Near-Data Computation: It's Not (Just) About Performance

Steven Swanson

Non-Volatile Systems Laboratory Computer Science and Engineering University of California, San Diego

Solid State Memories

- NAND flash
 - Ubiquitous, cheap
 - Sort of slow, idiosyncratic
- Phase change, Spin torque MRAMs, etc.
 - On the horizon
 - DRAM-like speed
 - DRAM or flash-like density

Programmability in High-Speed Peripherals

- As hardware gets more sophisticated, programmability emerges
 - GPUs fixed function → Programmable shaders
 → full-blown programmability
 - NICs Fixed function → MAC offloading → TCP offload
- Storage has been left behind
 - It hasn't gotten any faster in 40 years

Why Near-data Processing?

Diverse SSD Semantics

- File system offload/OS bypass
 - [Caulfield ASPLOS 2012]

Lessons Learned

- Caching support
 - Our Goal: Make
- Programming an SSD Easy
 - [Prabhakaran OSDI and Flexible.]
- NoSQL offload
 - Samsung's SmartSSD
 - De FCCM 2013]
- Sparse storage address space
 - FusionIO DFS

The Software Defined SSD

The Software-defined SSD

SDSSD Programming Model

- The host communicates with SDSSD processors via a general RPC interface.
- Host-CPU
 - Send and receive RPC requests
- SSD-CPU
 - Send and receive RPC requests
 - Manage access to NV storage banks

The SDSSD Prototype

- FPGA-based implementation
- DDR2 DRAM emulates PCM
 - Configurable memory latency
 - 48 ns reads, 150 ns writes
 - 64GB across 8 controllers
- PCIe: 2 GB/s, full duplex

SDSSD Case Studies

- Basic IO
- Caching
- Transaction processing
- NoSQL Databases

Basic IO

Normal IO Operations: Base-IO

- Base-IO App provides read/write functions.
- Just like a normal SSD.
- Applications make system calls to the kernel
- The kernel block driver issues RPCs

Faster IO: Direct access IO

- OS installs access permissions on behalf of a process.
- Applications issue RPCs directly to HW
- The App checks permission

Preliminary Performance Comparison

Caching

Caching

- NVMs will be caches before they are storage
- Cache hits should be as fast as Direct-IO
- Caching App
 - Tracks dirty data
 - Tracks usage statistics

4KB Cache Hit Latency

Transaction Processing

Atomic Writes

- Write-ahead logging guarantees atomicity
- New interface for atomic operations
 - LogWrite(TID, file, file_off, log, log_off)
- Transaction commit occurs at the memory interface → full memory bandwidth

Logging Module inside SDSSD

Atomic Writes

- SDSSD atomic-writes outperform pure software approach by nearly 2.0x
- SDSSD atomic-writes achieve comparable performance to a pure hardware implementation

Key Value Store

Key-value store

- Key-value store is a fundamental building block for many enterprise applications
- Supports simple operations
 - Get to retrieve the value corresponding to a key
 - Put to insert or update a key-value pair
 - Delete to remove a key-value pair
- Open-chaining hash table implementation.

Direct-IO based Key-Value Store

SDSSD Key-Value Store App

MemcacheDB performance

Ease-of-Use

Description	Name	Fixed-function		SDSSD	
		LOC	Devel. Time	LOC	Devel. Time
		(Verilog)	(Person-months)	(C)	(Person-months)
Simple IO operations [8].	Base-IO	n/a	n/a	1500	1
Virtualized SSD interface with OS bypass	Direct-IO	3000	36	1524	1.2
and permission checking [9].					
Atomic writes tailored for scalable	Atomic-Write	1372	18	901	1
database systems based on [12].					
Direct-access caching device with hard-	Caching	1336	12	728	1
ware support for dirty data tracking [6]					
SSD acceleration for the persistent key-	Key-Value	1750	6	834	1
value store, MemcacheDB [11].					

Conclusion

- New memories argue for near-data processing
 - But not just for bandwidth!
 - Trust, low-latency, and flexibility are critical too!
- Semantic flexibility is valuable and viable
 - 15% reduction in performance compared to fixedfunction implementation
 - 6-30x reduction in implementation time
 - Every application could have a custom SSD

Thanks!

Questions?