
SQRL: Hardware Accelerator for Collecting Software Data Structures
Snehasish Kumar, Arrvindh Shriraman, Viji Srinivasan†, Dan Lin, Jordan Phillips

School of Computer Sciences, Simon Fraser University
† IBM Research

Abstract
Many recent research proposals have explored energy efficient

accelerators that customize hardware for compute kernels while
still relying on conventional load/store interfaces for data deliv-
ery. Emerging data-centric applications rely heavily on software
data structures for data accesses which makes it imperative to
improve the energy efficiency of data delivery. Unfortunately,
the narrow load/store interfaces of general-purpose processors
are not efficient for data structure traversals leading to wasteful
instructions, low memory level parallelism, and energy hungry
pipeline operations (e.g., memory disambiguation).

We propose SQRL1, a hardware accelerator that integrates
with the last-level-cache (LLC) and enables energy-efficient it-
erative computation on data structures. SQRL integrates a data
structure-specific LLC refill engine (Collector) with a lightweight
compute array (PE) that executes the compute kernel. The collec-
tor runs ahead of the PEs in a decoupled fashion and gathers data
objects into the LLC. Since data structure traversals are struc-
tured, the collector does not require memory-disambiguation
hardware and address generation logic like conventional proces-
sors; furthermore it can exploit the parallelism implicit in the
data structures.

We demonstrate three types of collectors, a Vector collector,
a Key-Value collector, and a BTree collector. On datacentric
programs, SQRL eliminates the data structure access instructions
and executes the compute kernel on lightweight PEs to achieve
13×–90× energy reduction relative to a a 4-wide out-of-order
(OOO) processor. For the kernel portion of the benchmarks,
SQRL achieves a performance improvement between 13×–121×
relative to the 4-wide OOO processor, and upto 4× compared to
even an 8 core system.

1 Introduction
Emerging applications in a diverse set of fields depend on fetch-

ing and iterating over large data structures [16]. Interestingly,
the main benefit of parallelizing such applications is to access
multiple data elements2 simultaneously to hide long memory
latencies. It is unclear whether multicores are a power-efficient
solution to achieve the required memory level parallelism (MLP).
3 In addition, due to scalability challenges in the general-purpose
processor’s memory interface, it may not be possible to achieve
the required data rates. Finally, energy efficient access to data
structures is also influenced by the specifics of the memory hierar-
chy and the computation-communication ratio thereby, requiring
continuous adaptation.

1SQRL is pronounced as Squirrel
2The term element is used to refer to objects stored in a data structure.
3The term memory level parallelism is used to refer to the number of memory

accesses that can be concurrently outstanding in the memory system.

General-purpose processors are inefficient when iterating over
data structures and execute many instructions to obtain the re-
quired element in the data structure. These instructions waste
energy in the instruction fetch stages and increase register pres-
sure. In addition, associative searches of the load/store queue
are required and streaming data structure traversals cause many
cache misses, which in turn triggers associative searches in the
MSHR (miss status registers). Profiling data structure usage in
the benchmark applications revealed 9–66% instructions spent in
data structure operations. This may lead to significant power con-
sumption as fetching instructions can consume upto 20% of the
core’s dynamic power and supplying data from the L1 cache can
account for 30% of the core’s dynamic power [11, Penryn]; the
load/store queues alone may consume upto 6% of the dynamic
power.

Core
1
L1

Core
n

L1

Shared Cache

DRAM

for each A
  load a[i]

fn(a[i])

Shared Cache

DRAM

Core
1
L1

SQRL

Core
n
L1

Research Overview • Value Structure • FG-SIMT Baseline FG-SIMT Affine Evaluation

General-Purpose SIMT Programming Model

�T0

__global__ void vsadd_kernel( int y[], int a ) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
y[idx] = y[idx] + a;

}
...
void vsadd( int y[], int a, int n ) {

// move data from CPU to GPU
vsadd_kernel <<<32,n/32>>>( y, a );
// move data from GPU to CPU

}

Cornell University Christopher Batten 7 / 34

Research Overview • Value Structure • FG-SIMT Baseline FG-SIMT Affine Evaluation

General-Purpose SIMT Programming Model

�T0

__global__ void vsadd_kernel( int y[], int a ) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
y[idx] = y[idx] + a;

}
...
void vsadd( int y[], int a, int n ) {

// move data from CPU to GPU
vsadd_kernel <<<32,n/32>>>( y, a );
// move data from GPU to CPU

}

Cornell University Christopher Batten 7 / 34

fn(a[i])

PE

COLLECTOR

...... ...

G
ET a[ ]

Left: Multicore processor. Right: SQRL integrated with the LLC. In multicore,
instruction regions show instructions eliminated by SQRL. Broken lines indicate
data transfers eliminated by SQRL.

Figure 1: SQRL Overview. Example: Accelerating an iterative
computation on an array.

Data access inefficiency poses a significant constraint to re-
searchers focused on energy-efficient compute units. Recent pro-
posals that advocate specialization (e.g., Conservation cores [22]
and Dyser [3]), past work in kilo-instruction processors [19] have
all had to contend with power hungry load/store units to support
the required memory level parallelism [20]. Even heavyweight
(e.g., 256 entry) load/store queues sustain only a few (10s of)
cache refills [20, 4:] which falls well short of the requirements
for iterative kernels that stream over software data structures.
Current load/store queue interfaces are unable to make effective
use of available memory bandwidth. It is therefore imperative
that energy-efficient techniques to achieve the requisite memory
level parallelism are explored. A promising avenue of research is



to raise the abstraction of hardware execution to data algorithms
(e.g., queries) and enable more efficient execution [8, 24, 6].

We began this research with a similar spirit asking the question
whether exposing the traversal of software data structures to
hardware would help improve energy efficiency? We propose
SQRL, an accelerator that integrates with the last-level-cache
(LLC) and enables energy-efficient iterative computation on data
structures (see Figure 1). Inspired by the decoupled access-
execute paradigm [21], SQRL partitions iterative computations
on data structures into two regions: the data collection and the
compute kernel. Figure 1 illustrates a straightforward example
of an iterative computation on an array. SQRL employs a data
structure-specific controller (collector) and a set of processing
elements (PEs) near the LLC. The collector traverses the data
structure fetching the elements and staging the corresponding
cache lines in the LLC until the PE consumes them. The PEs
operate on the data objects implicitly supplied by the collector.
The collector provides a more scalable memory interface since it
is aware of the organization of the data structure and the traversal
algorithm.

Overall, SQRL eliminates the instructions required for the data
structure accesses (bold instructions in Figure 1), eliminates data
transfers through the cache hierarchy (broken lines in Figure 1),
and runs the compute kernel on the lightweight PE. Since the
collector is aware of the data structure and the objects required
in each iteration, it runs ahead (limited by only the LLC size) to
hide the memory latency and make effective use of the available
DRAM bandwidth. SQRL lets the application manage complex
tasks such as allocation, synchronization and insertion while
providing accelerator support for iterative code regions which
tend to be energy-inefficient.

We evaluate SQRL using a variety of algorithms spanning text
processing, machine learning and data analysis. In this paper,
SQRL accelerates three types of data structures: dynamic array
(Vector), Hash Table and a BTree. Overall, SQRL increases mem-
ory level parallelism thereby, on average, improving performance
by 39×, reducing core energy consumption by 27× and reduc-
ing cache hierarchy energy consumption by 98×. In summary,
SQRL provides architectural support to exploit memory-level
parallelism by exposing the abstractions available at the program-
ming language level (i.e., data structures) to hardware, and uses
system support to execute hot general-purpose compute kernels
on a compute accelerator.
Key Features of SQRL
• SQRL includes a data-structure specific controller,collector,

which exploits parallelism in the data structures to fetch data
for compute kernels. SQRL is related in spirit to hardware TLB
walkers [4]. However, TLB-walkers only perform lookups.
• SQRL seeks to exploit semantic information about data struc-

tures and is related to prior work on prefetching [18]. However,
unlike prefetchers, SQRL ensures data is resident in the LLC
until the compute finishes processing the element.
• SQRL implicitly supplies the data to the computation and

eliminates the data structure access instructions. Specialized
co-processor approaches [3,10,22] and kilo- instruction pro-
cessors [20] alike can use SQRL to increase the memory level
parallelism in an energy-efficient manner.

• SQRL targets supporting specific software data structures but
supports general-purpose compute kernels. Although related
to recent work on hardware accelerators for entire datacentric
algorithms [7, 23], SQRL does not include custom on-chip
storage. Instead, SQRL uses the LLC for storing the data
elements and uses an accelerator-aware line locking to support
scratchpad-like fixed-latency accesses.

2 Background and Motivation

spot[]

+
#spot

Ld

compute_D2()
Prices()

prices[]
+

#price

St

Time[]

+
#Time

Ld

….

Store
Load

Com
pute

compute_D1()

rate[]

+
#rate

LdLd
…. spot[] : Array base

       address 
   #spot :  sizeof(spot)

Execution on general-purpose processor

Params: Spot[], strike[], rate[], volatility[], time[], type[] 
               are vectors of length nOptions. 
compute_d1(),compute_d2() are re-entrant. Loop is data parallel.
for i:= 0 to nOptions do
    d1 = compute_d1(volatility[i],time[i],spot[i],strike[i],rate[i]);
    d2 = compute_d2(volatility[i],time[i]);
    prices[i] = CNF(d1)*spot[i]-CNF(d2)*strike[i] *exp(-rate[i]*time[i])
end for

Figure 2: Blackscholes [5] Kernel.

Figure 2 illustrates the compute kernel from Blacksc-
holes. We use this as an illustrative example to discuss
the overheads associated with storing and retrieving data
elements held in software data structures.The program
kernel reads in a list of “options” data stored across
6 array of structs implemented using C++ STL vectors
(spot[],strike[],rate[],volatility[],time[],
and type[]) and calculates the pricing (prices[]). Fig-
ure 2 shows the execution on a typical general-purpose processor,
where the kernel is organized into load-compute-store slices.
Every iteration requires 6 add and 6 load instructions for
generating the load slice and 1 add and 1 store instruction.
Note that even a simple stride 0 iteration over these vectors
requires many CPU instructions that increase instruction window
pressure. In addition, for architectures with limited registers
(e.g., x86) many stack operations are introduced to preserve
the address of the vectors (these overheads are not shown
above). Resource limitations such as load/store queue entries
and MSHRs further limit the parallelism that can be exploited.
Increasing the hardware resources for the low-level memory
interface in a power-efficient manner is a significant challenge.
For example, the Penryn processor core expends 30% of core
dynamic power in the data supply from the L1 cache. Scaling
the MSHR and load/store queues by 2× would increase power
consumption of the processor core by 15% while achieving
only 2–4% improvement in performance. Mining the MLP
from programs require significant increase in overall instruction
window. Finally, the inefficiency of general-purpose processors

2



is more acute with other data structures such as key-value based
hash tables, and pointer-based trees/graphs.

Table 1: Data structure usage in Datacentric Applications

Benchmark % Time % DS Ins. % INT % BR % MEM
Blackscholes 99.7 9 13.3 13.5 26.6
Recomm. 44.6 65.9 26.9 6.4 51.9
Datacubing 34.1 14.3 32.8 12.3 54.7
Text Search 64.7 30.9 32.6 14.1 53.1
Hash Table 25.9 34.7 34.1 17.0 48.7
BTree 100 63.7 32.7 15.7 51.5

The potential for data structure acceleration in our benchmarks
is quantified in Table 1. The % execution time and the break-
down of instructions in the benchmarks are analyzed. Overall
in our application suite, between 25—100% of the time is spent
in operations iterating over the data structure. The number of
instructions spent on data structures can be significant as well;
for instance in the Recommender benchmark, 66% of the dy-
namic instructions are related to data structure operations and
contribute to the dynamic power consumption. In data struc-
tures such as HashTable and BTree, the traversal’s control flow
is determined by the value of the data element and involves
many branches (15.7%-17% of total instructions). Although, the
condition checks are simple arithmetic checks (<,=,>), conven-
tional processors require dynamic instructions to evaluate the
condition itself. Recent research results [15] have demonstrated
that such checks can constitute upto 2× performance overhead.
Interestingly, the computation kernels themselves possess loop-
parallelism and can reap performance gains from exposing the
memory level parallelism in the data structure. Finally, compute
kernels in different applications may exhibit significant diversity
in the instruction breakdown and latencies per iteration, even
when accessing the same type of data structure (e.g, vector). This
indicates a need for flexibility when fetching the data structure;
for instance when computational kernel latencies are long, the
data fetch can be throttled to save memory bandwidth.

Summary
• Programs spend significant time performing iterative computa-

tions on data structures. Overall efficiency can be improved
by removal of data structure “access” instructions.
• While data structures possess implicit parallelism, general-

purpose processors need a significant increase in power-hungry
resources (e.g., instruction window, load/store queue) to mine
this parallelism. Scalable approaches to extract memory level
parallelism need to be explored.
• The hardware memory interface needs to provide abstractions

to exploit information about data structures. Moreover, a flex-
ible interface is required as the compute kernels within the
applications vary.

3 SQRL: Collecting data structures
Efficient iterative computation on data structures inherently

requires the compute kernels to be collocated with the data stor-
age. SQRL is a step in that direction, and targets energy-efficient
acceleration of iterative computation on data structures. A key
design question is where in the memory hierarchy should we

locate SQRL? The compute kernel software functions from var-
ious applications have varied data processing latency making
it hard to manage scratchpad buffers. Therefore, we choose to
integrate SQRL with the last-level-cache (LLC). SQRL leverages
the last-level cache (LLC) to stage the data fetched by streaming
ahead of the compute kernel. The large LLC enables SQRL to
achieve high memory level parallelism. Moving the computation
closer to the LLC eliminates power hungry data transfers through
the on-chip caches. Finally, the LLC also enables us to efficiently
communicate results between the accelerator and the CPU.
3.1 Overview

Figure 3 shows the overall architecture of SQRL. SQRL con-
sists of three major components: i) the collector is a data-
structure specific cache refill engine . It includes a few configura-
tion registers to specify the data structures needed for each itera-
tion in the computation. ii) the object cache (OBJ-$) holds the
data elements needed by a tile of the compute iteration. and iii)
the processing array (PE) which consists of a set of lightweight
execution lanes running the unrolled compute kernel. The PEs
have no address generation logic and operate on the data residing
in the OBJ-$; the OBJ-$ is auto-filled by the collector to drive the
computation. Since the PE and the collector run asynchronously
they each maintain a cursor. The PE’s cursor indicates the loop
iteration being executed while the collector’s cursor indicates the
index of the elements being fetched.

We illustrate SQRL’s operation based on the Blackscholes
example from Figure 2. The software (programmer or compiler)
marks the iterative computation in the application and indicates
the load slice and store slice. The load slice (and store slice)
information include information on the type of data structures
(arrays in this case), base addresses of the arrays and the object
indices needed within an iteration. In Blackscholes, the load slice
consists of the following vectors, spot[],strike[],rate[],volatility[],
time[] and type[] and the store slice consists of price[]. The
compute kernel in Blackscholes employs a unit stride array, and
the ith iteration reads the ith element from these arrays. The
markers are used to initialize SQRL’s hardware components as
shown in Figure 4.

The overall computation proceeds in wavefronts which is a by-
product of both loop tiling (to ensure that data fits in the OBJ-$)
and loop unrolling (to exploit all the available PEs (8 in SQRL)).
Each PE executes a single iteration of the compute kernel; the
loop is unrolled by the number of PEs. A wavefront is initiated by
the collector which pushes data into the OBJ-$ ( y1) to commence
execution ( y2). Each iteration in Blackscholes (Figure 4) reads
5 vector elements of type float (spot[],strike[],rate[],volatility[],
and time[]) and one vector of type char (type[]) and writes price[]
which is of type float. Overall, each iteration requires space for
4×5 (floats) + 1 (char) + 4 (float) = 25 bytes. Given a 1 KB OBJ-
$ it can hold data for 40 iterations of the Blackscholes kernel
(a loop tile) which proceeds in waves of 8 iterations (the unroll
parameter). The collector runs asynchronously ( y3), fetches the
cache lines corresponding to the data structure objects from each
of the vectors into the LLC. The collector maintains its own cur-
sor that runs independent of the compute kernel. This enables the
collector to continue fetching even after a PE stall due to possible

3



resource constraints. The primary resource constraints for collec-
tor are the LLC cache size and available memory bandwidth. Iny4 the collector locks down each of the lines as they are fetched
into the LLC to prevent them from being evicted and guarantees
the PE fixed-latency accesses.

In y5 when the PE completes a loop iteration it checks the
cursor and decrements the Ref.# field. When the Ref.# counter
reaches 0, the cache line is unlocked and can be replaced. If the
collector stalls due to the LLC filling up with locked lines, the
PE releases lines as it completes the iterations which implicitly
restarts the collector. Finally, to ensure deadlock-free progress
for the CPU cores we ensure that at least one way per LLC set
remains unlocked.

3.2 SQRL vs. Existing approaches
We qualitatively compare SQRL against OOO (Out-of- Order)

cores, Multicores, decoupled access-execute architectures [21],
and hardware prefetching. Decoupled architectures use compiler
support to separate memory accesses from the rest of the execu-
tion into a separate thread strand to run ahead to fetch the data
structure. The memory strand executes on a separate pipeline and
communication with the compute strand includes the data values
and branch decisions [21]. While software prefetching has the
potential to improve memory level parallelism for certain classes
of applications in which data access patterns can be statically
determined, it still requires power-hungry instruction window
and front-end resources similar to an out-of-order processor, and
so we do not discuss software prefetching separately below.

We use five design features in our comparison. i) Memory

level parallelism: SQRL’s memory level parallelism is limited
by the parallelism available in the data structure (i.e., linked-list
vs array), the number of MSHRs at the LLC, and the size of
the LLC. Multicores and decoupled architectures are scalable,
but require many pipelines and power-hungry register files to
support the active threads. OOO cores need a significant in-
crease in the overall instruction window size to exploit MLP
and hardware prefetching may require large history tables. ii)
Data-structure instructions: SQRL completely eliminates data
structure instructions. All other approaches need to execute data
structure instructions and expend energy in the processor front-
end and load/store interface. iii) Fixed-latency Loads: SQRL
does not invoke the compute kernel in an iteration until the requi-
site data is in the LLC and enables low-complexity pipelines that
can assume fixed latency for all instructions. Decoupled archi-
tectures include similar efficiency by isolating non-deterministic
latency cache-misses in the access pipeline. OOO Processor
pipelines need to include significant complexity (e.g., pipeline in-
terlocks) to deal with non-deterministic latencies that arise from
cache misses. The major concern with prefetching is timeliness
of data fetch which introduces non-determinism. iv) Big data-
structures: SQRL uses the LLC to hold data fetched ahead of
their usage. Conventional OOO and multicore are unable to are
unable to discover the parallelism inherent in large data struc-
tures due to limitations in the instruction window and number
of thread strands. v) Value-dependent traversal: There exists
many data structures (e.g., binary search tree), where the traversal
of the data structure is control dependent on the data element

PE
Array

In
st

ru
ct

io
n

M
em

. (
1K

B)

Re
g.

(3
2)

Re
g.

(3
2)

......

Obj-$ 
Cache

LD/ST Key

Key Data 
RAM
(1KB) 

Key
Key
Key

Refill COLLE
CTOR

Type Addr #size
Data struct. descriptor

ST
 

LD
slice slice  

#
count

Section 3.2
Section 3.3

Section 3.4

Last-Level
C

ache

PE
Cursor

Store Slice

COL.
Cursor

la
ne

 1
la

ne
 8

Figure 3: SQRL Architecture Overview

DR
AM

D1()

D2()

price()
i = 0

D1()

D2()

i = 8

PEs Obj. Cache
spot[0…39]

type[0…39]

Ref.# Data

Last-Level Cache

Mem.
Req.3

4

Collector1
Refill

1

Start2begin blackscholes
     // Initialize collectors
     c_spot = new coll(LD,&spot,FP,#length,0,VEC)

    
     // Run collectors in step.
     group.add (c_spot…c_time); 
    
    // Unroll to # of PEs. Tile based on Obj.$ size.
   start(kernel(),#iterations)
end

...
     c_time = new coll (LD,&time,FP,#length,0,VEC) 5 End

#R
ef

--

price()

...

#R
ef

++

3

co
m

pu
te

 lo
op

for Tile

price[0…39]

...

Blackscholes Execution. Left: Blackscholes kernel modified to work with SQRL. y1 Loop tile refill from LLC triggered every 40 iterations as OBJ-$ can hold 40
iterations worth of data. y2 Execution proceeds in tiles. In Blackscholes a tile of 40 iterations executed on the PE as 8 unrolled iterations at a time. y3 Memory

request issued by collector to fetch the cache blocks corresponding to the data structure. LLC refills from memory. y4 collector locks line by setting Ref.# to number
of elements needed in the iteration. y5 When the compute iteration completes, the PE decrements the reference count to release the cache lines.

Figure 4: Blackscholes Execution on SQRL.

4



value. OOO, Multicore, and Decoupled Architectures require
instructions to evaluate the value- dependent condition. Recent
research [15] has shown that evaluating such branch conditions
expend significant energy in many applications. SQRL exploits
data-structure knowledge to evaluate the conditional checks in
hardware and integrates it with the data accesses to fully exploit
the parallelism inherent in the data structure.

4 Evaluation

Table 2: System parameters

Cores up to 8 cores. 2.0 GHz, 4-way OOO, 96 entry ROB, 6
ALU, 2 FPU,
INT RF (64 entries), FP RF (64 entries)
32 entry load queue, 32 entry store queue

L1 64K 4-way D-Cache, 3 cycles, 32K I-Cache4

LLC 4M shared 16 way, 4 Banks, 20 cycles Directory-based
MESI

Main Memory 4ch,open-page, DDR2-400, 16GB
32 entry cmd queue,

Energy Params L1 (100pJ Hit). LLC (230pJ hit) [12]
L1-LLC link (6.8pJ/byte [2,14]), LLC-DRAM (62.5 pJ
per byte [9])

SQRL Components
8 PEs, 2.0 Ghz, 4 stages in-order. 1 FPU and 1 ALU (per
PE) Instruction buffer (1KB, 256 entries)
Obj-$ (1KB fully-assoc. sector cache, 32 tags). 1cycle
INT RF: 32 entries, FP RF: 32 entries

The out-of-order core is modeled using Macsim [1], the cache
controllers and on-chip memory hierarchy using Ruby from
GEMS [13] and main memory using DRAMsim2 [17]. The
host system is based on the Intel Penryn (45nm) architecture.
McPAT [11] is used to derive the energy consumption.

4.1 SQRL vs. OOO Core Performance
Result: SQRL improves performance on average by 39×

compared to a general purpose processor. Maximum speedup
(BTree): 121×. Minimum speedup (Recommender): 13×. SQRL
utilizes available memory bandwidth to prefetch and reduce aver-
age memory access latency which further improves performance
over parallel execution on the PEs.

The speedup obtained for different applications is dependent
on the limiting hardware resource on the OOO processor. With
an application such as DataCubing, the kernel code is small (only
16 static instructions) and the 59× performance improvement
obtained is the result of removing the data structure instructions.
In contrast, Blackscholes includes a complex kernel with many
long latency floating point instructions and the OOO processor
is hindered by these instructions filling up the ROB before the
independent memory instructions can be discovered. We observe
that even with a 256-entry instruction window the OOO processor
sustains at most 7 concurrent cache misses. SQRL improves
performance by decoupling the data structure accesses from the
compute kernel enabling it to slip far ahead.

In BTree and HashTable, accessing the data structures consti-
tute the core of the application. The PEs do not perform any work
and these applications serve to highlight the overheads of the
collector hardware and its ability to discover the implicit MLP in
the data structure. With an application such as BTree although

0

10

20

30

40

D
.C

u
b
e

B
la

ck
.

B
T

re
e

H
as

h
.

T
ex

t.

R
ec

o
.

A
p
p

li
ca

ti
o

n
 S

p
ee

d
u

p
 

5
9

.3
 

1
2

0
.9

 

8
3

.6
 

Figure 5: Execution Time (SQRL vs OOO). Y-axis: Times reduc-
tion in execution cycles with SQRL. Higher is better.

traversing between tree-levels is sequential there does exist im-
plicit parallelism when searching for the range within the internal
node. The OOO processor encounters performance overhead due
to the serialized pointer dereferencing instructions and inability
to mine the MLP across pointer dereferences. SQRL improves
performance by fetching in parallel the data elements for the
range search and eliminating the pointer dereference instructions.
With HashTable, the performance improvements are primarily
due to eliminating the data movement from the on-chip hierarchy
and eliminating the search function from the OOO core.

In TextSearch and Recommender we observe only 16× and
13× reduction in cycles, respectively. In TextSearch, unlike
the HashTable, the search kernel runs on the PE; both the
ExactMatch and HammingDist functions require many in-
structions and the fraction of instructions wasted on data struc-
tures is small. Nevertheless, SQRL improves performance by
discovering the MLP. In the case of Recommender the kernel
processes a sparse matrix and the kernel execution is predicated
on the value of each element in the matrix. The lack of sup-
port in SQRL for conditional execution of a kernel limits the
performance improvement. On the OOO processor, the kernel
is executed only by '2% of the loop iterations i.e., 98% of the
loop iterations evaluate the condition and short-circuit the kernel.
With SQRL an execution lane that does not execute the kernel
has to simply idle and wait for other PEs executing the kernel.
PE utilization can be improved by dynamically scheduling other
iterations on the idle PEs, but this requires additional logic to
manage the loop cursor.

For a system, with multiple OOO cores we can improve the
performance of the benchmarks by partitioning the work and
spawning individual threads on each core. However, though there
is an increase in performance, the overall power consumption
will increase due added complexity. We use parallel (8 thread)
version of Blackscholes and Recommender to illustrate our case;
each core in the multicore is the same as our baseline OOO. At
8 threads, Blackscholes demonstrated a 7.3× improvement in
performance, however energy consumption increases by 42%.
SQRL improves performance by 4.3× over even the 8 thread
version by extracting more MLP, while reducing energy by 29×.
With Recommender the parallel version demonstrates near linear
speedup (8×) with a 24% increase in energy consumption. SQRL
improves performance by 60% over the multicore while reducing

5



energy by 18×.
4.2 Energy Reduction: SQRL vs OOO
Result 1: SQRL is able to reduce overall energy in the PEs
relative to the OOO core by 27×.
Result 2: SQRL’s shallow memory hierarchy helps reduce on-
chip cache access energy by 98×.

Core vs. PEs: Figure6 shows the reduction in dynamic energy
when executing the kernels on the lightweight PE. Compared to
the OOO, SQRL saves energy by eliminating data structure in-
structions. SQRL’s PE also uses a simple pipeline which requires
minimal energy for instruction fetch (1KB instruction buffer vs
I-cache on OOO) and does not include any of the complex load/s-
tore interfaces. BTree and HashTable are not included in Figure6
as they do not include any work in the compute kernel and sim-
ply traverse the data structure. On DataCubing we see a 109×
reduction in energy as the data structure instructions (completely
eliminated in SQRL) constitute a major part of all the instructions
on the OOO version of the program. With Blackscholes and
TextSearch which have compute intensive kernels, the primary
energy reduction is due to the simpler PE pipeline compared
to the OOO. The main benefit of SQRL is being able to extract
the MLP to improve performance without requiring the PE to
sacrifice its energy efficiency. A 13× reduction is observed for
Recommender which is primarily due to un-availability of option
such as power-gating when the execution lane in the PE idles,
even if the kernel does not need to be executed.

0

5

10

15

20

25

D
.C

u
b
e

B
la

ck
.

T
ex

t.

R
ec

o
. E

n
er

g
y

 R
ed

u
ct

io
n

 

1
0

9
 

Figure 6: Dynamic energy reduction (Unit: × Times) in PEs vs.
OOO core. BTree and HashTable only use the collector to tra-
verse the data structure and do not use the PE. Higher is better.

5 Summary
While modern applications tend to have diverse compute ker-

nels, they tend to use a set of common data structures. We have
focused on exploiting data structure information to provide com-
pute accelerators [22,3,10] and kilo-instruction processors [20]
with energy-efficient interfaces to the memory hierarchy. We
developed SQRL, a hardware accelerator that integrates with
the LLC and supports energy efficient iterations on software
data structures. SQRL includes cache refill engines that are cus-
tomized for specific software data structures. This increases
the memory level parallelism, effectively hides memory latency,
eliminates energy hungry data structure instructions from the

processor core, and energy-hungry transfers over the memory
hierarchy

References
[1] Macsim : Simulator for heterogeneous architecture -

https://code.google.com/p/macsim/.
[2] D. Albonesi, K. A, and S. V. NSF workshop on emerging technologies for

interconnects(WETI), 2012.
[3] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju, T. Nowatzki,

and K. Sankaralingam. Design, integration and implementation of the
DySER hardware accelerator into OpenSPARC. High Performance Com-
puter Architecture (HPCA), 2012 IEEE 18th International Symposium on,
pages 1–12, 2012.

[4] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne. Accelerating two-
dimensional page walks for virtualized systems. In PROC of the 13th
ASPLOS, 2008.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite:
characterization and architectural implications. In PROC of the 17th PACT,
2008.

[6] L. Carrington, M. M. Tikir, C. Olschanowsky, M. Laurenzano, J. Peraza,
A. Snavely, and S. Poole. An idiom-finding tool for increasing productivity
of accelerators. In ICS ’11: Proceedings of the international conference on
Supercomputing. ACM Request Permissions, May 2011.

[7] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung, P. Ranganathan, and
M. Margala. An FPGA memcached appliance, 2013.

[8] E. S. Chung, J. D. Davis, and J. Lee. LINQits: big data on little clients. In
PROC of the 40th ISCA, 2013.

[9] B. Dally. Power, programmability, and granularity: The challenges of
exascale computing. In Parallel Distributed Processing Symposium (IPDPS),
2011 IEEE International, pages 878–878, 2011.

[10] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August. Bundled execution
of recurring traces for energy-efficient general purpose processing. In
MICRO-44 ’11: Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM Request Permissions, Dec. 2011.

[11] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi. McPAT: an integrated power, area, and timing modeling framework
for multicore and manycore architectures. In PROC of the 42nd MICRO,
2009.

[12] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi. CACTI-
P: Architecture-level modeling for SRAM-based structures with advanced
leakage reduction techniques, 2011.

[13] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s gen-
eral execution-driven multiprocessor simulator (gems) toolset. SIGARCH
Comput. Archit. News, 33(4):92–99, Nov. 2005.

[14] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing NUCA
Organizations and Wiring Alternatives for Large Caches with CACTI 6.0.
In PROC of the 40th MICRO, 2007.

[15] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig,
V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel, R. Allmon, R. Rayess, S. Maresh,
and J. Emer. Triggered instructions: a control paradigm for spatially-
programmed architectures. In PROC of the 40th ISCA, pages 1–12, Apr.
2013.

[16] P. Ranganathan. From Micro-processors to Nanostores: Rethinking Data-
Centric Systems. Computer, 44(January):39–48, 2011.

[17] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A cycle accurate
memory system simulator. Computer Architecture Letters, 10(1):16 –19,
jan.-june 2011.

[18] A. Roth and G. S. Sohi. Effective jump-pointer prefetching for linked data
structures. In PROC of the 26th ISCA, 1999.

[19] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan, S. Drolia, M. S.
Govindan, P. Gratz, D. Gulati, H. Hanson, C. Kim, H. Liu, N. Ranganathan,
S. Sethumadhavan, S. Sharif, P. Shivakumar, S. W. Keckler, and D. Burger.
Distributed Microarchitectural Protocols in the TRIPS Prototype Processor.
In PROC of the 39th MICRO, 2006.

[20] S. Sethumadhavan, R. McDonald, D. Burger, S. S. W. Keckler, and R. De-
sikan. Design and Implementation of the TRIPS Primary Memory System.
In Computer Design, 2006. ICCD 2006. International Conference on, pages
470–476, 2006.

[21] J. E. Smith. Decoupled access/execute computer architectures. In 25 years
of the international symposia on computer architecture (selected papers),
1998.

[22] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor. Conservation cores: reducing the
energy of mature computations. In PROC of the 15th ASPLOS, 2010.

[23] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross. Navigating Big Data with
High-Throughput, Energy-Efficient Data Partitioning .

[24] L. Wu, M. Kim, and S. Edwards. Cache Impacts of Datatype Acceleration.
IEEE Computer Architecture Letters, 11(1):21–24, Apr. 2012.

6


	Introduction
	Background and Motivation
	SQRL: Collecting data structures
	Overview
	SQRL vs. Existing approaches

	Evaluation
	SQRL vs. OOO Core Performance
	Energy Reduction: SQRL vs OOO

	Summary

