
XSD: Accelerating MapReduce
by Harnessing the GPU inside an SSD

Benjamin Y. Cho, Won Seob Jeong, Doohwan Oh, and Won Woo Ro
School of Electrical and Electronic Engineering

Yonsei University
Seoul 120-749, Republic of Korea

{youngjcho, ws.jeong, ohdooh, wro}@yonsei.ac.kr

Abstract—Considerable research has been conducted recently
on near-data processing techniques as real-world tasks increas-
ingly involve large-scale and high-dimensional data sets. The ad-
vent of solid-state drives (SSDs) has spurred further research be-
cause of their processing capability and high internal bandwidth.
However, the data processing capability of conventional SSD sys-
tems have not been impressive. In particular, they lack the parallel
processing abilities that are crucial for data-centric workloads
and that are needed to exploit the high internal bandwidth of the
SSD. To overcome these shortcomings, we propose a new SSD
architecture that integrates a graphics processing unit (GPU).
We provide API sets based on the MapReduce framework that
allow users to express parallelism in their application, and that
exploit the parallelism provided by the embedded GPU. For better
performance and utilization, we present optimization strategies
to overcome challenges inherent in the SSD architecture. A
performance model is also developed that provides an analytical
way to tune the SSD design. Our experimental results show that
the proposed XSD is approximately 25 times faster compared to
an SSD model incorporating a high-performance embedded CPU
and up to 4 times faster than a model incorporating a discrete
GPU.

I. INTRODUCTION

The idea of active disks [1], [2] has been around for several
years. By providing processing capability to storage devices,
database machines were able to exploit concurrency, and get
around the limitations of storage bandwidth in order to improve
overall system performance. Despite these benefits, the active
disk concept was not adopted widely by the industry because
the marginal performance improvement could not justify the
associated cost. Recently, however, the active device concept
has attracted renewed attention with the emergence of flash-
based solid-state drives (SSD).

There are two reasons for this renewed attention to this
concept. First, the internal bandwidth of SSD is considerably
higher–approximately 2-4x–compared to the bandwidth of a
typical host interface. Moreover, it is projected that this gap
is likely to widen to more than 10x [3]. Second, the SSD
inherently has a computing substrate to support the functions
of the flash translation layer (FTL). It is easy to enhance the
processing capabilities by just replacing the components of the
existing system to more powerful ones.

Several software frameworks [3]–[5] have been developed
to leverage the computing power of an SSD. In general, these
frameworks are designed for easy-to-parallelize data-centric
applications and provide programming interfaces to exploit
parallelism in a clustered SSD environment. Some of the
frameworks are built around the MapReduce [6] programming
model.

The MapReduce programming model has become quite
popular since it was introduced by Google researchers in 2004.

The primary reason for this success is the fact that the model
makes it easy for programmers to write parallel codes as long
as the applications can be expressed in the two primitives,
map and reduce. Once the program is written in this model,
the exploitation of parallelism is automatically done by the
MapReduce system and porting the program to a variety of
parallel platforms becomes easy.

A study of various SSD frameworks reveals that the perfor-
mance of tasks running in a conventional SSD is restricted not
by inadequate parallelism, but rather by the low computing
capabilities of the platform. Thus, even though the multiple
inputs are ready to be consumed concurrently, the computing
system cannot handle these inputs in a timely manner. In
particular, when the workload requires several computations
per unit data, the performance is limited by the data processing
rate of the embedded CPU typically provided in these systems.
Moreover, even when the number of computations per unit data
is low, the performance is limited by frequent DRAM accesses
that are slowed by the low bandwidth. Thus it is important to
supplement the computing power of the embedded CPU in an
SSD in order to utilize the SSD in a general-purpose computing
environment.

An obvious way to improve the computational capability
is to add high-speed embedded CPUs. However, this cannot
effectively speed up the data-centric workloads that are typical
of in-storage processing. These workloads inherently have high
parallelism but few computations per data. Therefore, it is
better to add many low-speed cores rather than a few high-
performance cores.

Towards this end we propose in this paper the acceleration
of MapReduce in an SSD environment through the use of an
embedded GPU. The GPU is gaining importance for general-
purpose usage beyond its graphic processing roots [7], [8],
and we expect that implementation of the MapReduce pro-
gramming model in a GPU will be attractive to programmers
both because of its good programmability as well as its easy
exploitation of a high degree of parallelism.

We introduce a concept we call XSD, pronounced as
“Access-D”, and standing for Accelerator SSD. XSD is a new
SSD architecture that basically embeds a GPU in the SSD.
We also describe hardware and software support to accelerate
the MapReduce-based framework. We also present an analytic
model to detect and overcome performance bottlenecks.

Our evaluation shows that introducing a GPU in an SSD
improves performance 24.6 times more than a high-speed
CPU. Furthermore, the XSD with an embedded GPU is up
to 4 times faster than a discrete off-the-shelf GPU for data-
intensive workloads. For workloads that have relatively large
computational intensity, adding an L2 cache helps in reducing
the effective DRAM latency which dominates the overall



performance.

The rest of this paper is organized as follows: Section II
presents prior work on in-SSD processing and on MapReduce
frameworks for GPUs. Section III describes software support
for programmers and hardware solutions to overcome architec-
tural challenges. In Section IV we provide results of evaluation
of our XSD architecture and in Section V we provide some
concluding remarks.

II. RELATED WORK

A. In-SSD Processing

The embedded CPU in a typical SSD is used typically to
execute the flash translation layer (FTL) logic which translates
Logical Block Addresses (LBA) into Physical Block Addresses
(PBA). However, there has been considerable prior research on
techniques to exploit the computing capability of the embedded
CPU in the SSD for general-purpose computations.

Cho et al. [4] developed an intelligent SSD (iSSD) that
exploits the heterogeneous processing resources inside an
SSD. Since current SSDs have insufficient computing power
compared to data bandwidth, they propose using the power
of the stream processors inside the flash memory controllers
(FMCs) to increase the data processing rate. This is particularly
suited to the SSD architecture since the computing power
scales directly with the number of flash channels. However,
the responsibility for managing the limited resources inside
the stream processor is completely on the programmer. When
the workloads are complex it becomes difficult to program
the stream processor with the given resources.Thus the pro-
grammability of this solution is limited.

Do et al. [3] ported query processing components into a
Smart SSD system. To give more flexibility to programmers,
they provided APIs to manage commands from the host,
threads for query operation, memory inside the SSD, and data
in the DRAM. However, performance improvement was lim-
ited by low-performance embedded CPUs. The performance
gain was large when the number of computation queries per
page was low, but rather small when the number of queries
was high. Thus more computing power is required in the SSD
to support more complex operations.

Kang et al. [5] introduced a Smart SSD model in which
a high-performance host CPU and near-data processing SSD
cooperate to compensate for their shortcomings. The host
performs overall coordination and offloads the data-oriented
tasks to the Smart SSD device. However, the device suffers
from low performance for tasks that frequently access the
DRAM. This is because the DRAM inside the SSD is not
designed to be utilized effectively by the embedded CPU.
Therefore, a Smart SSD performs only the task of filtering data
before handing over to the host CPU to perform the remaining
tasks that access DRAM frequently.

B. MapReduce on GPU

MapReduce is a popular framework that allows program-
mers to write parallel programs easily. There have been several
implementations of the MapReduce framework to exploit the
parallelism inherent in GPU platforms.

Mars [9] provides several techniques to overcome chal-
lenges that hinder the porting of MapReduce on the GPU.
Mars adds two user-implemented APIs, MAP COUNT() and
REDUCE COUNT(), and executes each function prior to map
and reduce, respectively. Thus, the framework can statically
prepare memory space for variable-length key/value pairs.

Moreover, since the output array locations that are assigned
to each thread are deterministic and are free of overlap,
multiple threads can write the outputs without synchronization.
Furthermore, Mars utilizes coalesced accesses to improve the
memory bandwidth and sorting is used for grouping interme-
diate key/value pairs since hashing is a difficult algorithm to
implement in a GPU. However, Mars suffers from performance
degradation because of the long grouping phase that is at-
tributed to the execution time of the two additional functions
and inefficient sorting.

MapCG [10] provides code-level portability between the
CPU and the GPU. To achieve its primary goals, good porta-
bility, and ease of use, the framework allows programmers
to write a single compatible code that can run on both the
CPU and the GPU. Further, a lightweight memory allocation
scheme is proposed, which prevents the additional counting
overhead. As dynamic memory allocation is available, a hash
table is implemented to improve the performance of the
grouping phase. However, even though MapCG is profitable
for workloads whose data fit into the GPU memory, it is not
clear whether it will show the same performance improvement
with big data in very large server systems. In this case, the
data bandwidth between the storage and the memory is another
issue that should be considered.

III. ACCELERATOR SSD (XSD)

A. Software Supports

There are two main design goals of our software frame-
work. The first is the provision of a simple but sufficient
programming interface to users, and the second is the develop-
ment of a powerful runtime system that can exploit abundant
parallelism and a large data bandwidth. Table I shows the list

User-implemented APIs
void XSD Map(key*, value*)

void XSD Reduce(key*, value*)
void XSD Prepare(config*)
void XSD Hash(key, value)

System-provided APIs
void XSD StoreKeyVal(key, value)

TABLE I: XSD APIs

of APIs representing user-implemented and system-provided
functions. Users implement XSD Map() and XSD Reduce()
functions as in normal MapReduce frameworks, such as
in Hadoop [11]. Further, users can define a hash function,
XSD Hash(), to group a key/value pair when the local and
global merge operations are executed. By programming the
XSD Prepare() function, users can change configuration pa-
rameters of the framework, such as the input data set and the
input format. XSD StoreKeyValue() is a system-provided API,
which should be called inside XSD Map() or XSD Reduce().
It is called when the map and reduce function generates the
output key/value pairs.

1) Host-Device Communication: The proposed framework
is based on communication between the host CPU and the XSD
devices. Figure 1 represents the communication protocols in
the XSD system. The protocol is implemented as a runtime
library for the host CPU and as device firmware for SSD
devices. When inputs are ready before the communication
begins, the host CPU asks the SSD CPU whether it is ready.
The ask signal contains the information about program size,
and the SSD CPU returns an acknowledge signal when it



Fig. 1: Communication flow between host and device

finishes assigning memory space for the program. Then, the
host CPU sends the page addresses of the inputs and the
program codes to the device. The SSD CPU receives the data
and returns the device ID to the host as a success signal. When
the data and the inputs are ready, the host CPU sends a run
signal with the device ID. Controlled by the SSD CPU, SSD
GPU executes the MapReduce functions until all processes
end. Finally, a finish signal is sent back to the host with
addresses of the output pages and the host terminates the
communication.

2) Runtime System: To execute computation-intensive
workloads with large-volume inputs, it is important to prepare
inputs and configure the system appropriately. The runtime
system aims to maximize the utilization of the given resources,
such as the computing power and the data bandwidth. Initially,
when our framework is issued, the runtime system invokes the
user-defined XSD Prepare() function. To utilize all bandwidths
and acceleration resources in the SSDs, the preparation is
conducted with inter- and intra-SSD redistribution. According
to the input size and the distributed patterns, the runtime
system determines whether to redistribute the data across the
SSDs or not. If the redistribution is issued, the host CPU
transfers data from one SSD to another in the most effective
manner, which is the inter-SSD redistribution. During this
step, intra-SSD distribution is also carried out by the device
firmware. It stores the data evenly across flash channels so that
the full aggregate bandwidth can be exploited.

The runtime system also manages the control flow of
MapReduce. Instead of executing the map and reduce functions
step-by-step for all the inputs, XSD Reduce() is invoked
after XSD Map() in order to generate a certain number of
intermediate key/value pairs. This is attributed to the hardware
restrictions: small buffer size. If the intermediate data exceeds
the buffer size, it should be stored in the flash memory. To
decrease the flash access and data size, the framework executes
XSD Reduce() for the buffered data. Then, a local merge is
followed by map and reduce that are executed for all the inputs.
It merges and sorts the results with the user-defined hash
function. Since the execution of local merges is distributed
to SSDs, the host CPU can save time for the global merge
that may take a considerable amount of time.

B. Strategies of Hardware Optimization

We present an SSD architecture with an embedded GPU.
A GPU is composed of many SIMD processors that support

Flash Channel 0

Flash Channel 1

Flash Channel n-1 

Fig. 2: XSD architecture

thousands of threads. For data-intensive and easily paralleliz-
able workloads, such as the MapReduce framework, GPUs
and in-storage computation form a good combination that
can improve performance. Our XSD architecture is shown in
Figure 2. An embedded GPU shares a memory with CPUs,
yet it has its own local memory. In this part, we address the
related challenges and provide strategies to overcome them.
Moreover, performance is analyzed by modeling each stage of
the execution process.

1) Streaming: In general, a discrete GPU follows three
steps to process data: the host CPU copies the input data into
the GPU memory, the GPU executes, and the host CPU copies
back the results to the main memory. Since a discrete GPU
has a large memory size, approximately 1 to 6 GB, the input
data size fits in the memory in most cases. However, a GPU
is unlikely to be suitable for manipulating large-scale data.
According to [12], the GPU is idle for 98% of the time when
it processes 500 GB of data. This time wasted is due to waiting
for data to be copied to the GPU memory.

The abovementioned approach can be refined by leveraging
a streaming method, such as CUDA streams [13]. A CUDA
stream is a sequence of operations executed in the issue-order
on the GPU. Each stream undergoes three stages: memory
copy to the GPU, execute, and memory copy from the GPU.
By overlapping memory copies with the GPU execution time,
performance is improved because of the enhanced concurrency.
However, if the data size gets considerably larger than the main
memory, the GPU idle time will increase because of the I/O
access latency of the storage device.

In this context, to combine the GPU with the SSD, we
should consider that the embedded GPU has two differences
compared to a discrete GPU: small DRAM capacity and high
data bandwidth. The DRAM in an SSD is smaller in size than
in a GPU. Further, since the embedded CPU shares the mem-
ory with the GPU, the space that the GPU can use is reduced;
therefore, frequent flash access is required. Fortunately, a high
aggregate flash bandwidth permits transforming the execution
process into data streaming from flash to GPU, and vice versa,
by buffering the data in the DRAM.

Figure 3 illustrates the data transfer paths of streaming
for (a) discrete GPU and (b) embedded GPU. The color of
the arrow represents the relative bandwidth of the inter-node
communications. There are three implications of the figure.
First, if the data volume is so huge that the data do not fit in the
main memory, a discrete GPU is inappropriate for streaming
since it involves many slow connections. Second, irrespective



(a) Stream path of discrete GPU

(b) Stream path of embedded GPU in XSD

Fig. 3: Comparision of the stream path of discrete and embedded
GPUs

of the data bandwidth, an embedded GPU is easy to scale as
the data size increases. On the other hand, the performance
of a discrete GPU does not scale well since the performance
is bound to the external storage bandwidth. Third, the CPU
is free during execution in (b), while the CPU should be kept
running in the case of (a) in order to manage the GPU memory,
which costs energy.

In streaming, the embedded CPUs control the overall
workflow. Embedded CPUs are in charge of managing the
input/output buffers and balancing the speed of the three
stages. When the data are ready to be written in the buffer,
the CPUs allocate a memory space by using memory APIs.
Further, they provide a data format to the GPU, which can only
use a static array as a data format. To resolve the bottleneck
of streaming, the CPUs also regulate the data processing rate
of all stages on the basis of the buffer-filling patterns. The
regulating strategies are detailed in Section III-B3.

2) Synchronization: Since the GPU and the multiple flash
channels share buffers in the DRAM, synchronization is nec-
essary in XSD. If the synchronization operation is based on
a lock scheme, the overhead increases as the number of flash
channels increases due to contention. Therefore, a lock-free
scheme is required to utilize all channels simultaneously.

In an SSD, flash read and write are conducted with page
granularity. If the data size is fixed and the base address is
given, it is possible to calculate the destination address for
all channels. For instance, if the base address of a buffer is
0x1000 and the page size is 0x100, the destination address
of the channels will be 0x1000, 0x1100, 0x1200, and so on.
Thus, it is possible to avoid conflicts without a lock scheme
since there are predetermined locations for the data from each
channel. An embedded CPU should calculate these addresses
and notify DMAs in the flash memory controllers.

Since the GPU does not have hardware support for atomic
operations, embedded CPU support is also required. The CPU

Parameter Description
α probability that input buffer is empty
β probability that input buffer is full
Lfr flash read latency for reading one page
Lfw flash write latency for writing one page
rdram data bandwidth of SSD DRAM
nch number of flash channels in use
bp bytes per page
M GPU parallelism
si average bytes of inputs that GPU accesses

during execution
so average bytes of outputs that GPU gener-

ates during execution
CPB execution cycle per byte

f GPU frequency
binsn number of bytes per instruction
ninsns number of dynamic instructions

TABLE II: Descriptions of XSD parameters

prevents the GPU from reading a page that is being written
to by the flash controller until the write operation finishes.
However, simultaneous read and write are allowed for different
pages.

3) Performance Models: We develop a performance model
by extending the performance model in [4]. Our model in-
cludes data read/write patterns of the flash memory, workload
characteristics, and the impact of the runtime conditions. Table
II lists the parameters that are used in the model and describes
what each parameter stands for.

Data processing in XSD consists of three stages: read
inputs, execute, and write outputs. We assume that the size
of the inputs is extremely large, and calculate performance as
the number of bytes each stage can process per second. Since
the stage with the lowest performance determines the overall
performance in a stream, the minimum value among the three
stages is the final performance. Hence,

Perf = min{Perf∗}. (1)

The performance of the first step in the read-input stage is
modeled as Equation 2. The data size is nchbp since data
granularity in the flash memory read/write is a page and there
are nch channels that can read simultaneously. The latency of
flash read is expressed with the probability term α, because
the latency only applies when the buffer is empty. That is, α
implies the runtime condition of the buffer state. If the buffer
is empty, the flash read latency cannot be hidden by the other
stages.

Perff2d =
nchbp

αLfr +
nchbp
rdram

. (2)

In the second stage, the same instructions are executed with
all the key/value pairs. Therefore, M pairs are read and written
from the DRAM, while only one instruction set is read. The
term CPB, which stands for cycles per byte, represents the
computation intensiveness of the workloads. As a result,

Perfexe =
Msi

texe
, (3)

texe =
Msi + binsnninsn +Mso

rdram
+
CPBsi

f
. (4)

The last stage writes back the data to the flash memory. As
in Equation 5, we add β to reflect the case when the output



buffer is full. If the buffer gets full, the data in the buffer must
be stored back to the flash memory. Therefore,

Perfd2f =
nchbp

βLfw +
nchbp
rdram

. (5)

According to this model, the ideal performance is achieved
when the three stages have equivalent performance. To realize
this goal, we present three control strategies that can balance
each stage either statically or dynamically. The first strategy
is to control the channel number when a flash read/write is
requested simultaneously. If simultaneous flash read/write is
not allowed, either read or write operations must wait until the
other has finished. Therefore, read and write operations should
be arbitrated by allocating appropriate bandwidth to each of
them. To control the bandwidth, the firmware divides the flash
channel into two. Then, it calculates α and β values whenever
read and write commands are issued. If the performance
imbalance is severe between the read and the write stages,
the firmware controls the number of channels to regulate
performance. The reading and writing channels rotate in round-
robin manner to prevent reading and writing to the same
channels repeatedly. Thus, it is possible to achieve balance
between reads and writes.

The second strategy is to control the DRAM bandwidth.
Since every stage shares DRAM, many contentions for DRAM
occur during streaming. The DRAM controller must prioritize
the request from the lowest performance stage over others.
Furthermore, if the performance of the GPU execution stage
is low because of frequent memory access, SSD manufacturers
can consider the addition of a dedicated SRAM or last-level
cache (LLC) to the embedded GPU.

Lastly, SSD manufacturers can estimate a rough specifi-
cation of the embedded GPU by exploiting our performance
model. With the performance model of GPU execution, the
maximum value of M and f in the GPU can be analyzed by
assuming an ideal read-input and write-output performance.
Using such value, the manufacturers can choose the number
of GPU threads (M) and frequency (f ) of the embedded GPU
in the most cost-effective manner possible.

IV. EVALUATION

A. System Configuration

We implement the proposed system on the basis of the
simulator introduced in [14]. The simulator integrates two
state-of-the-art simulators, gem5 [15] and GPGPU-Sim [16],
to simulate the interaction between CPU and GPU in a shared
memory environment, which fits our architecture. We modified
the GPU interface to be controlled by the CPU and added
DMA, SRAM, and a controller in the storage model to simulate
the operation of SSD.

In our experiment, we compare the performance of the
discrete GPU and XSD. We configure the discrete GPU to
model NVIDIA GeForce GTX 580. Further, the embedded
GPU is modeled as a GPU in NVIDIA Tegra 4. There are
two Embedded CPU specifications. One is a high-performance
CPU to compare the performance with the embedded GPU,
and the other is a CPU to support the normal XSD operation.
We configure the former CPU as the one in Tegra 4. For the
latter CPU, DRAM, and flash memory model, we use the
parameters introduced in [2], which reflects the technology
trend of the SSD. The detailed configurations are summarized
in Table III.

We choose three benchmarks to test the performance of our
implementation: MatrixMultiplication (MM), PageViewCount

Discrete GPU
cores 512
clock frequency 772 MHz
memory bandwidth 192 GB/s

XSD
CPU frequency 1.6/0.4 GHz
GPU frequency 600 MHz
GPU L1/L2 cache 32/192 KB
CPU/GPU cores 4/48
DRAM/Flash bandwidth 3.2/0.4 GB/s
Flash channels 8

TABLE III: Key configuration parameters of discrete GPU and XSD

0

5

10

15

20

25

30

CPU in XSD GPU in XSD

N
o

r
m

a
li

z
e
d

 E
x

e
c
. 
T

im
e
 

Fig. 4: Performance comparison between CPU and GPU in XSD

(PVC), and PageViewRank (PVR). They represent the appli-
cations in web data analysis, such as web log analysis and web
document searching. We use benchmarks provided by Phoenix
[17] for CPU execution and by Mars [9] for GPU execution.

B. Performance Analysis

Figure 4 depicts the elapsed time of the embedded GPU and
CPU normalized to that of the GPU. Since MM has a relatively
larger number of computations among the three benchmarks,
we choose it so that the embedded CPU can benefit from its
high computational speed. The result shows that the embedded
GPU is 24.6 times faster than the embedded CPU. This implies
that the GPU is considerably more capable of accelerating
data-centric workloads even though it requires a considerable
number of computations.

Figure 5 illustrates the elapsed time of the discrete GPU
and XSD with and without L2 cache for the three benchmarks.
All elapsed times are normalized to the elapsed time of XSD
with the L2 cache. We express the performance of XSD only
in terms of the kernel execution time, because it is difficult to
classify the elapsed time of each stage in the XSD due to the
streaming scheme.

Even though the kernel execution time of XSD has in-
creased for all benchmarks, the overall performance of XSD
for PVR and PVC is higher than that of the discrete GPU,
which is attributed to XSD’s high internal bandwidth. The
kernel execution of XSD takes more time due to the low
frequency and parallelism of GPU, contention for DRAM and
flash bandwidth, and control overhead of the embedded CPU.
Further, XSD does not benefit from the L2 cache; instead, it
suffers from the overhead caused by the cache operation.

On the other hand, XSD without the L2 cache is slower
than the discrete GPU when executing MM. This can be
attributed to the dominance of the increase in the kernel
execution time over the decrease of the storage access time.



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

GPU XSD

w/o L2

XSD

with L2

GPU XSD

w/o L2

XSD

with L2

GPU XSD

w/o L2

XSD

with L2

PageViewRank PageViewCount MatrixMult

N
o
rm

a
li

ze
d

 E
la

p
se

d
 T

im
e
 

Kernel StorageToDRAM DRAMToStorage

Fig. 5: Elapsed time of discrete GPU, XSD, and XSD with L2 cache

However, the L2 cache improves the performance of XSD
by almost 50%, which implies that the elapsed time of MM
heavily depends on the DRAM latency. Although the addition
of the L2 cache has a reverse effect in the case of PVR and
PVC, it is a beneficial trade-off with respect to performance
since speed-up in computation-intensive workloads, such as
MM, is fairly high while the performance degradation in data-
intensive workloads, such as PVR and PVC, is rather small.

Another interesting point is that the execution time of
XSD can be further decreased by leveraging more XSDs. For
instance, if there are two XSDs in a host machine, the elapsed
time can be reduced almost half because each XSD exploits its
own internal bandwidth and does not affect the other. On the
other hand, the discrete GPU has limited scalability in one host
system since most of the execution time of the discrete GPU
is occupied by the storage access time. The problem is that
the storage bandwidth is unlikely to be scaled along with the
increasing number of discrete GPUs. As a result, the external
storage bandwidth limits the utilization of multiple discrete
GPUs, which leads to low scalability.

V. CONCLUSION AND FUTURE WORKS

In this paper, we introduced a new SSD architecture that
has a more powerful brain, namely embedded GPU. We illus-
trated that the addition of a powerful CPU is not an appropriate
solution as the new brain to accelerate data-centric workloads.
Furthermore, the discrete GPU has a limitation with respect to
the processing of large-scale data sets, since frequent storage
accesses lead to low utilization of the GPU. On the other
hand, by exploiting the high internal bandwidth of the SSD
and the streaming scheme, the embedded GPU can alleviate
the performance dependence on the storage bandwidth. Our
experimental results show that the embedded GPU is 24.6
times faster than a high-performance embedded CPU, and up
to 4 times faster than discrete GPUs. Moreover, combining
an SSD with a GPU is advantageous from the perspective
of scalability. Even though the data size increases, system
scaling is rather easy upon the addition of SSDs that have
the appropriate computing power to process the growing data
sets.

However, much work in this field is still left. We did not
consider the perspective of energy efficiency. Energy efficiency
is always an issue in large server systems. However, we project
that energy consumption may decrease by distributing the
computations of the power-hungry host CPU to the low-power
embedded GPUs. Further, sparse access to memory and storage
can be one energy-saving factor of the proposed SSD model.

We did not evaluate the cost to place a GPU inside SSDs.
The current SSD lacks a high processing rate because of

economical and technological costs. However, we expect that,
in the near future, these costs can be justified by providing an
effective direction to utilize high-performance processing units
in an SSD.

ACKNOWLEDGMENT

This work is partly supported by the Flash Software
Development Team of Memory Division, Samsung Electronics
Co., and by the Industrial Strategic technology development
program (10041971, Development of Power Efficient High-
Performance Multimedia Contents Service Technology us-
ing Context-Adapting Distributed Transcoding) funded by the
Ministry of Trade, Industry & Energy (MOTIE, Korea). The
authors would like to express their sincere gratitude to fellow
members of the ESCAL research group and Moon Sang Kwon
and Myung Hyun Jo of Memory Division, Samsung Electron-
ics Co., for their time, suggestions, and valuable feedback.

REFERENCES

[1] K. Keeton, D. A. Patterson, and J. M. Hellerstein, “A case for intelligent
disks (idisks),” SIGMOD Rec., vol. 27, no. 3, pp. 42–52, 1998.

[2] E. Riedel, G. A. Gibson, and C. Faloutsos, “Active storage for large-
scale data mining and multimedia,” in Proc. of VLDB. Morgan
Kaufmann Publishers Inc., 1998, pp. 62–73.

[3] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt, “Query
processing on smart ssds: Opportunities and challenges,” in Proc. of
SIGMOD. ACM, 2013, pp. 1221–1230.

[4] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger, “Active disk
meets flash: a case for intelligent ssds.” in Proc. of ICS. ACM, 2013,
pp. 91–102.

[5] Y. Kang, Y.-s. Kee, E. L. Miller, and C. Park, “Enabling cost-effective
data processing with smart ssd,” in Proc. of MSST. ACM, 2013, pp.
1–12.

[6] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[7] NVIDIA. (2006) CUDA. [Online]. Available:
http://www.nvidia.com/cuda

[8] Khronos Group. (2008) OpenCL. [Online]. Available:
http://www.khronos.org/opencl/

[9] W. Fang, B. He, Q. Luo, and N. K. Govindaraju, “Mars: Accelerating
mapreduce with graphics processors,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 22, no. 4, pp. 608–620, 2011.

[10] C. Hong, D. Chen, W. Chen, W. Zheng, and H. Lin, “Mapcg: writing
parallel program portable between cpu and gpu,” in Proceedings of the
19th international conference on Parallel architectures and compilation
techniques. ACM, 2010, pp. 217–226.

[11] T. White, Hadoop: the definitive guide. O’Reilly, 2012.
[12] O. Trelles, P. Prins, M. Snir, and R. C. Jansen, “Big data, but are we

ready?” Nature reviews Genetics, vol. 12, no. 3, pp. 224–224, 2011.
[13] S. Rennich, “Cuda c/c++ streams and concurrency,” NVIDIA,[online],

2012.
[14] H. Wang, V. Sathish, R. Singh, M. J. Schulte, and N. S. Kim,

“Workload and power budget partitioning for single-chip heterogeneous
processors,” in Proc. of PACT. ACM, 2012, pp. 401–410.

[15] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[16] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in Proc. of
ISPASS. IEEE, 2009, pp. 163–174.

[17] R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix rebirth: Scalable
mapreduce on a large-scale shared-memory system,” in Proc. of IISWC.
IEEE, 2009, pp. 198–207.


