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Abstract
Data-centric computing becomes increasingly important

because of the rapid growth of application data. In this work,
we introduce the DTM (Data-Triggered Multithreading) pro-
gramming model that extends the DTT (Data-Triggered
Thread) model and is fully compatible with existing C/C++
programs. The DTM model naturally attaches computation
to data. Therefore, the runtime system can dynamically allo-
cate the computing resource that provides affinity and locality.
We demonstrate the potential of DTM model to improve re-
sponse time and improve scalability over the traditional mul-
tithreaded programming model.

1. Introduction

The growing number of computing devices, social network-
ing applications, online services, and business transactions
has led us to an era of data explosion. As of 2012, we created
an average of 2.5 exabytes of new data every day [1]. With
conventional parallel architectures and programming models,
the application working on a huge data set can create inten-
sive data movement and perform inefficiently. To address the
issues of processing huge data, data-centric computing which
processes data in a data-oriented approach is increaingly im-
portant.

This work proposes the data-triggered multithreading
(DTM) programming model, a data-centric programming
model revised from the data-triggered threads (DTT) model
to better address the need for data-centric computing. Simi-
lar to the predecessor, DTM model initiates parallel compu-
tation when the application changes memory content. The
programmer uses C/C++ extensions of the DTM model to de-
fine computation that manipulates the changing data in the
parallel thread. Initiating parallelism in this way bringssev-
eral benefits. First, the application can avoid redundant com-
putation with the same input data. Second, the application
can exploit parallelism immediately after input data change.
Third, the system can potentially improve the application per-
formance using the memory address that triggers the compu-
tation. The previous DTT model [15, 17] mainly focuses on
the first aspect – avoiding redundant computation by not trig-
gering computation if the data is not changing. The previ-
ous work achieves 15% speedup over serial SPEC2000 bench-
marks with an additional thread that executes the computation
triggered by changing data. However, because of insufficient
support for data-level parallelism, the previous work serial-
izes the execution of data-triggered support threads and may

suffer significant performance degradation if the programmer
tries to generate many threads.

The DTM model inherits the power of elminating redun-
dant computation from DTT but enhances the design of the
programming model and runtime system to demonstrate the
ability to support massive data-level parallelism. The DTM
model provides a new type of data trigger declaration that
allows programmers to more efficiently trigger computation.
The DTM model also allows programmers to describe the or-
dering of triggered computation. The DTM model supports
many threads running at the same time and executes threads
in an out-of-order fashion. Based on the changing memory ad-
dress that triggers computation, the runtime system of DTM
can dynamically schedule computation to the most appropri-
ate computing resource to reduce the amount of cache misses
and data synchronization traffic. The runtime system can also
balance the workload among processing units.

The DTM model is fully compatible with existing C/C++
applications. It does not require any special hardware or file
system support. Therefore, the DTM model can be easily
deployed to many types of multithreaded computing systems.
Our current experimental result reveals the potential of using
this model to overlap I/O latency with computation. We also
find that the DTM model can achieve better scalability than
conventional pthread parallelism by performing computation
based on data locations.

In this paper, we make the following contributions:
(1) We introduce the DTM model, an extension of the DTT
model, that targets data-centric computing but requires no
support from hardware and file systems.
(2) We present the design philosophy of the runtime system
for the DTM programming model and implement the proto-
type system.
(3) We provide some case studies that reveal the potential per-
formance benefits of applying the DTM model.

The rest of the paper is organized as follows. Section2 de-
scribes the DTM programming model. Section3 details the
design of our runtime system. Section4 presents the prelim-
inary experimental results. Section5 discusses other related
work. Section6 concludes and depicts the future work.

2. Programming model

The DTM (Data-Triggered Multithreading) programming
model defines a set of extensions of C/C++ programming lan-
guages. The user of the DTM model can express dataflow-
like parallelism by declaring several data triggers and associ-



ating each data trigger with a support thread function. Upon
any update to the data triggers, the system will execute the as-
sociated support thread function using a computing resource
nearby the changing data.

In the DTM model, the user can declare (1) a variable, (2)
a field within a data structure or (3) the left-hand (destination)
value of an assignment as a data trigger. The previous DTT
model only supports (1) and (2) to be a data trigger [15, 16],
and can potentially create many unwanted threads, resulting
in performance degradation, if the user declares a data trigger
with a frequently changing element. The DTM model allows
the user to declare a data trigger after an assignment state-
ment, by which the system only triggers multithreaded exe-
cution when the destination value of the assignment changes.
With this feature, the user can trigger computation only at the
assignment closest to the consumer to alleviate the problem
of generating unwanted threads.

The support thread function describes the computation to
perform when the program changes the value of a data trig-
ger. The support thread function is a special function that
takes the address of the changing data trigger as the only ar-
gument. The support thread function can access other vari-
ables or data structures through global shared memory. The
DTM model also provides a barrier where the user can attach
a support thread function to. When the thread reaches the bar-
rier, the thread will stop until all the support thread functions
associated with the barrier finish.

Figure1 uses simplified code fromBlack-Scholesto illus-
trate the DTM model. To trigger a support thread function,
the programmer can choose one of the following as a data
trigger: (1) thesptprice array (Figure1(a)), (2) thes field
in the OptionData structure (Figure1(b)), or (3) when the as-
signment changes the value ofsptprice[i] (Figure1(c)).
By using the array declaration or the data structure field dec-
laration, the DTM model triggers support thread functions
whenever there is a change to these data triggers. If the pro-
grammer only wants to trigger a support thread function af-
ter executing a specific assignment but not any other place
in the program, the programmer should use the assignment
declaration. The programmer can write the support thread
function like a general C function that has only the triggering
address as the argument (Figure1(d)). With data triggers and
the support thread function, the DTM model can run many
support threadsbsInnerLoopDTTSptPrice working on dif-
ferent triggering addresses at the same time. To make sure all
the support threads finish before we need the result, the pro-
grammer should also attach the support thread functionbsIn-
nerLoopDTTSptPrice to the barrier shown in Figure1(e).

There is no restriction on what types of variables or what
kinds of functions can become data triggers and support
thread functions. The DTM model also allows a support
thread function to trigger another support thread. Becausethe
DTM model triggers support thread functions asynchronously
and can execute support thread functions out-of-order, users

fptype sptprice[10000000];  #trigger bsInnerLoopDTTSptPrice()

(a) Array declaration

typedef struct OptionData_ {

        fptype s;          #trigger bsInnerLoopDTTSptPrice()

        fptype strike;     

        fptype r;          

        fptype divq;

} 

OptionData; 

(b) Data structure declaration

sptprice[i] = data[i].s; #trigger bsInnerLoopDTTSptPrice()

(c) Assignment declaration
#DTM bsThreadInnerLoop 

void *bsInnerLoopDTTSptPrice(fptype *ptr) {

    int i = ptr - &sptprice[0]; // Get the index value

    fptype price;

    price = BlkSchlsEqEuroNoDiv( sptprice[i], strike[i],

                                 rate[i], volatility[i], otime[i], 

                                 otype[i], 0);

    price[i] = price;

    return 0;

}

(d) The support thread function

int bs_thread(void *tid_ptr) {

    int i, j;

    fptype price;

    fptype priceDelta;

    #DTM_Barrier bsThreadInnerLoop

    return 0;

}

(e) The barrier

Figure 1: Programmer-written extensions to Black-Scholes to
exploit DTM. We simplified some source code for
clarity. We present DTM pragmas in bold.

must consider potential data races and data synchroniza-
tion issues as in a conventional multithreaded programming
model. We also make the DTM model compatible with the
original DTT model. If the programmer declares a support
thread function with DTT pragmas instead of DTM pragmas,
the DTM runtime system will serialize the execution of the
support thread functions, as in the DTT model.

3. Design of DTM runtime system

The DTM model can work on existing systems and does not
require any special type of file system support. In this section,
we provide an overview of the runtime system that we use to
prototype the model. We will also describe some details of
the enhancements in our runtime system over the previous
work.

3.1. Runtime system overview

The prototype of our DTM runtime system contains a runtime
library and maintains several data structures to manage the
execution of programs.

Figure2 illustrates the execution flow of a DTM program
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Figure 2: The execution flow of DTM model

running on the runtime system. The application in the figure
contains an operationT that can potentially modify the mem-
ory content of a data trigger, and a DTM barrier that waits
for the completion of all outstanding events of a certain sup-
port thread function. When the application executesT, the
runtime system will take the following steps.

1. The runtime system checks if the operation writes a differ-
ent value than the current version. If the runtime system
detects a change, the runtime system will create a new sup-
port thread function event containing the writing address
and the support thread function associated with the data
trigger. The runtime system will also increase the counter
of the barrier associated with the support thread function.
If the runtime system detects no change to the memory
content in operationT, the runtime system will not trigger
any computation and skip steps 2.–4. to avoid redundant
computation.

2. The system will analyze the writing address and then en-
queue the event to the most appropriate queue.

3. When the hardware context is free and sees the queued
event, the hardware context will execute the support thread
function.

4. Once the support thread function finishes execution, the
polling thread notifies the runtime system and releases the
queue entry of the completed task. The runtime system
will then decrease the counter of the barrier associated
with the support thread function.

5. When the program reaches the barrier that is associated
with the support thread function, the system stops and
checks if there is any incomplete event associated with the
barrier. The program can resume if there is no running or
pending event associated with the barrier.

The runtime system of the DTM model is similar to soft-
ware DTT [17] in several aspects but significantly enhances
the support for massive data-level parallelism. In the restof
this section, we will discuss these designs.

3.2. Address-aware distributed event queues

In the beginning of the program execution, the DTM sys-
tem spawns several threads on different hardware contexts.
These threads monitor the queues and execute events from the
queues until the end of an application. Unlike the prior DTT
runtime system which uses a centralized queue, the DTM sys-
tem allocates a unique queue for each polling thread.

One big advantage of the DTM execution model is that
computation is always associated with an address. This
knowledge, presented to the runtime system, or even the hard-
ware (in a hardware-supported DTT system [15]), can be used
to naturally provide data affinity and partition computation by
data location.

Because DTM allows very fine-grained data-level paral-
lelism among threads, this work uses the address attached
to a support thread event to design address-aware distributed
queues. Each polling thread in the DTM system is respon-
sible for a different set of memory pages. When the run-
time system detects a memory content change, the system
will parse the writing address and enqueue the event to the
queue of the polling thread responsible for the memory ad-
dress. As a result, the runtime system will always enqueue
threads triggered by the same memory address or memory
addresses within the same memory page to the same queue.
The support thread functions that manipulate the same data or
neighboring data are likely to execute on the same hardware
context to reduce cache misses and exploit data localities.

The hardware contexts running these polling threads can
be any processor within the system. If the hardware system
contains processors in different levels of the memory hier-
archy, such as in-memory processors or storage processors,
the DTM system can allow polling threads running on those
heterogeneous processors. Alternatively, the runtime system
could be responsible for analyzing the writing address to allo-
cate the best computing resource for the changing data.
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Figure 3: The speedup of swaptions using pthreads and the
DTM model

3.3. Load balancing

The distribution of memory addresses of data triggers and the
different computing speeds of processors can cause unequal
workloads among computing resources.

To improve the hardware utilization under unequal work-
loads, the DTM runtime system allows an idle polling thread
to fetch an event from the tail of the event queue owned by
another thread. If a thread becomes idle because the thread
reaches a barrier with incomplete events associated with the
barrier, that thread can also fetch events from the tail of other
threads so that it need not be idle.

If there are no free queue slots for the designated event
queue, the program thread generating the new value has to
wait for an available queue slot. In this case, the main thread
will execute the support thread function in-place.

4. Case study

To investigate the performance of applications written in the
DTM model, we use a computer system with dual Intel Xeon
E5520 (Nehalem) processors as the experimental platform.
Each processor has private L2 caches for each core but a
shared L3 cache. The Nehalem processor also supports simul-
taneous multithreading, but we always schedule the polling
threads on a distinct core in this work.

Evaluating the full power of the DTM model requires sig-
nificant redesign of an application. In this paper, we present
some case studies to demonstrate the current performance of
our system. We select applications from PARSEC [3] bench-
mark suite to compare the performance with traditional paral-
lel programming model using pthreads.

4.1. Swaptions

We first examine Swaptions from the PARSEC benchmark
suite. Swaptions takes no input from file I/O which makes
this application purely computation bound. The previous
DTT model [17], which the DTM model extends, shows
the effect of removing redundant computation is significant.
In this work, we focus more on the performance of mas-
sive data-level parallelism. Therefore, when we modified
the code, we avoid exploiting the redundant behavior, but

target creating parallelism that performs the computationof
HJM_Swaption_Blocking function on each element in
theswaptions array.

Figure 3 compares the performance of the DTM model
compared with the pthread model. The baseline is the single-
threaded version of swaptions. Both the DTM and pthread
models exploit the same type of data-level parallelism; how-
ever, the DTM model slightly outperforms pthreads by ini-
tializing multithreaded computation earlier when the num-
ber of cores is less than 8. But when the number of cores
equals 8, half of the threads run on a processor with a dif-
ferent socket, increasing the cost of communication between
threads. The DTM model maintains the multithreaded scaling
and achieves 7.95x speedup but the pthread model can only
achieve 5.85x speedup. The DTM model reduces inefficient
communications between sockets by triggering the computa-
tion according to the data locations.

To demonstrate the effect of the address-aware approach,
we also implemented a runtime system without address-aware
distributed queues (DTM w/o address-aware queues in Fig-
ure3). In this version of DTM runtime system, we distribute
the events to queues using a round-robin approach. We switch
the queue for incoming events everyn thread events. We
present the result whenn equals 8 in Figure3 because it per-
forms the best among all configurations we examined for this
version of runtime system. The result indicates that this run-
time system still outperforms pthreads with the help of load
balancing features and achieves 7.21x speedup. However, the
absence of address-aware distributed queues does hurt the per-
formance of DTM runtime system.

4.2. Black-Scholes

Another case we studied in this work is Black-Scholes from
the PARSEC benchmark suite. When testing Black-Scholes,
we set the number of runs within the application to 1 (remov-
ing repetitive execution that exists for benchmark timing pur-
poses only) to avoid artificial redundant computation. The
removal of artificial redundancy makes Black-Scholes an I/O-
bound application. For the DTM version of Black-Scholes,
we start a support thread when an element in thedata array
is initialized from the input file.

Figure 4 presents the normalized execution time for
pthread and DTM versions of Black-Scholes. The execution
time is normalized to the pthread version with one thread.
The graph uses different colors to represent the time for scan-
ning the input file and outputting the result (I/O) and the time
that is CPU computation only. In terms of the pure computa-
tion time, the pthread version of Black-Scholes demonstrates
scalability – 6.4x speedup with 8 threads. However, with the
DTM model, Black-Scholes can start computation as soon
as data is moved from the input file to memory and all the
computation finishes at almost the same time the application
finishes scanning the input file. As a result, we see that the ap-
plication spends almost no time purely for computation with
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Figure 4: The result of blackscholes using (a) pthreads and (b )
the DTM model

the DTM model.
The experimental result of Black-Scholes demonstrates the

potential of DTM to hide I/O time with computation. DTM
also allows the computation to finish as soon as an I/O com-
pletes, the application can have better response time than tra-
ditional parallel programming techniques that expect datato
be in memory before initializing computation. The DTM
model makes it natural to express computation so it is per-
formed as soon as data arrives. For example, we would expect
the programmer to express the Black-Scholes computation in
this way even if they did not realize this computation was I/O
bound.

In all the above cases, we eliminated code that could re-
sult in redundant computation to simply test the effect of par-
allelism. The DTM model still has the ability to eliminate
redundant computation as in the DTT model. We expect ap-
plications with parallel behavior, where some parallel compu-
tation is initiated on redundant computation, to provide much
higher gains; however, this work focuses on maximizing per-
formance available from parallelism.

5. Related work

The DTM model tries to achieve data-level parallelism by
triggering computation somewhat similar to dataflow archi-
tectures [14, 2, 12, 7]. However, these architectures usually
require pure dataflow programming languages [5, 13], which
are incompatible with imperative programming languages, to

describe programs as dataflow graphs. The hardware support
for dataflow architecture can also be complex. The DTM
model requires no hardware support and allows programmers
to use existing C/C++ programs. For von Neumann machines
with fine-grained multithreading availablity [4], the DTM
model also provides an option for composing applications.

The DTM model shares the same spirit as Cilk [9] and
CEAL [10] that extend the C/C++ programming language to
support dataflow-like programming and execution models on
conventional architectures. Cilk exploits dataflow parallelism
like functional programming language. CEAL encourages
programmers to use incremental algorithms on changing data
to avoid redundant computation. The DTM model extends
Data-Triggered Threads, which is designed to exploit both
dataflow-like parallelism and reduce redundant computation.
However, the previous DTT [15, 17] model benefits most
from eliminating redundant computation, because of the lim-
itation of language design and runtime system. Specifically,
the prior system had no knowledge of legal orderings of DTT
threads, and had to serialize the support threads (although
they execute in parallel with the triggering thread). The DTM
model also shares the goal of data-centric programming mod-
els [8, 11], which seek to perform computation where data is
located. In contrast to these systems, the DTM model does
not need any support from the underlying file system.

The runtime system design of DTM model is similar to
Habanero [6] in triggering multithreaded computation asyn-
chronously, allocating tasks using data locations and loadbal-
ancing. However, with the DTM model, the program can
avoid redundant computation that Habanero does not address.
Qthreads [18] also proposed a location-aware resource allo-
cation runtime system, but their programming model is still
similar to the traditional pthread model and difficult to take
advantages from triggering computation in dataflow fashion.

6. Conclusions and future work

As we move into the era of big data, computer architectures
and programming languages need to handle more than ter-
abytes of data efficiently. The partitioning of data becomes
more important than the partitioning of the code. Because the
DTM programming model naturally attaches computation to
data, computation naturally moves to a location that provides
affinity and locality.

The preliminary results are promising. The DTM model
can potentially improve the application response time by start-
ing computation as soon as part of the input data arrives in
the system. DTM model can also achieve better scalability
than the pthread model because of the data-centric execution
model.

The future work of the DTM model will be applying the
programming model and runtime system to real big data ap-
plications like genome sequence processing and warehouse
applications.
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