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Solid State Memories

* NAND flash
— Ubiquitous, cheap
— Sort of slow,
idiosyncratic

* Phase change, Spin
torque MRAMs, etc.
— On the horizon
— DRAM-like speed

— DRAM or flash-like
density
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Programmability in High-Speed
Peripherals

* As hardware gets more sophisticated,
programmability emerges

— GPUs — fixed function = Programmable shaders
- full-blown programmability

— NICs — Fixed function 2 MAC offloading = TCP
offload

e Storage has been left behind
— It hasn’t gotten any faster in 40 years



Why Near-data Processing?

Data Dependent Accesses
Trusted Computation

Semantic Flexibility



Diverse SSD Semantics

Our Goal: Make

Programming an SSD Easy
and Flexible.

e Sparse storage address space
— FusionlO DFS 6



The Software Defined SSD



The Software-defined SSD
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SDSSD Programming Model

* The host communicates with
SDSSD processors via a
general RPC interface.

* Host-CPU
— Send and receive RPC requests

 SSD-CPU
— Send and receive RPC requests
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— Manage access to NV storage
banks




The SDSSD Prototype

 FPGA-based implementation
e DDR2 DRAM emulates PCM

— Configurable memory latency
— 48 ns reads, 150 ns writes
— 64GB across 8 controllers

* PCle: 2 GB/s, full duplex
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SDSSD Case Studies

Basic IO
Caching

Transaction processing
NoSQL Databases
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Basic IO
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Normal 10 Operations: Base-10

* Base-lO App provides read/write functions.
e Just like a normal SSD.

* Applications make system calls to the kernel
* The kernel block driver issues RPCs

1. SysCall 2. Read/Write

kernel RPCs
module

user
accesses




Faster 10: Direct access 10

e OS installs access permissions on behalf of a
process.

* Applications issue RPCs directly to HW
* The App checks permission
2. kernel

. userspace
user channel kernel installs perms
accesses module

3. userspace channel
direct 10 accesses




Bandwidth (MB/s)
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Caching
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Caching

e NVMs will be caches before

Device Driver

Application
they are storage
. Cache Library
 Cache hits should be as fast
as Direct-IO @
) CaChIng App Filze::;tem caé:ec:illanager i
— Tracks dirty data et . [#UEE

— Tracks usage statistics  §

SDSSD m
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4KB Cache Hit Latency
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Transaction Processing
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Atomic Writes

* Write-ahead logging guarantees atomicity
* New interface for atomic operations
— LogWrite(TID, file, file_off, log, log_off)

* Transaction commit occurs at the memory
interface = full memory bandwidth

Logging Module inside SDSSD
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Atomic Writes

e SDSSD atomic-writes outperform pure software
approach by nearly 2.0x

e SDSSD atomic-writes achieve comparable
performance to a pure hardware implementation
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Key Value Store
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Key-value store

 Key-value store is a fundamental building
block for many enterprise applications

* Supports simple operations
o Get to retrieve the value corresponding to a key
o Putto insert or update a key-value pair
o Delete to remove a key-value pair

 Open-chaining hash table implementation.
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Direct-10 based Key-Value Store
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SDSSD Key-Value Store App
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MemcacheDB performance
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Ease-of-Use

Description Name Fixed-function SDSSD
LOC Devel. Time LOC Devel. Time

(Verilog) | (Person-months) | (C) | (Person-months)
Simple IO operations [8]. Base-I0 n/a n/a 1500 1
Virtualized SSD interface with OS bypass | Direct-IO 3000 36 1524 1.2
and permission checking [9].
Atomic writes tailored for scalable | Atomic-Write 1372 18 901 1
database systems based on [12].
Direct-access caching device with hard- | Caching 1336 12 728 1
ware support for dirty data tracking [6]
SSD acceleration for the persistent key- | Key—-Value 1750 6 834 1

value store, MemcacheDB [11].
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Conclusion

* New memories argue for near-data processing
— But not just for bandwidth!
— Trust, low-latency, and flexibility are critical too!

* Semantic flexibility is valuable and viable

— 15% reduction in performance compared to fixed-
function implementation

— 6-30x reduction in implementation time
— Every application could have a custom SSD
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Thanks!

NVSL

Non-volatile Systems Laboratory
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Questions?
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