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Abstract suffer significant performance degradation if the programnm
Data-centric computing becomes increasingly importanttries to generate many threads.

because of the rapid growth of application data. In this work The DTM model inherits the power of elminating redun-
we introduce the DTM (Data-Triggered Multithreading) pro- dant computation from DTT but enhances the design of the
gramming model that extends the DTT (Data-Triggeredprogramming model and runtime system to demonstrate the
Thread) model and is fully compatible with existing C/C++ ability to support massive data-level parallelism. The DTM
programs. The DTM model naturally attaches computationmodel provides a new type of data trigger declaration that
to data. Therefore, the runtime system can dynamically alloallows programmers to more efficiently trigger computation
cate the computing resource that provides affinity and ibcal The DTM model also allows programmers to describe the or-
We demonstrate the potential of DTM model to improve redering of triggered computation. The DTM model supports
sponse time and improve scalability over the traditional-mu many threads running at the same time and executes threads

tithreaded programming model. in an out-of-order fashion. Based on the changing memory ad-
. dress that triggers computation, the runtime system of DTM
1. Introduction can dynamically schedule computation to the most appropri-

The growing number of computing devices, social networka&l€ computing resource to reduce the amount of cache misses

ing applications, online services, and business trarszsti and data synchronization traffic. The runtime system cam als

has led us to an era of data explosion. As of 2012, we create@@lance the workload among processing units.

an average of 2.5 exabytes of new data every day\Vith The DTM model is fully compatible with existing C/C++

conventional parallel architectures and programming risode applications. It does not require any special hardware er f|_|

the application working on a huge data set can create inte§YStem support. Therefore, the DTM model can be easily

sive data movement and perform inefficiently. To address theployed to many types of multithreaded computing systems.

issues of processing huge data, data-centric computingwhi Our current experimental result reveals the potential ofgus

processes data in a data-oriented approach is increaimgly i this model to overlap I/O latency with computation. We also

portant. find that the DTM model can achieve better scalability than
This work proposes the data-triggered multithreadingtonventional pthread parallelism by performing compotati

(DTM) programming model, a data-centric programming@ased on data locations. _ o

model revised from the data-triggered threads (DTT) model N th'{; paper, we make the following contrlk_)utlons:

to better address the need for data-centric computing. -Simfl) We introduce the DTM model, an extension of the DTT

lar to the predecessor, DTM model initiates parallel compuModel, that targets data-centric computing but requires no

tation when the application changes memory content. Th&Upport from hardware and file systems.

programmer uses C/C++ extensions of the DTM model to dd2) We present the design philosophy of the runtime system

fine computation that manipulates the changing data in thér the DTM programming model and implement the proto-

parallel thread. Initiating parallelism in this way bringsv-  tyPe system.

eral benefits. First, the application can avoid redundamt-co (3) We provide some case studies that reveal the potential pe

putation with the same input data. Second, the applicatioformance benefits of applying the DTM model. _

can exploit parallelism immediately after input data chang ~ The rest of the paper is organized as follows. Sectide-

Third, the system can potentially improve the applicatien-p Scribes the DTM programming model. Sectiuletails the

formance using the memory address that triggers the comp@€sign of our runtime system. Sectidipresents the prelim-

tation. The previous DTT model f, 17] mainly focuses on  nary experimental results. Sectiérdiscusses other related

the first aspect — avoiding redundant computation by not trigVork. Sectiorb concludes and depicts the future work.

gering computation if the data is not changing. The previ ;

ous work achieves 15% speedup over serial SPEC2000 benc%'— Programming model

marks with an additional thread that executes the computati The DTM (Data-Triggered Multithreading) programming

triggered by changing data. However, because of insufficiermodel defines a set of extensions of C/C++ programming lan-

support for data-level parallelism, the previous work &eri guages. The user of the DTM model can express dataflow-

izes the execution of data-triggered support threads aryd mdike parallelism by declaring several data triggers an@eiss



ating each data trigger with a support thread function. Upon
any update to the data triggers, the system will executeshe a
sociated support thread function using a computing regourc
nearby the changing data.

In the DTM model, the user can declare (1) a variable, (2)  typedes struct optionpata_
a field within a data structure or (3) the left-hand (destomgt foivpe sicike; oo heimerieopimsptorice
value of an assignment as a data trigger. The previous DTT fhtype diva;
model only supports (1) and (2) to be a data trigge?s, [L6], :
and can potentially create many unwanted threads, regultin
in performance degradation, if the user declares a dagetrig )
with a frequently changing element. The DTM model allows ~ oetionrata;
the user to declare a data trigger after an assignment state- (b) Data structure declaration
ment, by which the system only triggers multithreaded exe-
cution when the destination value of the assignment changes setericeti] = datafil.s; #trigger bsInnerLooppITspterice ()
With this feature, the user can trigger computation onlyat t
assignment closest to the consumer to alleviate the problem (c) Assignment declaration
of generating unwanted threads. #DTM bsThreadInnerLoop

void *bsInnerLoopDTTSptPrice(fptype *ptr) {

The support thread function describes the computation to int i = ptr - &sptprice[0]; // Get the index value

fptype price;

perform when the program changes the value of a data trig- price = BlkSchlsEqEuroNoDiv( sptprice[i], strike[i],

rate[i], volatility[i], otime[i],

ger. The support thread function is a special function that o _ otypelil, 0);

takes the address of the changing data trigger as the only ai Teturn 0 T

gument. The support thread function can access other vari

ables or data structures through global shared memory. The (d) The support thread function
DTM model also provides a barrier where the user can attach . .. .....scoia «cia per) ¢

a support thread function to. When the thread reachestheba It & 3:

rier, the thread will stop until all the support thread fuons fptype priceDelta;

associated with the barrier finish. #DTH Barrier bsThreadInnerloop

Figure 1 uses simplified code frorBlack-Scholeso illus- ; '
trate the DTM model. To trigger a support thre_ad function, (e) The barrier
the programmer can choose one of the following as a data
trigger: (1) thespt pri ce array (Figurel(a)), (2) thes field Figure 1: Programmer-written extensions to Black-Scholes to
in the OptionData structure (Figui€b)), or (3) when the as- exploit DTM. We simplified some source code for
signment changes the valueyit pri ce[i] (Figurel(c)). clarity. We present DTM pragmas in bold. _
By using the array declaration or the data structure field dednUst consider potential data races and data synchroniza-
laration, the DTM model triggers support thread functionstion issues as in a conventional multithreaded programming
whenever there is a change to these data triggers. If the prBlodel. We also make the DTM model compatible with the
grammer only wants to trigger a support thread function aforiginal DTT model. If the programmer declares a support
ter executing a specific assignment but not any other placiiread function with DTT pragmas instead of DTM pragmas,
in the program, the programmer should use the assignmeH?e DTM runtime sy_stem W|I_I serialize the execution of the
declaration. The programmer can write the support threagUPPOrt thread functions, as in the DTT model.
function like a general C function that has only the trigggri ; :
address as the argument (Figafd)). With data triggers and 3. Design of DTM runtime system
the support thread function, the DTM model can run manyThe DTM model can work on existing systems and does not
support threadbsl nnerLoopDT T SptPrice working on dif-  require any special type of file system support. In this secti
ferent triggering addresses at the same time. To make sure afe provide an overview of the runtime system that we use to
the support threads finish before we need the result, the prprototype the model. We will also describe some details of
grammer should also attach the support thread funétsbn-  the enhancements in our runtime system over the previous
ner LoopDTT SptPrice to the barrier shown in Figurde). work.

There is no restriction on what types of variables or What3
kinds of functions can become data triggers and support’
thread functions. The DTM model also allows a supportThe prototype of our DTM runtime system contains a runtime
thread function to trigger another support thread. Becthese library and maintains several data structures to manage the
DTM model triggers support thread functions asynchronousl execution of programs.
and can execute support thread functions out-of-ordersuse Figure? illustrates the execution flow of a DTM program

fptype sptprice[10000000]; #trigger bsInnerLoopDTTSptPrice()

(a) Array declaration

1. Runtime system overview
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Figure 2: The execution flow of DTM model

running on the runtime system. The application in the figure3.2. Address-awar e distributed event queues
contains an operatioh that can potentially modify the mem-
ory content of a data trigger, and a DTM barrier that waits

. : . In the beginning of the program execution, the DTM sys-
for the completion of all outstanding events of a certain-sup ;
. Co tem spawns several threads on different hardware contexts.
port thread function. When the application executeshe

runtime svstem will take the following steps These threads monitor the queues and execute events from the
y g steps. gueues until the end of an application. Unlike the prior DTT
runtime system which uses a centralized queue, the DTM sys-

1. The runtime system checks if the operation writes a differ ; X
em allocates a unique queue for each polling thread.

ent value than the current version. If the runtime systemt
detects a change, the runtime system will create a new sup-One big advantage of the DTM execution model is that
port thread function event containing the writing addresscomputation is always associated with an address. This
and the support thread function associated with the datknowledge, presented to the runtime system, or even the hard
trigger. The runtime system will also increase the countevare (in a hardware-supported DTT systerf]], can be used

of the barrier associated with the support thread functiorto naturally provide data affinity and partition computathry

If the runtime system detects no change to the memoryata location.

content in operatioil, the runtime system will not trigger

anv computation and skio steps 2 —4. to avoid redundant Because DTM allows very fine-grained data-level paral-
co?lnputaﬁon P SIEpS .= Telism among threads, this work uses the address attached

. . to a support thread event to design address-aware disttibut
2. The system will analyze the writing address and then en- : : .
. queues. Each polling thread in the DTM system is respon-
gueue the event to the most appropriate queue.

3. When the hardware context is free and sees the queue?c'Ple for a different set of memory pages. When the run-

. me system detects a memory content change, the system
event, the hardware context will execute the support thread" y " ry 9 y
function. will parse the writing address and enqueue the event to the

4. Once the support thread function finishes execution, th%ueue of the polling thread'respon3|ble fqr the memory ad-
ress. As a result, the runtime system will always enqueue

polling thread notifies the runtime system and releases thﬁ‘]reads triggered by the same memory address or memory
Wi then decrease he counter of he bartier assopiateCCTESSES Wi the same memory page t the same queue.
he support thread functions that manipulate the same data o

with the support thread function. ) . .
. : . neighboring data are likely to execute on the same hardware
5. When the program reaches the barrier that is associate . : "
. . ontext to reduce cache misses and exploit data localities.
with the support thread function, the system stops an

checks if there is any incomplete event associated with the The hardware contexts running these polling threads can
barrier. The program can resume if there is no running obe any processor within the system. If the hardware system
pending event associated with the barrier. contains processors in different levels of the memory hier-
archy, such as in-memory processors or storage processors,
The runtime system of the DTM model is similar to soft-the DTM system can allow polling threads running on those
ware DTT [L7] in several aspects but significantly enhancesheterogeneous processors. Alternatively, the runtimgesys
the support for massive data-level parallelism. In the oést could be responsible for analyzing the writing addresslts al
this section, we will discuss these designs. cate the best computing resource for the changing data.



Shieads 795 target creating parallelism that performs the computadibn
DTM (wio address-aware queues) - e HIM Swapt i on_BIl ocki ng function on each element in
theswapt i ons array.

Figure 3 compares the performance of the DTM model
compared with the pthread model. The baseline is the single-
398 threaded version of swaptions. Both the DTM and pthread
models exploit the same type of data-level parallelism;-how
ever, the DTM model slightly outperforms pthreads by ini-
tializing multithreaded computation earlier when the num-
ber of cores is less than 8. But when the number of cores
equals 8, half of the threads run on a processor with a dif-
ferent socket, increasing the cost of communication betwee
threads. The DTM model maintains the multithreaded scaling
3.3. Load balancing and achieves 7.95x speedup but the pthread model can only

o ) achieve 5.85x speedup. The DTM model reduces inefficient
The distribution of memory addresses of data triggers a&d th.gmmunications between sockets by triggering the computa-
different computing speeds of processors can cause uneqyg, according to the data locations.
workloads among computing resources. To demonstrate the effect of the address-aware approach,

To improve the hardware utilization under unequal workyye aiso implemented a runtime system without address-aware
loads, the DTM runtime systgm allows an idle polling threadjistriputed queues (DTM w/o address-aware queues in Fig-
to fetch an event from the tail of the event queue owned by,re3) | this version of DTM runtime system, we distribute
another thread. If a thread becomes idle because the thregeh events to queues using a round-robin approach. We switch

reaqhes a barrier with incomplete events associateq veth thpe queue for incoming events evemythread events. We
barrier, that thread can also fetch events from the tail loéot present the result whemequals 8 in Figur@ because it per-

threads so that it need not be idle. . forms the best among all configurations we examined for this
If there are no free queue slots for the designated eveRjgsjon of runtime system. The result indicates that this ru

queue, the program thread generating the new value has {pne system still outperforms pthreads with the help of load

wait for an available queue slot. In this case, the main threapa|ancing features and achieves 7.21x speedup. Howeeer, th
will execute the support thread function in-place. absence of address-aware distributed queues does huetrthe p
4. Case study formance of DTM runtime system.

To investigate the performance of applications writterhi@ t
DTM model, we use a computer system with dual Intel Xeonanother case we studied in this work is Black-Scholes from
E5520 (Nehalem) processors as the experimental platforfthe PARSEC benchmark suite. When testing Black-Scholes,
Each processor has private L2 caches for each core but\ge set the number of runs within the application to 1 (remov-
shared L3 cache. The Nehalem processor also supports simjflg repetitive execution that exists for benchmark timing-p
taneous multithreading, but we always schedule the pollingoses only) to avoid artificial redundant computation. The
threads on a distinct core in this work. removal of artificial redundancy makes Black-Scholes an I/0
Evaluating the full power of the DTM model requires sig- bound application. For the DTM version of Black-Scholes,

nificant redesign of an application. In this paper, we presenwe start a support thread when an element indaea array
some case studies to demonstrate the current performanceigfinitialized from the input file.
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Figure 3: The speedup of swaptions using pthreads and the
DTM model

4.2. Black-Scholes

our system. We select applications from PARSE{bench- Figure 4 presents the normalized execution time for
mark suite to compare the performance with traditionallpara pthread and DTM versions of Black-Scholes. The execution
lel programming model using pthreads. time is normalized to the pthread version with one thread.

The graph uses different colors to represent the time for-sca
ning the input file and outputting the result (1/0) and thegim
We first examine Swaptions from the PARSEC benchmarkhat is CPU computation only. In terms of the pure computa-
suite. Swaptions takes no input from file I/O which makestion time, the pthread version of Black-Scholes demoresrat
this application purely computation bound. The previousscalability — 6.4x speedup with 8 threads. However, with the
DTT model [L7], which the DTM model extends, shows DTM model, Black-Scholes can start computation as soon
the effect of removing redundant computation is significantas data is moved from the input file to memory and all the
In this work, we focus more on the performance of mas€omputation finishes at almost the same time the application
sive data-level parallelism. Therefore, when we modifiedfinishes scanning the input file. As a result, we see that the ap
the code, we avoid exploiting the redundant behavior, buplication spends almost no time purely for computation with

4.1. Swaptions



TR Compaon anly describe programs as dataflow graphs. The hardware support
for dataflow architecture can also be complex. The DTM
model requires no hardware support and allows programmers
to use existing C/C++ programs. For von Neumann machines
with fine-grained multithreading availablity!], the DTM
model also provides an option for composing applications.

The DTM model shares the same spirit as Citk &nd
CEAL [10] that extend the C/C++ programming language to
L . . . support dataflow-like programming and execution models on
Number of cores conventional architectures. Cilk exploits dataflow paiam
(a) pthreads like functional programming language. CEAL encourages
programmers to use incremental algorithms on changing data
to avoid redundant computation. The DTM model extends
Vo === Computtion rly - Data-Triggered Threads, which is designed to exploit both
- dataflow-like parallelism and reduce redundant computatio
However, the previous DTT1[, 17] model benefits most
from eliminating redundant computation, because of the lim
itation of language design and runtime system. Specifically
the prior system had no knowledge of legal orderings of DTT
threads, and had to serialize the support threads (although
they execute in parallel with the triggering thread). TheMDT
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0 1 N 4 8 model also shares the goal of data-centric programming mod-
Number of cores els [, 11], which seek to perform computation where data is
(b) DTM model located. In contrast to these systems, the DTM model does
Figure 4: The result of blackscholes using (a) pthreads and (b ) not need any support from the underlying file system.
the DTM model The runtime system design of DTM model is similar to
Habanero §] in triggering multithreaded computation asyn-
the DTM model. chronously, allocating tasks using data locations and thakhd

The experimental result of Black-Scholes demonstrates thSncing. However, with the DTM model, the program can
potential of DTM to hide I/O time with computation. DTM - ayoid redundant computation that Habanero does not address
also allows the computation to finish as soon as an /0 conpthreads 19] also proposed a location-aware resource allo-
pletes, the application can have better response time taan tcation runtime system, but their programming model is still
ditional parallel programming techniques that expect @iata sjmjlar to the traditional pthread model and difficult to éak

be in memory before initializing computation. The DTM advantages from triggering computation in dataflow fashion
model makes it natural to express computation so it is per-

formed as soon as data arrives. For example, we would expegt Conclusions and future work
the programmer to express the Black-Scholes computation in
this way even if they did not realize this computation was I/OAs we move into the era of big data, computer architectures
bound. and programming languages need to handle more than ter-
In all the above cases, we eliminated code that could reabytes of data efficiently. The partitioning of data becomes
sult in redundant computation to simply test the effect of pa more important than the partitioning of the code. Because th
allelism. The DTM model still has the ability to eliminate DTM programming model naturally attaches computation to
redundant computation as in the DTT model. We expect apdata, computation naturally moves to a location that presid
plications with parallel behavior, where some parallel pam  affinity and locality.
tation is initiated on redundant computation, to provideemu The preliminary results are promising. The DTM model
higher gains; however, this work focuses on maximizing percan potentially improve the application response time hjtst
formance available from parallelism. ing computation as soon as part of the input data arrives in
the system. DTM model can also achieve better scalability
5. Related work than the pthread model because of the data-centric exacutio
The DTM model tries to achieve data-level parallelism bymodel.
triggering computation somewhat similar to dataflow archi- The future work of the DTM model will be applying the
tectures [4, 2, 12, 7. However, these architectures usually programming model and runtime system to real big data ap-
require pure dataflow programming languaggsi.[], which  plications like genome sequence processing and warehouse
are incompatible with imperative programming languages, t applications.
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