Near-Data Computation:
It’s Not (Just) About Performance

Steven Swanson

Non-Volatile Systems Laboratory
Computer Science and Engineering
University of California, San Diego

\

NVSL - @ UCsSD
Non-volatile Systems Laboratory ﬁ ﬁ Computer Science and Engineering

Solid State Memories

* NAND flash
— Ubiquitous, cheap
— Sort of slow,
idiosyncratic

* Phase change, Spin
torque MRAMs, etc.
— On the horizon
— DRAM-like speed

— DRAM or flash-like
density

100000

=
gloooo S917X D 2.4x/yr "
S
B
L
2 1000
= |
5 ;
3
T 100
&

10

7200x —2|2.4x/yr

1@ v
1 10 100 1000 10000 100000 1000000
1/Latency Relative To Disk

Programmability in High-Speed
Peripherals

* As hardware gets more sophisticated,
programmability emerges

— GPUs — fixed function = Programmable shaders
- full-blown programmability

— NICs — Fixed function 2 MAC offloading = TCP
offload

e Storage has been left behind
— It hasn’t gotten any faster in 40 years

Why Near-data Processing?

Data Dependent Accesses
Trusted Computation

Semantic Flexibility

Diverse SSD Semantics

Our Goal: Make

Programming an SSD Easy
and Flexible.

e Sparse storage address space
— FusionlO DFS 6

The Software Defined SSD

The Software-defined SSD

Host Machine

Application

Generic SSD-
APP interface

PCle Citrl

PCle

Bridge

I
C

SDSSD
‘ Memory ‘ Memory
3GB/SI 3GB/SI
Memory Memory
Controller Controller
SSD SSD
CPU CPU

I

I

‘ Memory

3G B/SI

Memory
Controller

SSD
CPU

|

SDSSD Programming Model

* The host communicates with
SDSSD processors via a
general RPC interface.

* Host-CPU
— Send and receive RPC requests

 SSD-CPU
— Send and receive RPC requests

| -
()
£
(q0)
Q
| -
o
(7p]
(L)
)
O
()]

— Manage access to NV storage
banks

The SDSSD Prototype

 FPGA-based implementation
e DDR2 DRAM emulates PCM

— Configurable memory latency
— 48 ns reads, 150 ns writes
— 64GB across 8 controllers

* PCle: 2 GB/s, full duplex

10

SDSSD Case Studies

Basic IO
Caching

Transaction processing
NoSQL Databases

11

Basic IO

12

Normal 10 Operations: Base-10

* Base-lO App provides read/write functions.
e Just like a normal SSD.

* Applications make system calls to the kernel
* The kernel block driver issues RPCs

1. SysCall 2. Read/Write

kernel RPCs
module

user
accesses

Faster 10: Direct access 10

e OS installs access permissions on behalf of a
process.

* Applications issue RPCs directly to HW
* The App checks permission
2. kernel

. userspace
user channel kernel installs perms
accesses module

3. userspace channel
direct 10 accesses

Bandwidth (MB/s)

Preliminary Performance
Comparison

Read Write
1800 1800 1
1600 - 1600 -
1400 - 1400 -
1200 - 1200 -
1000 - 1000 -
800 - irect- 800 -
@m==Dijrect-10 @ Direct-10
600 - Direct-I0-HW 000 | Direct-10-HW
400 - 400 7
@m—=Base-|0O am—Base-|0
200 - 200 -
0 0

128

128

15

Caching

16

Caching

e NVMs will be caches before

Device Driver

Application
they are storage
. Cache Library
 Cache hits should be as fast
as Direct-IO @
) CaChIng App Filze::;tem caé:ec:illanager i
— Tracks dirty data et . [#UEE

— Tracks usage statistics §

SDSSD m

17

4KB Cache Hit Latency

FlashCache -
Write

FlashCache
- Read

Bankshot

SDSSD - Caching
(125MHz)

SDSSD - Caching
(1Ghz)

OS & FS (10.8 ps) Data erte (10.3 ps) Meta Data Update (21.2 ps)

OS & FS
(5.3 us) | Read (9 4 Ms)

—_ 3 I Host Software

Bl SSD Transfer
Read/erte ©51s) B Hordware

M PU Software
_i | | L =Lookup

Read/Write (12.94 ps) ‘

———

Read/Write (9.01 ps) ‘
L | ! i 1
I | i |
| 1 | i
| | |

5 10 15 20 25 30 35 40
4KB Cache Hit Latency (us)

18

Transaction Processing

19

Atomic Writes

* Write-ahead logging guarantees atomicity
* New interface for atomic operations
— LogWrite(TID, file, file_off, log, log_off)

* Transaction commit occurs at the memory
interface = full memory bandwidth

Logging Module inside SDSSD

Transaction TID 15 TID 24 TID 37
Table | |_PENDING L - FReEe X| - |[commitTED []
!
(QI/ v
Metadata |_—_| |_—_| |_—_| |_—_| |_—_| |___| |___| |___|
File L
)
Log File New D ||| New B New A L > New C
.
4
Data File Old D Old B Old A sl QldC

Atomic Writes

e SDSSD atomic-writes outperform pure software
approach by nearly 2.0x

e SDSSD atomic-writes achieve comparable
performance to a pure hardware implementation

AtomicWrite
= —— SDSSD-Tx-Opt
E —— SDSSD-Tx
g 2.0 4 —— Moneta=Tx
N - - Soft—atomic
_'"c:3 1.5 —
% 1.0 —
c
©
m 0.5 -
0.0 | | | | | | | |
0.5 2 8 32 128

Request Size (KB)

Key Value Store

22

Key-value store

 Key-value store is a fundamental building
block for many enterprise applications

* Supports simple operations
o Get to retrieve the value corresponding to a key
o Putto insert or update a key-value pair
o Delete to remove a key-value pair

 Open-chaining hash table implementation.

23

Direct-10 based Key-Value Store

Host

|
|
Get K3 |
|
|
I
0 : —21 K1 | V1 K2 | V2 > K3 | V3
Hash(K3) 1
Key K3 > % \:\b K4 | Va4

. [
[

M-1 M []
[

Index Structure | ‘
Compare [

Keys : K7 | V7 K8 | V8 > K9 | V9
/0 | Key-value data

I
v | e [
I
I
I
I

: SSD
[

24

SDSSD Key-Value Store App

Hash(K3)

Key K3

Hash
|dx

RPC(Get)

Host

SDSSD

_i?/ K1 | V1 K2 | V2 K3 | V3
{ — k4 | va
M-1 N :
Index
Structure K7 | V7 K8 | V8 K9 | V9
Key-value data
Hash |dX K3 V3
g Key K3 — |
DMA
SPU

25

MemcacheDB performance

0.6

0.5

0.4 -
H Direct-10

 Key-Value-HW

Throughput (in Million ops/s)
o
w

0.2 - M Key-Value
0.1 -
o -
Get Put Workload-A Workload-B
Get Put
0.5 0.6
0.45
< 04 — L 05
2 O\ 2
é O:i \ \\ é 0.4 \\
3 0 AN N Direct-10 303 ——Direct-10
5 AN N = N\
s v \ ====Key-Value o \ «===Key-Value
() a0 0.2
S 0.15 3
) \ o= Key-Value-HW 2 \ —Key-Value-HW
< 0.1 c
= \ = 0.1
0.05 ~—_ \
0 T T T T 1 O T T T T 1
1 2 4 8 16 32 1 2 4 8 16 32 26

Avg. chain length Avg. chain length

Ease-of-Use

Description Name Fixed-function SDSSD
LOC Devel. Time LOC Devel. Time

(Verilog) | (Person-months) | (C) | (Person-months)
Simple IO operations [8]. Base-I0 n/a n/a 1500 1
Virtualized SSD interface with OS bypass | Direct-IO 3000 36 1524 1.2
and permission checking [9].
Atomic writes tailored for scalable | Atomic-Write 1372 18 901 1
database systems based on [12].
Direct-access caching device with hard- | Caching 1336 12 728 1
ware support for dirty data tracking [6]
SSD acceleration for the persistent key- | Key—-Value 1750 6 834 1

value store, MemcacheDB [11].

27

Conclusion

* New memories argue for near-data processing
— But not just for bandwidth!
— Trust, low-latency, and flexibility are critical too!

* Semantic flexibility is valuable and viable

— 15% reduction in performance compared to fixed-
function implementation

— 6-30x reduction in implementation time
— Every application could have a custom SSD

28

Thanks!

NVSL

Non-volatile Systems Laboratory

29

Questions?

30

