e.g., gather via an
array of pointers) would have similar requirements.

Supporting virtual memory in the PIM also would raise the
possibility of invoking page-faults part-way through a PIM
operation, requiring the need for precise interrupts on the PIM
device itself, as well as a method to signal the operating system.
How should system/PIM state be saved/restored when the PIM
is half-way through a 1,000-element operation? Aborting the
entire operation and restarting after the page-fault has been
handled may be grossly inefficient (e.g., having to redo almost
all of the work when the fault occurs on the 999,999 element
of a million-element array), and could also expose livelock
problems (e.g., handling the page fault causing a different
portion of the array to be paged out, and then faulting on that
page when re-executing the PIM operation, which then forces
yet another page to be paged out...).

4.3. Other Issues

Many other possible features, attributes, etc. may be useful in
distinguishing different classes of PIM-like architectures. The
virtual-memory and cache-coherence issues discussed in this
section highlight how even seemingly simple operations (e.g.,
vector summation) can open up a host of design challenges
and potential complexity. Apart from the simple (but neces-
sary) studies needed to quantify the performance, bandwidth,
and energy potentials of fixed-function PIM approaches, be-
neath the surface remain many systems and implementation
questions that must be addressed through more research.

5. Conclusions

To be clear, this paper is not making the conjecture that
fixed-function PIMs are necessarily any better than the fully-
programmable approaches (they are not even mutually exclu-
sive). The point of this position paper is to advocate further re-
search into the BPO and CPO classes of PIM designs to better
understand the strengths and weaknesses of the different ap-
proaches so future PIM architects can make the best trade-offs
among implementation costs, performance, power, flexibility,
and complexity. To this end, we advocate more research in at
least the following areas: (1) application analysis to identify
which functions are worth moving to memory, and for each

whether the function is best implemented as a BPO, CPO, or a
fully-programmable PIM; (2) area, power, and performance
trade-offs of fixed-function versus fully-programmable PIM
architectures; (3) programmability studies to determine the
best ways to expose (or hide) PIM functionality to (or from)
the application writers; and, (4) studies of the operating sys-
tem issues surrounding the support of different classes of PIM
computing.

References

[1] D. G. Elliott, W. M. Snelgrove, and M. Stumm. Computational RAM:
A Memory-SIMD Hybrid and its Application to DSP. In Proc. of the
Custom Integrated Circuits Conference, Boston, MA, May 1992.

[2] D. Fick, R. Dreslinski, B. Giridhar, G. Kim, S. Seo, M. Fojtik, S. Sat-
pathy, Y. Lee, D. Kim, N. Liu, M. Wieckowski, G. Chen, T. Mudge,
D. Sylvester, and D. Blaauw. Centip3De: A 3930 DMIPS/W Config-
urable Near-Threshold 3D Stacked System With 64 ARM Cortex-M3
Cores. In Proc. of the Intl. Solid-State Circuits Conference, pages
190-191, San Francisco, CA, February 2012.

[3] M. Gokhale, B. Holmes, and K. Iobst. Processing in Memory: The
Terasys Massively Parallel PIM Array. IEEE Computer, 28(42):23-31,
1995.

[4] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss,
J. Granacki, J. Brockman, A. Srivastava, W. Athas, V. Freeh, J. Shin,
and J. Park. Mapping Irregular Applications to DIVA, a PIM-based
Data-Intensive Architecture. In SC, 1999.

[5] D. H. Kim, K. Athikulwongse, M. B. Healy, M. M. Hossain, M. Jung,
I. Khorosh, G. Kumar, Y.-J. Lee, D. L. Lewis, T.-W. Lin, C. Liu,
S. Panth, M. Pathak, M. Ren, G. Shen, T. Song, D. H. Woo, X. Zhao,
J.Kim, H. C., G. H. Loh, H.-H. S. Lee, and S. K. Lim. 3D-MAPS: 3D
Massively Parallel Processor with Stacked Memory. In Proc. of the
Intl. Solid-State Circuits Conference, pages 188—190, San Francisco,
CA, February 2012.

[6] Y. Kim, T.-D. Han, S.-D. Kim, and S.-B. Yang. An Effective Memory-
Processor Integrated Architecture for Computer Vision. In Proc. of the
Intl. Conf. on Parallel Processing, pages 266—269, Bloomington, IL,
August 1997.

[71 R.C.Murphy, P. M. Kogge, and A. Rodrigues. The Characterization of
Data Intensive Memory Workloads on Distributed PIM Systems. In the
Second International Workshop on Intelligent Memory Systems, 2000.

[8] M. Oskin, F. T. Chong, and T. Sherwood. Active Pages: A Computation
Model for Intelligent Memory. In Proc. of the 25th Intl. Symp. on
Computer Architecture, pages 192203, Barcelona, Spain, June 1998.

[9] D. A. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick. A Case for Intelligent RAM.
IEEE Computer, Mar/Apr 1997.

[10] J. T. Pawlowski. Hybrid Memory Cube: Breakthrough DRAM Perfor-
mance with a Fundamentally Re-Architected DRAM Subsystem. In
Hot Chips 23, 2011.

[11] H.S. Stone. A Logic-in-Memory Computer. IEEE Transactions on
Computers, 19(1):73-78, January 1970.

[12] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications
of the Obvious. Computer Architecture News, 23(1):20-24, March
1995.

	Introduction
	A Processing-in-Memory Taxonomy
	Non-compute Logic in Memory
	PIM with Fixed-function Operations
	Fixed-function, Bounded-operand PIM Operations
	Fixed-function, Compound PIM Operations

	Fully-programmable PIM

	Why Fixed-function PIM?
	Other Issues and Extensions
	PIM and Cache Coherence
	PIM and Virtual Memory
	Other Issues

	Conclusions

